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Abstract— Motion analysis of infants is used for early de-
tection of movement disorders like cerebral palsy. For the
development of automated methods, capturing the infant’s
pose accurately is crucial. Our system for predicting 3D joint
positions is based on a recently introduced pixelwise body part
classifier using random ferns, to which we propose multiple
enhancements. We apply a feature selection step before training
random ferns to avoid the inclusion of redundant features. We
introduce a kinematic chain reweighting scheme to identify
and to correct misclassified pixels, and we achieve rotation
invariance by performing PCA on the input depth image. The
proposed methods improve pose estimation accuracy by a large
margin on multiple recordings of infants. We demonstrate the
suitability of the approach for motion analysis by comparing
predicted knee angles to ground truth angles.

I. INTRODUCTION

Movement disorders like cerebral palsy (CP) can be de-
tected at an early age. The current medical gold standard
method for early detection of CP is the General Movements
Assessment (GMA) [1], which requires a trained expert, often
a doctor, to manually examine video recordings of infants to
evaluate their movements. Multiple drawbacks exist for this
method: it is time-consuming, it requires an expert who is
repeatedly trained on the GMA, and the outcome is based
on a subjective opinion.

Our goal is to automate the task of motion analysis to
identify infantile motor disorders. This paper focuses on a
fundamental step for motion analysis: capturing the body
pose accurately and reliably. In addition, the system is
required to be cheap, easy to set up, usable by non-experts
and non-intrusive for the infants (see Fig. 1). We build upon
an approach for infant body pose estimation in single depth
images using random ferns [2]. A fern is a special kind of
decision tree, where at each level of the tree, the same binary
feature is evaluated. We analyze the different stages of that
approach and present multiple contributions to enhance the
quality of pose estimation. We integrate a feature selection
step in the training procedure to avoid redundant features and
show how the choice of training data improves results. We
incorporate a kinematic chain reweighting scheme to identify
and to correct misclassified pixels. We perform PCA on the
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Fig. 1. System setup. A depth camera is mounted above the examination
table. A connected laptop running the proposed system estimates the body
pose in every frame and outputs information about movements, e.g. knee
angles. Best viewed in color.

input data to find the main body axis, and compensate for
rotations. We evaluate pose estimation accuracy on multiple
recordings of infants using three challenging metrics.

II. RELATED WORK

With the introduction of commodity depth sensors like
the Microsoft Kinect and its body tracking capabilities, many
applications for analyzing humans and their movements were
developed. However, the Kinect body tracking is limited to
persons taller than 1 m. Multiple systems aim to automate
infant motion analysis, in order to produce objective and
repeatable measures for assessing movements. Most systems
need either markers or sensors that are attached to the infant
[31, [4], [5] or they lack 3D information [6], [7]. Other
approaches overcome these limitations by fitting a simplified
body model to the whole body [8] or lower limbs [9] of
infants captured by RGB-D devices. We focus on a recently
introduced approach for infant body pose estimation in single
depth images using random ferns [2] in the following section.

III. METHODS

This section presents methods for improving infant body
pose estimation using random ferns [2]. The ferns, which are
a variant of decision trees, are trained to assign a body part
class to each input depth pixel. When traversing the fern,
input depth is compared to depth at an offset pixel in each
split node (feature). If the difference is larger than a given



threshold, the feature output is 1, else 0. Leaf nodes contain a
probability distribution over body part classes that is learned
from synthetic training data. 3D joint positions are calculated
based on estimated body part regions (see [2] for details).

A. Feature selection

When analyzing trained ferns from [2], we found that
binary depth comparison features are included for which
pixel offsets ¢ or depth thresholds 7 take values that lead
to an evaluation of all training pixels to exclusively one side
(all 0 or all 1). Leaf nodes which are on the wrong side of that
particular feature will never be traversed during training, and
therefore do not contribute to classification. Simply removing
these features would reduce memory requirements, but to
improve classification, replacement by new (better) features
is desirable. Replacing features in an existing fern enforces
recalculation of probability distributions in all leaf nodes,
since, due to the properties of ferns, each feature influences
all leaf nodes. Therefore, we filter out redundant features
before training to keep training times low and to avoid re-
processing. We randomly generate a large set of features and
evaluate them on the training data once, using information
gain measure (Fig. 2). Only features with information gain
above a user-specified threshold are added to a set from
which features are drawn randomly during training. The in-
formation gain measure is often used for evaluating candidate
features in training random decision trees (e.g. [10]). It is
defined by
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where 6 represents the feature parameters, consisting of pixel
offset ¢ = (¢, ¢,) and depth threshold 7. S is the set of
all training pixels, ST and ST are the left and right subsets
according to the evaluation using 6. I is the Shannon entropy
of the distribution of body part classes corresponding to
pixels in S:

1(S) = =) plc|S)logp(c]$), 2

where p(c|S) is the normalized histogram of the set of body
part classes ¢(u) for all u € S.

B. Training data generation

Evaluations in [2] showed failure cases for wrongly clas-
sified body parts (e.g. pixels on knee classified as hand).
The poses used in their training are taken from a data set
that contains adults performing everyday activities. These
poses are mapped to a synthetic body model of an infant.
However, these poses are not typical for infants and their
specific motions. This bias in training data will severly
decrease the classification accuracy of the ferns. Due to the
infeasibility of recording a large amount of motion capture
data from infants performing the complete range of possible
poses, we have synthetically generated a wide range of what
we consider baby-like poses. We determine angle ranges
for the extremities which represent infant poses realistically

Fig. 2. 5000 randomly generated features, evaluated on infant training
data. Green depicts large information gain, black small gain. Pixel offsets
are plotted on x (red) and y (green) axis, depth threshold on z (blue) axis.
Left: view on XY-axes. Right: view on XZ-axes. Red dot is input pixel
which the offsets are related to. Best viewed in color.

according to visual inspection. We generate 30,000 poses by
randomly combining angles within these ranges. We pick
small random angles between 10 and -10 degrees for joints
that do not belong to extremities. We generate labeled depth
images from three different frontal viewpoints for each of the
poses. To ensure that the training data is not biased towards
either side, we mirror the generated data, resulting in an
overall number of 180k training images.

C. Kinematic chain reweighting and filtering

In certain scenarios body part regions are misclassified,
e.g. estimated hand regions on the knees, which are easily
identifiable for humans using prior knowledge about the
human body. However, random ferns independently classify
each pixel w.r.t the classified outcome of neighboring pixel
classes. Therefore, we add a post-processing step incorpo-
rating prior information about valid connections between
human body parts. After predicting body part labels for all
pixels, we form clusters of neighboring pixels that share
the same label. We construct a graph, adding one node for
each cluster and connecting neighboring clusters by edges.
Edge weights correspond to the number of bones between
body parts in the underlying skeleton. Pixels of a cluster are
considered misclassifications and filtered out if the shortest
path from the cluster to the root node (body center) violates
kinematic chain constraints. Body part probabilites for mis-
classified pixels are reweighted depending on surrounding
(correct) body parts. We further enforce the existence of
only one cluster per body part class which leads to body
part labels that conform to the kinematic chain of the body.

D. Rotation invariance

The binary depth features used in the ferns are not
invariant to rotations. Instead of trying to capture all possible
variations of rotation in the training data, we train on upright
positions with limited range of rotation. In our setting, the
babies are always filmed from above, so that the main body
axis is displayed vertically in the camera image. If the main
axis strongly diverges from being vertical, the prediction
will be distorted. We use the 2D positions of pixels from
estimated body parts that belong to the torso from the
previous frame as input for principal component analysis



Fig. 3. Effect of rotation correction using PCA. Left: without correction.
Right: with correction. Colors represent different body parts. Lines display
connections between predicted joints (colored dots). Best viewed in color.

(PCA). We rotate the feature offsets to conform to the axes
we get from the first two eigenvectors of PCA. This way, the
classification is performed as if an upright body was given
as input (see Fig. 3).

IV. EVALUATION

We quantitatively compare our methods to [2] on three
sequences of different infants moving freely in supine posi-
tion without external stimuli. Recordings were only made
if parents gave their written consent. From two of the
sequences, we select sections of 500 frames where the infants
are most active, whereas the third sequence consists of 4500
frames. A Microsoft Kinect was mounted to the wall facing
downward about 1 meter above an examination table, so that
the recorded infant is facing the camera frontally.

Manual annotation of ground truth 3D joint positions is a
cumbersome, yet inaccurate process. We fit a 3D body model
to the recorded sequences and visually verify the plausibility
and accuracy of results and consider them ground truth for
our evaluation. The background is removed from the depth
images prior to evaluation so that only pixels remain that are
part of the infant.

A. Error metrics

Pose estimation approaches are often evaluated by indi-
cating the average joint position error (AJPE) [2]. If used
as a foundation for motion analysis, though, we need more
strict evaluation measures. Therefore, we use the worst-
case accuracy (WCA) as proposed by [11], which is the
percentage of frames in which all joints lie within a certain
distance from the ground truth. Additionally, we introduce
a measure that we call the jitter accuracy (JA). We define
the difference of predicted joint position deviation relative to
ground truth in consecutive frames (jitter error) by

J€i; = (2,5 — gti,j) — (@i — gti—l,j)”v (3)

where ¢ = 2,..., N is the frame number, N the total number
of frames, j the joint index, x; ; the predicted position of
joint j in frame 4, gt, ; the ground truth position of joint j
in frame ¢ and || || the euclidean distance. The jitter accuracy
is the percentage of frames in which the jitter error of all
joints is smaller than a certain threshold.

Without RWF
2] 1.782 (3.103)
Ours 1.212 (0.931)
Ours (FS) | 1.236 (1.121)

TABLE I
AVERAGE JOINT POSITION ERROR (AND STANDARD DEVIATION) IN CM
OVER ALL SEQUENCES.

With RWF
1.382 (1.459)
1.224 (0.897)
1.222 (0.852)

B. Results

We compare the proposed methods to the baseline appro-
ach [2]. All classifiers are trained using the same number of
ferns (15), fern depth (13) and pixel offset neighborhood
radius (20 cm). PCA rotation correction is applied with
all methods. FS indicates that the feature selection step is
used prior to training, RWF means that kinematic chain
reweighting and filtering is applied. For results without RWF,
the filtering procedure from [2] is applied.

Average joint position error (Table I). AJPE of [2] is
reduced by 0.4 cm (22%) by applying RWF. When using
better training data (Ours) the improvement is even bigger.
Yet, no further gain is obtained by combining Ours and RWF.
We find the explanation that Ours provides much cleaner
estimates, especially on frames where [2] shows huge errors,
e.g. classifying knee as hand. RWF fixes that same kind
of error - hence there is no improvement when combined
with Ours. Error even increases slightly for RWF with Ours,
which we believe is due to the fact that when class labels of
body part patches are changed by RWEF, predicted positions
seem to shift too far sometimes.

Worst-case accuracy (Fig. 4a). A similar trend is visible
for the worst-case accuracy. Our proposed methods clearly
outperform [2] by e.g. reaching 90% of all frames with all
joint errors smaller than 5 cm, whereas [2] reaches 55%. A
joint position error of 5 cm exceeds tolerable error limits
for infant motion analysis, but we want the reader to keep
in mind that the worst-case accuracy does not distinguish
between all joint errors being larger than the threshold and
just one. If we allowed one joint error larger than the
threshold, our best WCA for a maximum distance of 3 cm
is 85% ([2]: 55%).

Jitter accuracy (Fig. 4b). There is no big gain in jitter
accuracy by applying RWF, but Ours significantly reduces
jitter error in comparison with [2]. At a maximum jitter
error of 2 cm, there is a gain of nearly 20% in accuracy.
The jitter accuracy is an important measure when using
pose estimation for motion analysis, since jumps of the joint
positions in consecutive frames will be erroneously regarded
as movements.

In the conducted experiments, the feature selection step
does not lead to a significant improvement in accuracy. If
there are no redundant features included in training without
feature selection, there will be no benefit from this step.
We still believe feature selection to be a valid enhancement,
because it prevents the inclusion of redundant features inde-
pendent of the amount of randomness used during training.
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Fig. 4. Evaluation results. Best viewed in color.

Altogether, we show that the proposed methods outper-
form [2] by large margin on multiple challenging error
metrics.

V. INFANT MOTION ANALYSIS

In Fig. 4c and 4d, we illustrate how our system captu-
res movement information like joint angles accurately by
comparison with angles calculated from ground truth joint
positions. Results are presented for left and right knee for
2600 frames of the longest sequence. Although the angle
values do not match the peak levels exactly, we observe
that the estimated angles reflect the ground truth very well.
Doctors will be able to get an impression of the movement
quality by one glance on the plotted angles. It will, e.g., be
clearly visible if there is an absence of motion on one side of
the body. Motion features based on angles have been shown
to successfully detect and predict cerebral palsy [3]. Others
have employed features based on trajectories, velocities and
accelerations [4], [5], [6] which our system can measure as
well. In a subsequent step, we will study early detection of
CP using different features.

VI. CONCLUSION

We presented multiple enhancements to infant body pose
estimation using random ferns. We propose a feature se-
lection step before training to filter out irrelevant features. We
introduce a kinematic chain reweighting scheme in a post-
processing stage that identifies and corrects misclassified
pixels that do not obey human skeleton constraints. Further-
more, we show the importance of training data representing
test data correctly. Our methods outperform a recently intro-
duced approach by a large margin in terms of average joint
position error, worst-case accuracy and newly introduced
metric jitter accuracy. Finally, we illustrate the accuracy of
extracted angles that can serve as a basis for motion features
for the automatic detection of motor disorders.
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