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Abstract. Traditionally, pedestrian simulations are a standard tool in
public space design, crowd management, and evacuation management. In
particular, when minimizing evacuation times or identifiying hazardous
locations, it is of vital importance that simulations are as accurate and
realistic as possible. Although today’s pedestrian simulation models give
satisfying results in many cases, they are not realistic in highly crowded
scenes. In this paper, we describe a characteristic motion pattern that is
commonly observed in areas of high pedestrian density and that has not
been taken into account in state-of-the-art pedestrian models. Hence, we
extend an existing pedestrian model by integrating this characteristic
motion pattern and show that our proposed model gives more realistic
trajectories.

1 Introduction

Simulations of pedestrian streams play an important role when optimizing evac-
uation routes or idenfiying hazardous locations in a building or event location in
order to prevent accidents. Considering future research directions that integrate
real-time information into simulations in order to foresee hazardous situations,
prevent accidents, and recommend evacuation strategies in real-time, accurate
pedestrian models are even more important.

In order to improve and validate models of pedestrian behavior, insights into
human motion characteristics are needed. In particular, the dynamics in loca-
tions of high pedestrian density are of great interest. A very characteristic human
motion pattern is lateral swaying. From common observations, it is known that
people do not move along a straight line, but instead tend to swing laterally.
In [1], we have shown that the relationship between the velocity and the ampli-
tude of lateral swaying is even a linear relationship. Recently, this characteristic
motion pattern has been exploited in order to detect congested areas by analyz-
ing short-term motions from video surveillance cameras [2, 3].

However, a comparison of simulated trajectories and real trajectories reveals
that lateral swaying has not been adequately taken into account in state-of-the-
art pedestrian models. In this work, we extend the generalized centrifugal force
model [4,5] by superimposing an oscillation force that mimics lateral swaying of
pedestrians. In addition to introducing the oscillation force, we also adapt the
ellipse modeling space requirements of pedestrians to a reasonable size.



2 Related Work

Despite of many modifications of the social force model presented by Helbing et
al. [6, 7] that have been proposed over the years [5, 8, 9], the model still cannot
reproduce realistic motion behavior in areas of high pedestrian densities. Over-
lapping of pedestrians can hardly be avoided making a higher repulsive force
between pedestrians necessary. As a consequence, oscillations occur when high
repulsive forces push pedestrians back and forth. In their centrifugal force model,
Yu et al. [9] take the relative velocity of people into account and introduce a colli-
sion detection technique in order to avoid overlappings. However, by introducing
a collision detection procedure, the centrifugal force model as proposed in [9] in-
creases the complexity of the model and counteracts the idea of a force-based
system. Thus, Chraibi and Seyfried [4,5] propose the generalized centrifugal force
model (GCFM) in which they replace the collision detection technique in favor
of an improved formulation of repulsive forces.

3 The Generalized Centrifugal Force Model

In the following, we briefly describe the generalized centrifugal force model and
use the notation of Chraibi and Seyfried [5].

Given pedestrian i with coordinates
−→
R i and mass mi, the movement of i is

described as the superposition of a driving force and repulsive forces:

mi
−̈→
Ri =

−−→
F drvi +

∑
j∈Ni

−−→
F repij +

∑
w∈Wi

−−→
F repiw . (1)

The driving force models motion into the direction of the pedestrian’s in-
tended destination as well as his desired speed v0i . Formally, the driving force of
pedestrian i is given as

−−→
F drvi = mi

−→
v0i −

−→vi
τ

(2)

where −→vi denotes i’s current velocity and τ is a relaxation time.
Repulsive forces induced by nearby pedestrians as well as obstacles model

the avoidance of collisions. In [5], the repulsive force between pedestrians i and
j is given as

−−→
F repij = −mikij

(ηped‖
−→
v0i ‖+ vij)

2

distij

−→eij . (3)

With
−→
Rij being the vector pointing from pedestrian i to pedestrian j, −→eij is

the normalized connecting vector:

−→
Rij =

−→
Rj −

−→
Ri,
−→eij =

−→
Rij

‖
−→
Rij‖

(4)

In order to model the field of perception, the coefficient kij in Equation 3
is at its maximum when pedestrian j is in the motion direction of pedestrian i,



whereas it is zero when pedestrian j is out of sight, i.e. when the angle between
−→vi and pedestrian j is greater or equal to 90◦:

kij =

{
(−→vi · −→eij)/‖−→vi‖, if −→vi · −→eij > 0 ∧ ‖−→vi‖ 6= 0

0, otherwise.
(5)

In addition to the field of perception, the relative velocity between pedestrians
is also taken into account. If pedestrians in front of pedestrian i are walking fast,
i is not affected by them:

vij =

{
(−→vi −−→vj ) · −→eij , if (−→vi −−→vj ) · −→eij > 0

0, otherwise.
(6)

However, if vij is small, the repulsive force decreases leading to overlappings.

Chraibi and Seyfried take the intended speed ‖
−→
v0i ‖ into account, since pedestrians

with a high desired speed require higher repulsive forces in order to prevent
collisions. They introduce a parameter ηped to control the influence of the desired
speed. In their experiments, they find a value of ηped = 0.3 in order to minimize
both overlappings and oscillations.

Next, distij in Equation 3 denotes the distance between pedestrians i and
j which are modeled as ellipses. distij is the distance of the ellipses along the

vector
−→
Rij connecting the ellipse centers.

Pedestrian i is modeled as an ellipse centered on
−→
R i with semi-axis ai being

the semi-axis in the movement direction −→vi and bi the semi-axis orthogonal to ai.
ai includes physical body extensions of pedestrian i as well as space requirements
in movement direction which depends on the current speed:

ai = amin + τa‖−→vi‖ (7)

where amin and τa are two parameters to be set.
With bi, Chraibi and Seyfried model space requirements into lateral direction

due to lateral swaying. From observations of trajectories, they model bi as:

bi = bmax − (bmax − bmin)
‖−→vi‖

‖
−→
v0i ‖

(8)

where bmax is the maximum amplitude of lateral swaying which decreases to a
minimum of bmin.

Similar to the repulsive force between pedestrians, the repulsive force exerted
by the wall w is given in [5] as:

−−→
F repiw = −mikiw

(ηwall‖
−→
v0i ‖+ ‖−→vni ‖)2

distiw

−→eiw (9)

where
−→
vni is the normal component of i’s velocity vector to the wall and ηwall

is a parameter controlling the influence of the intended speed on the repulsive
force similar to ηped in Equation 3. distiwj

is the distance between the nearest
point on wall w and the nearest point on the ellipse of pedestrian i. −→eiw and kiw
are defined analogously to Equations 4 and 5.



4 Integration of Characteristic Human Motion Patterns

In contrast to the original social force model, the generalized centrifugal force
model shows good results even in areas of high pedestrian density. However,
a comparison of simulated trajectories and real trajectories reveals that lat-
eral swaying has not been adequately taken into account. In the generalized
centrifugal force model, pedestrians are modeled as ellipses which include space
requirements into lateral direction due to lateral swaying, but pedestrians do not
actually perform lateral oscillations. Instead, they are walking along a straight
line.
Since the observation of lateral swaying is a fundamental characteristic of hu-
man gait and crucial for the detection of congested areas, see [3], we introduce
an oscillation force. Thus, the movement of a pedestrian i with mass mi and

position
−→
R i is modeled as the superposition of a driving force, repulsive forces

as well as the oscillation force:

mi
−̈→
Ri =

−−→
F drvi +

−−→
F osci +

∑
j∈Ni

−−→
F repij +

∑
w∈Wi

−−→
F repiw . (10)

where
−−→
F drvi ,

−−→
F repij and

−−→
F repiw are defined as described above and

−−→
F osci is defined

as: −−→
F osci = −mi(2πf(−→vi ))2s(−→vi ) sin(2πf(−→vi )t+ φ0)−→ni . (11)

Here, −→ni is the unit vector normal to the moving direction −→vi and φ0 is the phase
of oscillation. f(−→vi ) and s(−→vi ) are the frequency and amplitude of lateral swaying
where we use the findings from [1]. In this work, we analyzed real trajectories
obtained from video recordings of a large scale experiment conducted under
laboratory conditions. Based on the trajectories, we found a linear relationship
between the velocity and the amplitude of lateral swaying as well as between the
velocity and the frequency:

f(−→vi ) = 0.44‖−→vi‖+ 0.35 (12)

and

s(−→vi ) = −0.14‖−→vi‖+ 0.21. (13)

In addition to the introduction of an oscillation force, we adapt the ellipse
modeling space requirements of pedestrians. Similar to Chraibi and Seyfried,
we model pedestrian i as an ellipse with semi-axes ai and bi (Figure 1) and
take empirical studies of human body dimensions into account. Weidmann [10]
reports a mean value of 0.23 m for the body depth with the 97.5 percentile at
0.27 m. Next, according to Weidmann, the step length can be computed as:

l(−→vi ) = 0.235 + 0.302 · ‖−→vi‖. (14)

First, we note that the first term in this equation is almost equal to the body
depth of 0.23 m given above. The second term in Equation 14 models space



Fig. 1. A Pedestrian is modeled as an ellipse with semi-axis ai being the semi-axis into
the motion direction and bi the orthogonal semi-axis. Note that bi is half of the body
width and ai is half of the step length.

requirements of a pedestrian for taking a step. Having in mind that ai denotes
the length of the semi-axis and thus is half of the step length, we set it as follows:

ai(
−→vi ) = 0.5 · l(−→vi ) = amin + aτ · ‖−→vi‖ (15)

with amin ∈ N (0.5 · 0.23, 0.01) = N (0.115, 0.01) modeling half of the body
depth and aτ ∈ N (0.5 · 0.302, 0.001) = N (0.151, 0.001) modeling space require-
ments for taking a step.

The second semi-axis bi is set to bi ∈ N (0.5 ·0.46, 0.01) = N (0.23, 0.01), since
Weidmann gives a value of 0.46 m for the body width with the 97.5 percentile
at 0.5 m. Note that in contrast to the generalized centrifugal force model, we
do not take lateral space requirements into consideration here, since they are
already modeled by the oscillation force given in Equation 11.

5 Experiments

In order to evaluate the effectiveness of our model quantitatively, we simulate
pedestrian movements and test if the fundamental diagram is well reproduced.
Secondly, we employ trajectories obtained from an experiment of the Hermes
project [11], use their initial positions and simulate pedestrian movements. A
comparison of real trajectories to the simulated trajectories reveals that our
model simulates realistic trajectories.

In our experiments, we use the parameters shown in Table 1.
For verification of the model proposed in Section 4 and to examine the in-

fluence of the two modifications (oscillation force and adaptation of ellipse), we



Parameter Description Value

rc cutoff radius 2

v0i desired speed N (1.34, 0.26)

mi mass 1

τ relaxation time N (0.5, 0.001)

ηped controls influence of intended speed on repulsive force 0.3

ηwall controls influence of intended speed on repulsive force 0.2

δt step size for solving differential equation system 0.001

GCFM [5]

amin minimum length of semi-axis N (0.2, 0.01)

τa factor for computing length of semi-axis N (0.53, 0.001)

bmax maximum length of semi-axis N (0.25, 0.001)

bmin minimum length of semi-axis N (0.2, 0.001)

modified GCFM (Section 4)

amin minimum length of semi-axis N (0.115, 0.01)

aτ factor for computing length of semi-axis N (0.151, 0.001)

bi length of semi-axis N (0.23, 0.01)
Table 1. Parameter values used in the experiments.

simulate pedestrian trajectories in a corridor (26m × 1m) and measure the fun-
damental diagram in a measurement area (2m × 1m) located in the middle of
the corridor.

In Figure 2, we depict resulting fundamental diagrams in comparison to ex-
perimental data [8]. Figure 2(a) shows the fundamental diagram for the original
GCFM. In Figure 2(b), we superimposed the oscillation force (Equation 11),
whereas in Figure 2(c), we adapt the size of the ellipses of pedestrians. Figure
2(d) shows the final model as proposed in Section 4 with oscillation force and
adapted ellipse size.

When superimposing the oscillation force, the speed decreases, since pedes-
trians require more space for lateral oscillation. In the second case, when we just
decrease the size of the pedestrians to a reasonable size, the speed increases due
to less space requirements. Finally, when incorporating both modifications, the
fundamental diagram fits well to experimental data.

Next, we compare simulated trajectories with real trajectories obtained from
the Hermes dataset. For that purpose, we consider 30 seconds of a video which
corresponds to the time of highest pedestrian density. We use the initial positions
and velocities of 62 pedestrians and simulate their trajectories using the original
GCFM as well as the modified GCFM with oscillation force and adapted ellipse
size. Figure 3 shows real trajectories (green) and simulated trajectories (red).

Here, it becomes obvious that using the original GCFM, pedestrians do not
perform lateral swaying. However, when using the proposed modified version of
the GCFM, lateral oscillations can be observed. Note that there are differences
between real trajectories and simulated trajectories using the modified GCFM,
since we do not know the phase of lateral oscillation. Instead, we assume that
the phase φ0 in Equation 11 is zero.



(a) (b)

(c) (d)

Fig. 2. Fundamental diagrams for comparing our proposed model and the original
GCFM with regard to experimental data [8]. Pedestrian trajectories are simulated in
a corridor (26m × 1m) using the (a) original GCFM, (b) superimposing the oscillation
force, (c) adapting the ellipse sizes of pedestrians, and (d) using both modifications.

(a) (b)

Fig. 3. Comparison of simulated trajectories to ground truth trajectories. In green,
we depict the ground truth trajectories of 62 pedestrians. We depict the simulated
trajectories in red for the (a) original generalized centrifugal force model [5] and (b)
our proposed model. Note that we set the phase of lateral oscillation to zero.



orig. GCFM mod. GCFM

H
a
u
sd

o
rff Mean 0.29 0.26

Standard Deviation 0.12 0.1
Maximum 0.73 0.64

L
en

g
th Mean 120 87

Standard Deviation 99 61.7
Maximum 311 233

Table 2. Results of comparing real trajectories with simulated trajectories using the
original GCFM and our modified version with oscillation force and adapted ellipse
sizes. We compute mean, standard deviation and maximum of the Hausdorff distance
as well as differences in trajectory lengths.

In order to compare simulated trajectories and real trajectories, we consider
the differences in trajectory lengths as well as the Hausdorff distance. Table 2
shows mean, standard deviation and maximum of the Hausdorff distance as well
as mean, standard deviation and maximum value of the differences in trajectory
lengths. Obviously, the modified GCFM outperforms the original GCFM.

References

1. Krausz, B., Bauckhage, C.: Analyzing pedestrian behavior in crowds for automatic
detection of congestions. In: ICCV-Workshop on Modeling, Simulation and Visual
Analysis of Large Crowds. (2011)

2. Krausz, B., Bauckhage, C.: Automatic detection of dangerous motion behavior in
human crowds. In: Advanced Video and Signal-Based Surveillance. (2011)

3. Krausz, B., Bauckhage, C.: Loveparade 2010: Automatic video analysis of a crowd
disaster. Computer Vision and Image Understanding 116(3) (2012) 307–319

4. Chraibi, M., Seyfried, A., Schadschneider, A., Mackens, W.: Quantitative descrip-
tion of pedestrian dynamics with a force-based model. In: Int. Conf. on Web
Intelligence and Intelligent Agent Technologies. (2009)

5. Chraibi, M., Seyfried, A.: Generalized centrifugal-force model for pedestrian dy-
namics. Phys. Rev. E 82(4) (2010) 046111

6. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Physical
Review E 51(5) (1995) 4282–4286

7. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic.
Nature 407(6803) (2000) 487–490

8. Seyfried, A., Steffen, B., Lippert, T.: The fundamental diagram of pedestrian
movement revisited. Journal of Statistical Mechanics P10002 339–352

9. Yu, W.J., Chen, R., Dong, L.Y., Dai, S.Q.: Centrifugal force model for pedestrian
dynamics. Phsical Review E 72(2) (2005) 026112

10. Weidmann, U.: Transporttechnik der Fußgänger. Schriftenreihe des IVT 90, ETH
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