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Abstract

Low-rank approximations which are computed from se-
lected rows and columns of a given data matrix have
attracted considerable attention lately. They have been
proposed as an alternative to the SVD because they nat-
urally lead to interpretable decompositions which was
shown to be successful in application such as fraud de-
tection, fMRI segmentation, and collaborative filtering.
The CUR decomposition of large matrices, for exam-
ple, samples rows and columns according to a proba-
bility distribution that depends on the Euclidean norm
of rows or columns or on other measures of statistical
leverage. At the same time, there are various deter-
ministic approaches that do not resort to sampling and
were found to often yield factorization of superior qual-
ity with respect to reconstruction accuracy. However,
these are hardly applicable to large matrices as they
typically suffer from high computational costs. Con-
sequently, many practitioners in the field of data min-
ing have abandon deterministic approaches in favor of
randomized ones when dealing with today’s large-scale
data sets. In this paper, we empirically disprove this
prejudice. We do so by introducing a novel, linear-time,
deterministic CUR approach that adopts the recently
introduced Simplex Volume Maximization approach for
column selection. The latter has already been proven to
be successful for NMF-like decompositions of matrices
of billions of entries. Our exhaustive empirical study on
more than 30 synthetic and real-world data sets demon-
strates that it is also beneficial for CUR-like decomposi-
tions. Compared to other deterministic CUR-like meth-
ods, it provides comparable reconstruction quality but
operates much faster so that it easily scales to matrices
of billions of elements. Compared to sampling-based
methods, it provides competitive reconstruction quality
while staying in the same run-time complexity class.

1 Introduction

Low-rank approximations of data matrices are an im-
portant tool in data mining. They allow for embedding
high dimensional data in lower dimensional spaces and

can therefore mitigate effects due to noise, uncover la-
tent relations, or facilitate further processing. These
properties have been proven successful in applications
areas such as bio-informatics, computer vision, text pro-
cessing, recommender systems, social network analysis,
among others. A well known low-rank approximation
approach consists in truncating the Singular Value De-
composition (SVD), which expresses the data in terms
of linear combinations of the top singular vectors. While
these basis vectors are optimal in a statistical sense, the
SVD has been criticized for it is less faithful to the na-
ture of the data at hand. For instance, if the data are
sparse the compressed representations are usually dense
which leads to inefficient representations. Or, if the
data consists entirely of non-negative vectors, there is
no guarantee for an SVD-based low-dimensional embed-
ding to maintain non-negativity. Nevertheless, data an-
alysts often tend to assign a “physical” meaning to the
resulting singular components. Such reification, how-
ever, must be based on an intimate knowledge of the
application domain and cannot be justified from math-
ematics.

A way of circumventing these problems consists in
computing low-rank approximations from selected rows
and columns of a data matrix [15]. Corresponding ap-
proaches yield interpretable results because they embed
the data in lower dimensional spaces whose basis vec-
tors correspond to actual data points. They are guar-
anteed to preserve properties such as sparseness or non-
negativity and enjoy increasing popularity in the data
mining community [3, 11, 12, 17, 21, 22, 26, 28] where
they have been applied to fraud detection, fMRI seg-
mentation, collaborative filtering, and co-clustering.

The idea of selecting suitable rows and columns for
low-rank matrix approximations has a venerable history
in linear algebra [5]. Recent deterministic algorithms
include a quasi-Gram-Schmidt method [1], the CGR
decomposition [15], or a greedy, SVD-based method
[7]. Unfortunately, current deterministic approaches
quickly become infeasible if there are a very large
number of data points. When dealing with today’s



large-scale data sets, many data mining practitioners
therefore often abandon deterministic approaches and
resort to randomized approaches. However, huge data
such as collections of online books at AmazonTM, image
repositories at FlickrTMor GoogleTM, or personal health
records [16, 19, 23, 24, 29] are becoming ever more
common and thus pose a challenge to research on
interpretable matrix factorization.

Informed sampling strategies mark a middle
ground. Approaches that rely on probability distri-
butions which depend on the statistical leverage, i.e.
the top-k singular subspace of a matrix [22], or the
Euclidean norm of rows and columns [9, 26] were in-
troduced under the name CUR decomposition. As
the CUR decomposition relies on informed row- and
column-sampling strategies, it can scale to large data
but only if statistical leverage is consider for k being
rather small since the CUR algorithm involves comput-
ing the SVD of a matrix. In order to balance the tradeoff
between computation time and approximation accuracy,
the work in [4] recently proposed a hybrid approach
where candidate columns are sampled from a data ma-
trix and a deterministic algorithm is applied to finalize
the selection of basis vectors for low-rank approxima-
tion. While this guarantees applicability to large matri-
ces, the resulting factorizations often are of lower quality
than those of recent deterministic methods [7].

1.1 Contribution Our main contribution in this pa-
per is to demonstrate that deterministic CUR-like ap-
proaches can scale well, too, and therefore provide an
alternative to sampling-based matrix factorization tech-
niques. We introduce an algorithm for large-scale deter-
ministic CUR (LS-DCUR) that is almost as efficient as
norm-based sampling methods and as accurate as most
recent deterministic techniques. To best of our knowl-
edge, it is the first deterministic approach to row- or
column selection that scales well to matrices of billions
of entries.

Considerable speed up is due to incorporating a
recent deterministic column selection approach called
Simplex Volume Maximization [27, 28]. Similar to
previous work [7, 15], Simplex Volume Maximization
casts the optimization problem that governs row- and
column selection as a volume maximization problem.
In contrast to previous work, our approach does not
require projections of the top-k singular vectors or other
equally demanding intermediate computations. Instead,
Simplex Volume Maximization applies techniques from
the field of distance geometry [2] and relies on iterative
distance computations only.

1.2 Properties of LS-DCUR Computing the LS-
DCUR decomposition of a given data matrix requires
efforts that are only linear in the number n of data; as
the algorithm mainly consists of distance computations
and linear passes over the data, the effort for computing
k basis vectors is O(kn) where k � n. As LS-DCUR
is deterministic, it will always produce the same set of
basis vectors for a fixed k and a given data matrix.

Other favorable properties of LS-DCUR become ap-
parent from comparisons to related methods. For exam-
ple, sampling based on the Euclidean-norm of column
vectors is not applicable to data matrices whose columns
are of unit norm as the corresponding probability dis-
tribution would be uniform. Methods based on the sta-
tistical leverage are applicable to unit-norm columns
but do not scale well to matrices of many columns.
LS-DCUR, however, applies to unit-norm columns and
scales to very large matrices. Moreover, LS-DCUR is
suitable for parallelization on distributed file systems
such as the MapReduce framework [8]. As it only re-
quires computing the distance to latest selected row
or column, it is straightforward to implement the al-
gorithm in a distributed manner such that it becomes
possible to handle data matrices that exceed the stor-
age capabilities of a single hard disk. While this is also
true for methods relying on norm-based sampling, it be-
comes obviously more involved if these methods require
computing the top-k singular vectors of a data matrix.

1.3 Empirical Evaluation In order to empirically
validate the proposed approach to a deterministic CUR
decomposition, we experiment with more than 30 syn-
thetic and real-world matrices covering a wide range of
mid- and large-scale as well as dense and sparse ma-
trices. It shows that the proposed selection strategy
achieves: (a) reconstruction accuracies similar to the
most recent deterministic methods [7] when applied to
small- or mid-size matrices, (b) significantly higher re-
construction accuracies than random selection strategies
when applied to for large matrices, (c) run-time charac-
teristics similar to the fastest possible random selection
strategies. These benefits also become visible in an on-
going investigation of an approximation of co-clustering,
i.e. the simultaneous clustering of columns and rows of
a matrix. Initial results on the 20 Newsgroup data set,
which consists of 100 words across 16, 242 documents
in four categories, are promising. LS-DCUR achieved
a document categorization accuracy of 0.58 ± 0.05 av-
eraged over 10 reruns of the information-theoretic co-
clustering method, while a randomized approach with
100 random restarts reached 0.45± 0.03.



Algorithm 1: Main steps of CGR/CUR

Input: Matrix X ∈ Rm×n, integer c, r
Select c columns from X and construct1

C ∈ Rm×c;
Select r columns from XT and construct2

R ∈ Rr×n;
U = C+V R+, where C+,R+ denote the3

Moore-Penrose generalized inverse of the
matrices C and R;
Return C ∈ Rm×c,U ∈ Rc×r,R ∈ Rr×n4

1.4 Overview We proceed as follows: in the next
section we review the CUR decomposition and deter-
ministic selection methods. Then, Sec. 3 introduces our
novel approach to large-scale deterministic CUR and
Sec. 4 discusses details as to its properties. In Sec. 5, we
present our experimental evaluation. Before concluding,
we discuss application scenarios and explain when and
why the suggest algorithm is particularly useful and ac-
tually outperforms existing methods.

2 CUR Decomposition

The CUR decomposition attempts to select a number
of rows and columns from a real valued m × n matrix
X such that it can be accurately approximated as a
weighted product of the rows and columns. That is,
if Cm×c is a matrix of c columns selected from X,
Rr×n is a matrix of r rows selected from X, and
U c×r is c × r matrix of weights, then, X ′ = CUR
is a CUR approximation to X. In order to determine
suitable factor matrices C and R, one commonly seeks
to minimize the residual

∥∥X −CUR
∥∥. The weighting

matrix U can be computed as C+XR+ where C+ and
R+ denote the pseudo-inverse of C and R, respectively.
Algorithm 1 summarizes the main steps of traditional
CUR; for this paper, the two selection steps are of
primary interest.

Minimizing the residual
∥∥X−CUR

∥∥ is, alas, a non-
trivial problem. It is a special case of the column subset
selection problem (CSSP) where one seeks to select a
set of columns from a matrix which capture as much
information as possible and accurately approximate
the original matrix [4]. Most deterministic selection
methods applicable to CUR decompositions originate
from considering the CSSP. A simple solution would
be to consider all possible combinations of columns
and choose the combination that leads to the most
accurate approximation. However, this would lead to
combinatorial explosion and it is obvious that brute
force approaches like this do not apply to large data
sets.

Algorithm 2: CUR with importance sampling
based on the Euclidean-norm of columns (rows
sampling works accordingly).

Input: Matrix X ∈ Rm×n, integer k
for x = 1 . . .n do1

P (x) =
∑
i X

2
i,x/

∑
i,j X2

i,j ;2

for i = 1 . . .k do3

Randomly select W ∗,i ∈X based on P (x)4

Return W ∈ Rm×k5

2.1 Importance Sampling (CUR-SL/CUR-L2)
One way of avoiding combinatorial explosion is to
consider randomized selections of rows and columns.
A corresponding, popular selection method for CUR
decomposition applies importance sampling. That is,
one computes an importance score for each column (or
row) and samples columns (or rows) according to their
distribution of scores. Two scores are commonly used,
one is based on the Euclidean norm of row or column
vectors (CUR-L2), the other is based on the statistical
leverage (CUR-SL).

Norm-based scores, for instance for column Xt

of matrix X are given by P (t) =
∑
iX

2
i,t/
∑
i,j X

2
i,j ;

the corresponding algorithm is summarized in Alg. 2.
Various extensions to this method have been proposed.
For example, the approach in [26] further reduces
computation times by avoiding to repeatedly sample the
same row (or column).

Scores based on statistical leverage, say of columns,
require to compute the top-k left singular vectors V k×n

of X. Then, the statistical leverage score πt for a
particular column Xt is computed by summing over
the rows of the singular vectors, i.e. πt = 1

k

∑k
i=1 V

2
i,t.

The πt form a probability distribution over the set of
columns where columns that capture more dominant
parts of the spectrum of X are assigned a higher
probabilities [22].

Randomized approaches are easy to implement and
have been shown to work well in many practical applica-
tions. However, they also suffer from various shortcom-
ings. On the one hand, norm-based importance scores
cannot be applied to matrices of normalized rows or
columns as score distributions would become uniform.
In addition, they do not necessarily provide sufficient
coverage of the data space because a corresponding cri-
terion is not build into the selection process. On the
other hand, methods based on the statistical leverage do
not scale well to very large matrices because computing
their top-k singular vectors scales quadratically with k
and linearly with the dimensions of rows and columns
and special care has to be taken e.g. when scaling them
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Figure 1: Often, deterministic methods iteratively select
data points or matrix columns in a Gram-Schmidt like
manner. (a) the first selected sample has the highest
norm; (b) the second selected sample is maximal among
the data projected onto the subspace perpendicular to
the already selected sample.

to massive graphs [18]. Most importantly, the resulting
approximation accuracy often proves to be inferior to
deterministic methods [7].

2.2 Deterministic Selection (DCUR) Recent
years have seen an increased interest in deterministic
selection strategies for the column subset selection prob-
lem (CSSP) and many different methods have been pro-
posed [4]. They were shown to work well for smaller
data sets where they often outperform randomized se-
lection strategies [7]. Due to their computational com-
plexity, however, they do not apply to large matrices.

At this point, it is worthwhile to point out cer-
tain geometric properties of the column subset selection
problem. It was shown that an appropriate way of find-
ing a good subset for the CSSP consists in selecting a
number of columns such that their volume is maximal.
This criterion is also referred to as maximum volume
(Max-Vol) criterion [6, 13, 14]. Consequently, a good
subset is one that maximizes the volume of the paral-
lelepiped, i.e. the value of the determinant, spanned by
the selected columns. In other words, given an m × n
matrix X, we may select k of its columns such that the
volume V ol(C) = |det C| is maximized, where the m×k
matrix Cm×k contains the selected columns. Thus, in-
stead of minimizing a norm to accomplish suitable CUR
decompositions, we may just as well seek a selection of
k columns or rows such that the corresponding volumes
|det C| and |det R| are maximal.

The Max-Vol problem is provably NP-hard [6].
Therefore, approaches other than greedy (or determin-
istic) algorithms quickly become infeasible. Yet, as we
shall see, considering the Max-Vol problem allows us to
employ a highly efficient deterministic selection method
that was recently derived from principles of distance

geometry. In the following, we review this algorithm,
show how to adapt it to the problem of CUR decompo-
sitions, and relate it to a recent deterministic method
introduced in [7] to which we will refer to as Greedy in
the following.

3 Large-scale Deterministic CUR (LS-DCUR)

The basic idea of many greedy deterministic selection
strategies such as the one in [7] is to iteratively select
rows or columns such that they minimizes the residual
after projection onto subspaces orthogonal to already
selected prototypes (see Fig. 1). In the following, we
introduce an efficient approximation to deterministic,
projective selection methods. The rather expensive pro-
jection step can be efficiently dealt with if the Max-Vol
criterion is considered in the context of distance geom-
etry [2]. To this end, we transfer the Max-Vol crite-
rion from maximizing the volume of a parallelepiped to
maximizing the volume of a simplex. This allows us to
adapt a recent efficient algorithm for simplex volume
maximization [28] to matrix factorization based on se-
lections of rows and columns.

For a subset C of k columns from X, let
∆(C) denote the k-dimensional simplex formed by the
columns in C, the volume of the simplex is given by
Vol(∆(C)) = 1

n! det (c1 − c0, . . . , ck − c0) where ci de-
notes the i-th selected column. Let ∆(C,0) denote
the k + 1-dimensional simplex including the origin,
then Vol(∆(C,0)) = 1

n! det (c1, . . . , ck). Apparently,
Vol(∆(C,0)) is proportional to the volume |det C| of
the corresponding k-parallelepiped. Thus, transferring
the maximum volume problem to simplices introduces
an alternative objective function that is well-grounded
in distance geometry. Seen from this point of view, the
volume of the k-simplex is

(3.1) Vol(∆(C, 0))2k = θ det A where θ =
−1k+1

2k(k!)2
.

Here, det A is the the Cayley-Menger determinant [2]
given by

det A =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 . . . 1

1 0 ||c1||2 ||c2||2 . . . ||ck+1||2

1 ||c1||2 0 d2
2,1 . . . d2

2,k+1

1 ||c2||2 d2
2,1 0 . . . d2

3,k+1

...
...

...
...

. . .
...

1 ||ck+1||2 d2
2,k+1 d2

3,k+1 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
where d2

i,j is the squared distance between vertices or
columns i and j of C and ||ci||2 denotes the squared
Euclidean norm of the i-th selected column.

Next, we will see that, since this distance geometric
formulation is entirely based on vector norms and
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Figure 2: LS-DCUR iteratively maximizes the volume
of the simplex including the origin. It avoids the ex-
pensive projection step of other deterministic methods
(Left). The first selected rows/columns has the maximal
distance from the origin. (Right) The second selected
row/column maximizes the volume given the already
selected rows/columns.

edge lengths, it allows for an efficient, greedy selection
algorithm.

Finding a globally optimal subset C that maximizes
Eq. (3.1) requires the computation of all pairwise dis-
tances among the columns in X. For large data sets,
this is ill-advised as it requires efforts of O(n2) where
n is the number of data samples. Eq. (3.1) allows us
to devise an iterative, approximative procedure with ef-
forts of O(kn) which determines a set of k basis vectors
that maximize the volume of the simplex. Given a sim-
plex S consisting of k−1 vertices, we seek a new vertex
xπ ∈ X such that xπ = arg maxk Vol(S ∪ xk)2. If a
number of vertices has already been acquired in a se-
quential manner, the following theorem can be proven
assuming that the vertices are equidistant:

Theorem 1. ([28]) Let S be an (n− 1)-simplex. Sup-
pose its vertices w1, . . . ,wn are equidistant and that this
distance is a. Also, suppose the distances between vertex
wn+1 and the other vertices to be {di,n+1, . . . , dn,n+1},
then the volume of S is determined by

Vol(S)2n =
a2n

2n(n!)2

(
2
a4

∑n

i=1
j=i+1

d2
i,n+1d

2
j,n+1 +

2
a2

∑n

i=1
d2
i,n+1 −

n− 1
a4

∑n

i=1
d4
i,n+1 − n+ 1

)
.

From this, an iterative update procedure can be de-
rived similar to the one in [28]. Note that, in contrast to
[28], we are considering CUR decompositions, so that we
have to maximize the matrix volume Vol(∆(C,0))2k in-
stead of the simplex volume Vol(∆(C))2k. Furthermore,
without loss of generality, we set d2

i,j ∼ log(d2
i,j), since

we are only interested in finding the maximum rather
than the exact value. This modification only impacts

Algorithm 3: Large-scale Deterministic CUR
Input: Matrix X ∈ Rm×n, integer k
for j = 1 . . . n do1

nj ← log(||X∗,j ||) ;2

Φ0,j ← nj ;3

Λ0,j ← n2
j ;4

Ψ0,j ← 0 ;5

select = arg maxj(nj);6

a = nselect ;7

w1 = X∗,select;8

for i = 2 . . . k do9

for j = 1 . . . n do10

pj ← log(d(wi−1,X∗,j));11

Φi,j ← Φi−1,j + pj ;12

Λi,j ← Λi−1,j + p2
j ;13

Ψi,j ← Ψi−1,j + pj ∗ Φi−1 ;14

select =15

arg maxj
(

a ∗ Φi,j + Ψi,j − (i−1)
2 Λi,j

)
;

wi = X∗,select;16

W ∗,i = X∗,select;17

Return W ∈ Rm×k18

changes the considered distances but does not alter the
algorithm. We arrive at

vπ = arg maxk
(

log(a)
∑n

i=1
log(di,k) +

(3.2)

∑n

i=1
j=i+1

log(di,k) log(dj,k)− n− 1
2

∑n

i=1
log2(di,k)

)
.

Note that Theorem 1 assumes equidistant edge
lengths a between the first k vertices. Generally, this is
however not the case. The use of logarithmic scales con-
siderably reduces the error introduced by this assump-
tion as it effectively maps large distances to similar val-
ues and, in addition, provides numerically more stable
implementations. Theorem 1, Eq. (3.2), and Eq (3.1)
lead to Alg. 3. For the case of n = 1, i.e. for the first row
or column to select, this basically yields the Euclidean
norm vπ = arg maxk (log(d(0, ck))) = arg maxk ||ck||
where d(0, ck) denotes the distance of ck to the origin.
We note that the pairwise distances computed in earlier
iterations can be reused in later steps. For retrieving
k latent components, we need to compute the distance
to all data samples exactly k times. The distances are
computed with respect to the last selected basis vector.
Large-scale Deterministic CUR (LS-DCUR) is more
efficient than other deterministic methods as it super-
sedes the need for expensive projections of the data.
Nevertheless, it aims for solutions that are similar to



the Greedy algorithm as projections and orthogonality
constraints are implicit parts of the distance geometric
objective function. We also note that we introduced a
small δ by assuming equidistant edge-length. As our
experiments will show, this hardly impact the perfor-
mance of our algorithm; on the contrary, it proves to
be competitive in terms of approximation accuracy but
is typically orders of magnitudes faster. Fig. 2 provides
an illustrative example of how LS-DCUR determines a
vertex m+ 1 that maximizes the simplex volume given
that m vertices have already been found.

4 Properties of LS-DCUR

In the following, we examine the proposed deterministic
CUR approach more closely and compare its behavior
to other deterministic or importance sampling methods.

4.1 Computational Complexity Similar to other
deterministic methods, the LS-DCUR algorithm is of
linear time complexity. However, LS-DCUR avoids ex-
pensive projections or SVD computations and is there-
fore even faster than its competitors. For each se-
lected column W ∗,i we have to compute the distance
d(W ∗,i−1,vj),vj ∈ X only once. If we assume k basis
vectors, this translates toO(kn). For k � n, this results
in linear time complexity O(n). The three simple addi-
tive operations in lines 12-14 of Alg. 3 do not majorize
computation times for large n and conventional distance
metrics. Moreover, computing distances of sparse vec-
tors, for instance when decomposing sparse graphs, is
very fast since this only scales with the number of non-
zero entries rather than with the dimension of the data.
Considering that CUR is often applied to sparse matri-
ces, because, in contrast to the SVD, it preserves spar-
sity, this is an important aspect. For example, distance
computations for the large graphs considered in our ex-
periments did require only fractions of a second.

Traditional importance sampling procedures based
on the Euclidean norm, too, can be efficiently imple-
mented and only require m+ n computations of norms
for a matrix Xm×n. However, it should be noted that
in this case the arguably most expensive step of the
CUR decomposition as outlined in Alg. 1 is the com-
putation of the matrix U = C+XR+, since it involves
two pseudo-inverses C+ and R+. If the SVD is ap-
plied in this step, one ends up with a complexity of
O(min(nk2, k2n)) for a matrix Cm×k,Rk×n. This cost
can easily outweigh the costs for selecting rows and
columns and also explains why LS-DCUR is in practice
only slightly slower than random sampling. Compared
to methods based on statistical leverage, it can be easily
seen that these scale quadratically with k because com-
puting statistical leverage score requires knowledge as

to the top-k singular vectors. Especially for large data,
where a possibly large number k of rows or columns are
to be selected, the computational costs increase dramat-
ically.

4.2 Selections Importance sampling yields rows and
columns that exhibit a large vector norm or have a high
statistical leverage. LS-DCUR yields rows and columns
that have (1) a large norm, (2) large pairwise distances,
and that (3) are (almost) orthogonal. Similar to other
deterministic strategies, the selected rows and columns
are ordered. The implicit selection criteria (large norm,
large distance, orthogonality) have two interesting im-
plications: first, the risk of multiple selections of the
same sample is negligible. Thereby, similar to CMD
[26], we reduce the size of the matrices C, R and de-
crease computation times for U (note that most avail-
able implementations of CUR already incorporate this
step as did we in our experiments). Second, selection
methods that apply importance sampling based on Eu-
clidean are not applicable to matrices that consist of
unit-norm vectors such as, for example, normalized His-
tograms. For LS-DCUR, this is only an issue for the
first selected row or column, as later selections do not
depend on the norm but rather on pairwise distances.

4.3 Interpretability and Data-space Coverage
As selections made by random and deterministic ap-
proaches always correspond to actual data samples, they
are easier to interpret as, for example, SVD decomposi-
tions [22]. Additionally, for the deterministic case, the
resulting selections are often polar opposites. Unlike
in importance sampling, where selected vectors may be
rather similar, this further increases interpretability as
it accommodates human cognition. By focusing on ex-
treme opposites, we enlarge the margin of what we know
and in turn our chance to separate things. Similar to
deterministic methods that aim for approximations of
the top-k singular vectors, we also obtain a potentially
better coverage of the complete data space.

4.4 Parallelization The strictly sequential nature of
LS-DCUR makes it well suited for very large data since
it admits for parallelization. For example, using the
MapReduce framework [8] on a distributed file system,
the algorithm scales almost linearly with the number of
nodes. Adapting the algorithm to a distributed file sys-
tem is trivial as most computation time is spent on dis-
tance computations which are easy to parallelize. Note
that in order to provide a fair comparison of methods,
we did not use our own MapReduce implementation or
any other form of parallelized processing in the experi-
mental section.



(a) CUR-L2 (k=35) (b) CUR-L2 (k=70)

(c) CUR-SL (k=35) (d) CUR-SL (k=70)

(e) LS-DCUR (k=35) (f) LS-DCUR (k=70)

Figure 3: Qualitative comparison for the task of image
reconstruction. An image is viewed as matrix and and
subjected to CUR-SL, CUR-L2, and LS-DCUR with
k = 35, 70 rows and columns (best viewed on screen).

5 Experiments

Our intention in this section is to investigate the follow-
ing questions pertaining to LS-DCUR factorizations:

Q1 How does the presented large-scale deterministic
CUR approach compare to the most recent deter-
ministic methods for small/mid-size matrices?

Q2 How does the presented selection scheme compare
to importance sampling methods for large matri-
ces?

Ideally, for small to mid-size matrices, LS-DCUR would
show an accuracy comparable to recent deterministic
methods and comparable run-time performance but
higher accuracy than importance sampling methods.

(a) Lena

CUR-L2 CUR-SL Greedy LS-DCUR
CUR-L2 0.0E–00◦ 1.3E–03◦ −9.0E–03• −5.3E–03•
CUR-SL −1.3E–03◦ 0.0E–00◦ −1.0E–02• −6.6E–03•
Greedy 9.0E–03• 1.0E–02• 0.0E–00◦ 3.7E–03◦
LS-DCUR 5.3E–03• 6.6E–03• −3.7E–03◦ 0.0E–00◦

(b) Standard normal

CUR-L2 CUR-SL Greedy LS-DCUR
CUR-L2 0.0E–00◦ −4.2E–05◦ −5.5E–03• −1.5E–03•
CUR-SL 4.2E–05◦ 0.0E–00◦ −5.5E–03• −1.5E–03•
Greedy 5.5E–03• 5.5E–03• 0.0E–00◦ 4.0E–03•
LS-DCUR 1.5E–03• 1.5E–03• −4.0E–03• 0.0E–00◦

(c) Scaled

CUR-L2 CUR-SL Greedy LS-DCUR
CUR-L2 0.0E–00◦ −5.9E–03• −4.4E–02• −1.6E–03◦
CUR-SL 5.9E–03• 0.0E–00◦ −3.8E–02• 4.3E–03◦
Greedy 4.4E–02• 3.8E–02• 0.0E–00◦ 4.2E–02•
LS-DCUR 1.6E–03◦ −4.3E–03◦ −4.2E–02• 0.0E–00◦

(d) Smooth

CUR-L2 CUR-SL Greedy LS-DCUR
CUR-L2 0.0E–00◦ 3.4E–04◦ −7.1E–06◦ −4.8E–06◦
CUR-SL −3.4E–04◦ 0.0E–00◦ −3.5E–04◦ −3.4E–04◦
Greedy 7.1E–06◦ 3.5E–04◦ 0.0E–00◦ 2.4E–06◦
LS-DCUR 4.8E–06◦ 3.4E–04◦ −2.4E–06◦ 0.0E–00◦

Table 1: Average differences of the relative accuracy
obtained for different methods/datasets. Positive values
denote a better reconstruction of the query. Bullets •
denote significant differences (paired t-test at p = 0.05),
circles ◦ denote insignificant ones.

We compare LS-DCUR against CUR-L2
(Euclidean-norm based selection), CUR-SL (sta-
tistical leverage based selection), and Greedy (a recent
deterministic selection method that was shown to
exceed various other methods [7]). To provide a fair
comparison, we incorporate several extensions into the
importance sampling based methods: both CUR-L2
and CUR-SL use the extensions proposed for CMD [26]
and, in both cases, we sample exactly the same number
of unique rows and columns as in the case of LS-DCUR
and Greedy (double selections do not count as a selected
row or column). For methods requiring computation
of the top-k singular vectors (CUR-SL, Greedy), we
specify a reasonable k. As setting it to the actual
number of sampled rows and columns is not advisable,
we follow the suggestion of [22] and over-sampled k;
various experimental runs show that setting k to ≈ 4

5
of the number of row and column samples provides
a convenient tradeoff between run-time performance
and approximation accuracy; note that LS-DCUR
does not require any additional parameters apart from
the number of desired rows and columns. All tested
methods were carefully implemented in Python/Numpy
taking advantage of standard Lapack/Blas routines
and the Arpack library as a sparse-eigenvalue solver.
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(b) Standard normal
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(c) Smooth
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(d) Scaled

Figure 4: Results for four small/mid-size matrices. For each data set, the left plot shows the average accuracy
for different numbers of selected rows and columns; the right plot shows the average processing time in seconds.

All experiments were carried out on a standard desktop
computer using a single core and we refrained from
using the aforementioned parallelized implementation
of LS-DCUR for fair comparison1.

In every experiment, we compute the relative er-
ror and computation time in seconds. Specifically,
let the sum of squared errors be defined as SSE =∑
i,j(Xi,j − CURi,j)2. The relative SSE is then de-

fined as relative SSE = SSE/
∑
i,j X2

i,j . The computa-
tion time includes the selection process as well as the
computation of the matrix U since it is an integral part
of a CUR decompositions an in any case is needed for
computing the error (this includes computation of the
pseudo-inverse matrices C+,R+). Computation of U
usually majorizes the computation time for all methods
compared here. Note that, unlike e.g. in [26], in order
to provide a fair comparison we do not compute the
space requirements as we made sure that each method
selects the same number of unique rows and columns.
This actually favors randomized methods and has to be
enforced for CUR-L2 and CUR-SL.

Accuracies and processing times for the randomized
approaches are averaged over 3 runs for very large ma-
trices (more than 50, 000 rows or columns), and 10 runs
for smaller matrices (up to 50, 000 rows or columns).
For very large matrices, we decided to skip Greedy and
CUR-SL as the selection of only a few row or columns

1The source code used in our experiments has been made
available at http://code.google.com/p/pymf/.

was already too time consuming. Note that the exper-
imental design actually favors CUR-L2/CUR-SL. Real-
world applications of importance sampling based CUR
decompositions often require to sub-sample row and
columns several times in order to achieve a sufficient
performance. The methodology in [11] follows this strat-
egy for co-clustering large-scale matrices, and [7] incor-
porates the increased runtime for sampling methods into
their comparison of various methods. Thus, for any
serious practical application, the computation time for
CUR-L2/CUR-SL can be much higher than the num-
bers reported in the following.

We considered various standard synthetic- and real-
world data sets, consisting of both dense and sparse
matrices of various sizes. Specifically, w.r.t question
Q1, we considered the task of image compression us-
ing a standard benchmark image and three standard
synthetic matrices (see e.g. [7, 25]). The first matrix is
a 1000× 1000 matrix with random values sampled from
a standard normal distribution with zero mean and unit
variance (labeled standard normal). The second matrix
is a 200 × 200 matrix and presents a smooth function
where each entry xi,j = 1/(is+js)

1
s with s = 2 (labeled

smooth). The third matrix is is a 500× 500 scaled ran-
dom matrix, with each element sampled from a random
unit variance and zero mean distribution and scaled by
(20ε)

i
n where ε is the machine precision (labeled scaled).

Addressing question Q2 is the primary scope of this
paper. Here, we consider several real-world data sets.
The first collection consists of publicly available real-
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(a) Collab. net of Arxiv Gen. Rel. (5, 242 nodes/28, 980 edges)
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(b) Autonomous Systems graph (6, 474 nodes/13, 233 edges )
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(c) Collab. net of Arxiv High Energy Phy. (9, 877 nodes/51, 971

edges)
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(d) Wikipedia who-votes-on-whom net (7, 115 nodes/103, 689 edges)
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(e) Gnutella P2P net from August 4, 2002 (8, 846 nodes/31, 839 edges)
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(f) Gnutella P2P net from August 6 2002 (8, 717 nodes/31, 525 edges)
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(g) Slashdot social network, November 2008 (77, 360 nodes/905, 468

edges)
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(h) Amazon co-purchasing network, June 2003(403, 394

nodes/3, 387, 388 edges)
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(i) Who-trusts-whom network of Epinions.com (75, 879 nodes/508, 837

edges)
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(j) Slashdot Zoo signed social network, Nov. 6 2008 (77, 357 nodes/

516, 575 edges)

Figure 5: Results on sparse, real-world graphs. The goal is to achieve a high accuracy (good approximation), and
low computation times (computation time uses a logarithmic-scale on the y-axis). Each plot varies the number of
selected rows/columns from 100 to 1000, results for the randomized methods CUR-L2, and CUR-SL are averaged
over 10 (3 for the larger graphs) runs. Overall, LS-DCUR compares favorably to both methods in terms of
accuracy and runtime, especially considering that it is a deterministic approach that does not rely on sampling.



world large-scale graphs 2, represented as sparse adja-
cency matrices. The smallest graph (Collaboration net.
of Arxiv General Relativity) has 5.242 nodes and 28.980
edges whereas the largest graph (Amazon product co-
purchasing network from June 1) has 403, 394 nodes and
3, 387, 388 edges. To demonstrate the principal suitabil-
ity of LS-DCUR for processing very large, dense matri-
ces, we consider a data set of 80 million Google TM im-
ages [29]. Viewing each image (represented as a vector
of gist descriptors) as a column, this results in a gigantic
matrix containing 3072 · 107 elements.

5.1 Results Q1 (Small/Medium Matrices) Fig-
ure 3 shows a qualitative comparison of LS-DCUR and
CUR-SL for image reconstruction using 35 and 70 se-
lected rows and columns. Figure 4 presents further re-
sults for all four considered data sets for varying choices
of parameters. It can be seen that deterministic meth-
ods outperform randomized approaches with respect to
reconstruction accuracy. In terms of runtime perfor-
mance, CUR-L2 is usually faster than the other meth-
ods. Due to the small size of the considered matrices,
the mandatory computation of the top-k singular vec-
tors for CUR-SL and Greedy only slightly lowers the
(overall convenient) runtime performance. Neverthe-
less, most of the time, LS-DCUR outperforms Greedy,
and CUR-SL with respect to computation time. To
summarize, these results empirically validate that, with
respect to accuracy, LS-DCUR comes close to the per-
formance of Greedy when decomposing smaller, dense
matrices. At the same time, it requires significantly
lower computational costs.

5.2 Results Q2 (Large Matrices): Our experi-
mental results are summarized in Fig. 5 and indicate
that, with respect to accuracy and computation time,
LS-DCUR outperforms CUR-L2 and CUR-SL. Specifi-
cally, for the smaller graphs, CUR-SL sometimes yields
the best overall accuracy but suffers from high com-
putational costs. To investigate this further, we per-
formed a statistical significance analysis summarized in
Tab. 2 and Tab. 3 where bold values indicate statisti-
cal significance. As one can see, LS-DCUR achieves a
significantly higher accuracies than CUR-L2 for almost
all data sets while being only slightly slower. Com-
pared to CUR-SL, for some of the Gnutella graphs,
it shows a lower accuracy but, at the same time, only
needs a fraction of the processing time. Interestingly, for
the larger graphs, CUR-L2 outperforms LS-DCUR on
3 graphs (Web-Notredame, Web-Stanford, Email-EU).
These graphs are characterized by adjacency matrices

2http://snap.stanford.edu/data/index.html

Dataset Accuracy Time
CUR-L2 CUR-L2

Amazon0302 −0.003±0.0 • −223.06±157.27•
Amazon0312 −0.004±0.0 • −472.83±331.72•
Amazon0505 −0.003±0.0 • −518.2 ±351.96•
Amazon0601 −0.004±0.0 • −521.69±358.42•
web-NotreDame 0.106±0.03• −544.44±415.32•
web-Stanford 0.204±0.02• −604.68±495.08•
sign-Slashdot106 −0.066±0.03• −131.04± 98.7 •
sign-Slashdot216 −0.061±0.03• −138.32±103.34•
sign-Slashdot221 −0.061±0.03• −138.42±104.25•
Slashdot0811 −0.054±0.03• −174.11±132.17•
Slashdot0902 −0.051±0.03• −180.48±136.96•
Epinions1 −0.079±0.04• −98.85± 67.11•
Email-EuAll 0.138±0.04• −332.11±243.38•

Table 3: Average differences of the relative accuracy
and computation time in seconds measured between LS-
DCUR and CUR-L2 (due to the size of the matrices
computation of CUR-SL was infeasible). Negative
values for the accuracy indicate a better reconstruction
for LS-DCUR, positives values for runtime indicate a
faster processing for LS-DCUR. Significant differences
(paired t-test at p = 0.05) are indicated using a bullet
•; insignificant ones are shown using a circle ◦.

of a very large number of extremely sparse rows and
columns and there are only very few rows and columns
with actual content. For example, for the Email-EU
graph, about 1000 columns account for 75% of the total
content of the 265,214 columns. Obviously, these kind
of structures are extremely well suited to CUR-L2 as
the selection probability for the vast majority of rows
and columns is ≈ 0.

Finally, we investigated the scalability of LS-DCUR
to the gigantic matrix of 384 × 80.000.000 elements
containing 80 million images. Here, we only explored
the runtime performance of the selection of LS-DCUR.
On a single core standard desktop computer, it took
about 4 hours to extract a single row or column sample.
On a 32 node Hadoop cluster, however, it took only 6
minutes to select one particular row or column.

5.3 Discussion Summarizing our results, an exten-
sive empirical evaluation showed that LS-DCUR can
outperform standard importance sampling methods
such as CUR-L2 or CUR-SL on large, real-world matri-
ces. Gain in performance was observed for both recon-
struction accuracy and runtime. Note that due to the
anticipated excessive computational costs and long run-
time for the large matrices considered to answer ques-
tion Q2, we did not compare to other deterministic
methods. Nevertheless, we should point out that, for



Dataset Accuracy Time
CUR-L2 CUR-SL CUR-L2 CUR-SL

CA-GrQc −0.095±0.03• −0.089±0.02• −12.19± 8.35• 96.1 ± 77.77•
as20000102 −0.063±0.02• −0.009±0.04◦ −10.77± 7.9 • 107.11± 82.44•
CA-HepTh −0.107±0.04• −0.078±0.03• −18.4 ±13.89• 192.6 ±150.82•
Wiki-Vote −0.064±0.02• −0.063±0.02• −11.13± 7.17• 121.83± 75.46•
p2p-Gnutella04 −0.019±0.01• 0.008±0.01• −13.69±10.15• 273.19±202.87•
p2p-Gnutella05 −0.002±0.0 • 0.024±0.01• −12.89± 9.67• 204.82±147.42•
p2p-Gnutella06 −0.023±0.01• −0.002±0.01◦ −12.24± 9.14• 210.08±147.48•
p2p-Gnutella08 0.04 ±0.02• 0.071±0.03• −12.6 ± 9.89• 134.44±100.76•
p2p-Gnutella09 0.038±0.01• 0.071±0.02• −13.6 ±10.74• 183.31±135.34•
p2p-Gnutella24 −0.017±0.01• −0.001±0.01◦ −22.79±16.54• 812.68±614.35•
p2p-Gnutella25 −0.018±0.01• 0.002±0.0 • −20.33±15.04• 720.56±563.4 •
p2p-Gnutella30 −0.008±0.0 • 0.018±0.0 • −28.77±21.07• 1047.7 ±862.2 •
Email-Enron −0.058±0.02• −0.022±0.02• −60.57±38.46• 822.47±559.3 •
Cit-HepTh −0.059±0.02• −0.032±0.01• −35.24±21.73• 655.57±468.06•
CA-CondMat −0.083±0.02• −0.047±0.02• −38.06±27.45• 447.83±351.11•

Table 2: Average differences of the relative accuracy and computation time in seconds measured between LS-
DCUR and CUR-L2, CUR-SL. Negative values for the accuracy indicate a better reconstruction for LS-DCUR,
positives values for runtime indicate a faster processing for LS-DCUR. Significant differences (paired t-test at
p = 0.05) are indicated using a bullet •; insignificant ones are shown using a circle ◦.

the small-scale matrices considered in our experiments,
the deterministic Greedy algorithm we considered in an-
swering question Q1 provides a slightly higher accuracy
than LS-DCUR. However, this is well in line with the
goals of the introduced LS-DCUR algorithm which pri-
marily targets very large matrices. Compared to sam-
pling approaches, the rapid selection and high recon-
struction accuracy of the LS-DCUR algorithm make it
a good candidate for smaller matrices, too.

Our experiments also demonstrated that determin-
istic and sampling-based selections of rows and columns
might be useful for different situations. For example,
when selecting only a small amount of rows and columns
from a very large sparse matrix, importance sampling
shows a similar or sometimes higher accuracy than LS-
DCUR. We attribute this to fact that the probability
for picking orthogonal vectors increases with the size of
the matrix and the degree of sparsity. In situation like
these, one therefore does not explicitly need to enforce
orthogonality or, for the case of LS-DCUR, large pair-
wise distances, since they will result implicitly.

6 Conclusion

As very large data matrices have become a commod-
ity in scientific and economic applications alike, there
is an increasing demand for low-rank approximations
techniques that cope with massive data sets. Recent in-
terpretable approaches that select rows and columns are
either deterministic and apply only to smaller matrices
or follow a randomized selection procedure and scale to

larger matrices. In this paper, we showed that determin-
istic approaches, too, can scale to huge data matrices.
We adopted a selection method that is based on prin-
ciples from distance geometry and introduced the first
deterministic selection method that scales well to ma-
trices with billions of entries. Our extensive empirical
evaluation revealed that the resulting Large-scale Deter-
ministic CUR approach essentially combines the bene-
fits of existing deterministic and randomized CUR ap-
proaches: it yields deterministic selections of rows and
columns and provides high reconstruction accuracies at
low computational costs. Thus, LS-DCUR should be of
considerable interest to the data mining practitioner.

There are several interesting directions for future
work. A straight forward speed-up of the proposed al-
gorithm would result from using approximate distances
which would no longer require access to all matrix en-
tries. With respect to practical applications, we are
currently adopting LS-DCUR to co-clustering problems
[11]. Employing LS-DCUR within challenging applica-
tions such as segmentation of fMRI data or topic mod-
els for text collections with billions of data points are
other promising scenarios. Already, we recently ap-
plied deterministic column selection to the problem of
identifying relevant patterns in massive, hyper-spectral,
high-dimensional sensor readings for plant phenotyping
[10, 20]. Here a good selection after only a single run is
crucial because reconstruction can take several days; the
data matrix considered in [20] consists of more than 12
billion entries and is still growing. Therefore, a purely



random selection is not an option. Finally, it is inter-
esting to adopt LS-CUR to multi-view data and to data
streams as well as to develop hybrid CUR approaches
based on LS-DCUR.
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