
Adaptive decision algorithms for
data aggregation in VANETs

with defined channel load limits

Josef Jiru
Fraunhofer ESK

Munich, Germany
Email: josef.jiru@esk.fraunhofer.de

Aboobeker Sidhik Koyamparambil Mammu
University of Deusto

Bilbao, Spain
Email: aboobeker.sidhik@deusto.es

Karsten Roscher
Fraunhofer ESK

Munich, Germany
Email: karsten.roscher@esk.fraunhofer.de

Abstract—The main challenges when realizing safety related
applications based on vehicle-to-x communication are scalability
and reliability. With an increasing number of vehicles, the
communication channel must not get congested especially if a
large amount of information has to be transmitted over multiple
hops to a destination. This challenge can be solved by reducing
the data load through data aggregation. In this paper, we
present a decentralized congestion control using the channel busy
ratio (CBR) on the application layer for an adaptive control
of aggregation levels in real time. Adaptive decision algorithms
decide which data is aggregated in real time. Two different
approaches are compared: One approach relies on two CBR
thresholds (min/max) only and one that allows a higher number of
CBR thresholds. In both cases, the adaptive aggregation control
increases and decreases the data aggregation levels based on these
thresholds. Our simulation results show that both approaches
are able to adjust the aggregation levels to given channel load
thresholds within seconds resulting in improved data quality
even in heavy congested situations. Adaptive decision algorithms
result in less error introduced by aggregation. The impact of the
two aggregation level control approaches is discussed regarding
channel load and resulting data precision.

Keywords-Data Aggregation, Adaptive Systems, Adaptive Deci-
sion, V2X Communication, VANETs

I. INTRODUCTION

Cooperative vehicular applications are the next step towards
reducing road accidents and improving traffic efficiency. The
direct communication of vehicles with each other and with
infrastructure units will be based on the ETSI ITS-G5 standard
[1]. All vehicles transmit Cooperative Awareness Messages
(CAM) [2] based on their position change up to 10 times
per second and include sensor data like temporal id, current
position, velocity and acceleration. Other vehicles and infras-
tructure units (Roadside Units, RSUs) receive CAMs within
their communication range. In a decentralized system, RSUs
can gather sensor information over a road segment and forward
this information multihop over several RSUs to a processing
application on a Control RSU. This application evaluates traffic
situations in real time and warns vehicles upon dangerous
situation. This is illustrated in Figure 1.

RSU Control RSU

Figure 1. Vehicular Data is Forwarded to Traffic Application

The main communication challenges on a shared wireless
channel is scalability and reliability. With an increasing num-
ber of transmitting vehicles the wireless channel must not get
congested. Data aggregation techniques are used to eliminate
data redundancy improving the wireless channel’s efficiency.
Safety messages must be received in time while other services
like forwarding sensor data to an application should adapt to
the channel load. Especially in traffic congestion scenarios
RSUs cannot forward all collected sensor data to the process-
ing application and need to reduce the information to transmit.
The decision component decides which data from the vehicles
must be fused to reduce the channel load.

In this paper, we present improvements to the decision
and adaptive control component for the aggregation framework
developed in [3]. The adaptive standard score and adaptive
cost-aware algorithms within the decision component reduce
the error caused by fusing various types of data. They adapt its
parameters to the traffic situation in real time having essential
influence on resulting data precision. Additionally, two new
approaches are proposed to adapt aggregation levels at each
RSU based on its individual channel busy ratio (CBR). In
the Two-thresholds approach, the aggregation levels are only
increased and decreased when the individual CBR exceeds the
minimum or maximum CBR for several consecutive times. In
the N-thresholds approach a higher number of CBR windows
is mapped to aggregation levels. Both approaches adapt the
aggregation levels in real time.

This paper starts with an overview about related work on
data aggregation in Section II. In Section III, IV and V we
describe the aggregation framework components, the flexible
aggregation scheme as well as the decision and aggregation
level control algorithms. All schemes are evaluated in a realis-



tic traffic scenario and the results are discussed in Section VI.
The paper is concluded with an outlook in Section VII.

II. RELATED WORK

Data aggregation is used to combine data messages of different
sources like the vehicles in a VANETs to eliminate redundant
data. RSUs might receive and aggregate vehicular data before it
is forwarded to a data sink. Many data aggregation approaches
based on infrastructure or RSU have been proposed in recent
years. Data aggregation algorithms can be classified into
various sections based on the topology for the nodes they
require. Tree-based topologies [4], [5] consist of one root node
which often represents the data sink. Cluster-based aggregation
schemes [6], [7] group the nodes into clusters. Often each of
these groups contains one landmark node with special respon-
sibilities called a cluster-head. Other aggregation schemes [8],
[9], [10], [11] do not require any specific topology.

In TAG [4] two data nodes are aggregated by fusing all its
contained values using a table as data structure. Thus, two rows
of the table structure are merged. CASCADE [6] suggests to
store only relative values to a fix point compared to absolute
values used in TAG. In CASCADE vehicles are clustered and
the center or median of the cluster values is used as fix point.
During the decision process, data records are identified for
fusion. In SOTIS [9], CASCADE and TAG all data within a
certain group is fused to reduce the wireless channel load.
These groups can be calculated based on road segments.
Another type of aggregation uses mathematical models or
complex computations for the decision process in Quantil
Digest [5] and Probabilistic Aggregation [10]. The drawback
of above aggregation techniques is either the requirement that
the of segmentation and grouping has to be done in advance or
the increased computational cost. A third decision strategy is
used by TrafficView [11]. Its decision component uses a cost
function to identify the two data records with least fusion costs.
This function takes the distance of the vehicles and the number
of vehicles represented by a data record into account. This cost
function could solve the problem of missing single extreme
values, since the cost of fusing such a data record should be
too high for aggregation. However, TrafficViews cost function
falls short in considering other metrics than the distance of
the vehicles and the number of vehicles represented by a data
node. In any case, fusing data by one certain metric usually
has disadvantages. Individual extreme values might get lost by
fusing over all elements of a group, a safety threat, e.g. a slow
car might not be identifiable after fusion.

III. DATA AGGREGATION FRAMEWORK

The proposed aggregation framework provides a foundation to
design adaptive aggregation schemes. It is based on a modular
architecture with three main modules: decision, fusion and
dissemination. Each phase of the aggregation process is repre-
sented by a single module following the generic architecture
model for aggregation schemes proposed by Dietzel et al. [12].
Additionally, two modules were defined in [3]. One represents
the data structure used in the aggregation process and the other
implements the adaptive control of the aggregation process
which in enhanced in this work. The implementation of each
module defines the properties of an aggregation scheme. An
overview of the framework is provided in Figure 2. Following,
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Aggregation Level Controller

Adaptive Control
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Figure 2. Aggregation Framework Modules

each of the five modules of the aggregation framework are
introduced in more detail.

When a RSU receives vehicular information the data is
stored in a data structure. The data structure stores differ-
ent data types, combines data of multiple sources into one
structure and supports size reduction by data fusion. In our
framework we use a tree-based data structure for its flexibility
in further processing. The prototype tree of one particular
scheme consists of a combination of interval nodes and data
nodes in different layers. The decision component chooses
the most similar data records for fusion to achieve high data
precision. It is based on the individual standard score of each
metric. The fusion component provides a valid aggregation tree
to the dissemination component, collects instructions how to
aggregate data from the aggregation level control and allows
the decision component to determine what data to fuse if
necessary. It keeps the aggregation tree valid at all times.
The dissemination component defines when and how data is
disseminated by a RSU to the next RSU in the direction of
the data sink. Data is disseminated with an adaptive frequency
by the node farthest from the control RSU. Whenever another
node receives aggregated data it adds its own data of the re-
quested interval and forwards the combined data immediately.
The adaptive control with three controllers is responsible for
the reliable delivery and the end-to-end delay. It monitors the
CBR and triggers an adaptive aggregation schemes aiming
at a target CBR to minimize packet loss. The requirements
controller defines the required metrics, initial fusion param-
eters and an initial dissemination frequency. This controller
is triggered during initialization of the aggregation process
by the application on the Control RSU. Once other nodes
receive the requirements, they start to collect the requested
data. At runtime, the dissemination period controller observes
the delay of incoming information at the Control RSU and
adjusts the requested dissemination frequency when the delay
exceeds the targeted delay. The aggregation level controller is
a decentralized component and is executed on each RSU. It
observes the CBR and adjusts the aggregation level if CBR
exceeds the targeted ratio.

An aggregation scheme consists of particular implemen-
tation of each module. The key elements are the prototype
data structure, the configuration of the three modules decision,
fusion, dissemination and definition of aggregation levels. The
flexible aggregation scheme introduced here is shown in figure
3 and uses interval and data nodes. The interval nodes consist
of one interval layer each in the tree. The first interval layer
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Figure 3. Flexible Aggregation Scheme

uses time-stamp metric, which records the time the parameter
set was broadcasted by a vehicle. Second layer defines an
interval for the position metric and its interval length (IL)
depends on the aggregation level. The length can be anywhere
between minimum of 25 meter and maximum road length
assigned as shown in Table I. Thus, the imprecision of the
position and time-stamp will never be higher than the specified
maximal interval sizes. While keeping the limit of maximal
children nodes in the tree constant and increasing the length
of the interval, the tree shrinks and data nodes are fused. In
contrast, when the length of the intervals is reduced, the tree
grows. At high channel load and therefore high aggregation
level the error will be limited to ILmax. Lowering ILmax

results in higher precision but also higher channel load. The
flexible aggregation scheme using two different decision and
adaptive aggregation level control schemes is simulated to
evaluate the system performance. The precision is expected
best with more interval nodes as there will be less fusion of
data nodes.

Aggregation Level 0 1 2 . . . n-1

Interval Length(IL) ILmax
2n−1 (≥ 25) ILmax

2n−2
ILmax
2n−3 . . . ILmax

TABLE I. INTERVAL LENGTH OF FLEXIBLE AGGREGATION SCHEME

IV. ADAPTIVE DECISION COMPONENT

The decision component takes a set of nodes as input and
identifies two or more suitable nodes for fusion among the in-
put set. This section introduces two designs for basic decision
components: Adaptive standard score and adaptive cost-aware
algorithm based on a cost function.

A. Adaptive cost aware decision

The goal of the decision component is to maintain extreme
data records while fusing many similar vehicles and thereby
maintaining as much precision of the data as possible. Thus,
fusing similar objects is preferable. The adaptive cost-aware
decision uses a weight function to calculate the fusion costs
of two data nodes (vehicles) a and b, considering all contained
parameters. Let P denote the set of parameters and ai be the
value for the i-th parameter of node a. Furthermore, let wi

be the weight for parameter i. The parameter maxi,t is the

maximal value of parameter i in time period t. It is calculated
every period t and therefore it adapts to the current situation.
Then, the cost can be calculated as indicated in Equation (1).

cost =
∑
i∈P

wi × |
ai − bi
maxi,t

| (1)

w1 + w2 + w3 . . .+ wi = 1 (2)

Using this notation, assuming a system using only two
parameters P = {vel, pos}, let the weights be 0.5 for both the
velocity vel and position pos. The weights allow to determine
the importance of velocity and position. Furthermore, by vary-
ing weights from 0 to 1 can determine the best performance
of decision component.

B. Adaptive standard score decision

In the adaptive standard score decision the difference from
mean value is described in units of standard deviation from
the real time simulation of the metric at each period t. This
allows comparing different metrics without using predefined
standard deviation values.

To identify the difference between two values in units of
standard deviation, the adaptive standard score is used. It is
a signed value that describes the difference from the mean in
number of standard deviations. This unit of standard deviations
allows the comparison of independent parameter values at a
particular time t . Let z be the adaptive standard score, x the
value of the metric, µ the mean and σt the standard deviation
of the metric calculated in periodic intervals of time t. Then
the adaptive standard score is defined as follows:

z =
x− µ
σt

(3)

Equation (3) only describes the adaptive standard score of
one parameter at a time t. However, to calculate the fusion
costs, two values must be considered. These two values are of
the same metric, and thus at same time t. For two values x1, x2
this difference of the adaptive standard score can be expressed
as follows:

|z1 − z2| ⇒ |
x1 − µ
σt

− x2 − µ
σt

| ⇒ |x1 − x2
σt

| (4)

The difference between two values can be described in
units of standard deviation by simply dividing the difference
of the two values by the standard deviation calculated at a
time t using Equation (4). The resulting difference in standard
deviations can be compared with other metrics calculated at
same time t, which is the great advantage of the adaptive stan-
dard score. The adaptive standard score decision component
aims at overcoming the problem to find standard deviation for
each parameter. Instead of dividing the difference with some
already assigned or predefined standard deviation, the standard
deviation is calculated in real time by using the data that is
received by RSU within the time period t.



V. AGGREGATION LEVEL CONTROL

The aggregation level control shown in Figure 2 decides when
to increase or decrease the aggregation level in the framework
within each RSU based on its individual CBR measurement. In
this paper, we propose two approaches how the CBR is mapped
to aggregation levels: Two-thresholds CBR Control and N-
thresholds CBR Control. These methods will be described in
detail in following sections.

A. Classical Two-thresholds CBR Control

The Two-thresholds CBR Control (2-CBR) method only con-
siders two extreme values - minimum and maximum - of CBR
for each RSUs. The aggregation aims to keep the CBR between
these two values. In this method, aggregation level of all RSUs
starts at level 0 and only increases to a higher level, when the
CBR of a particular RSU exceeds the maximum CBR defined
for a 2 consecutive times. Same steps are followed to reach
the maximum aggregation level possible. If CBR drops below
the minimum value for 5 consecutive times the aggregation
level is decreased. The hysteresis aims to limit the oscillations
of the aggregation level and act more defensively keeping
aggregation level high in case CBR is near the thresholds.

B. N-thresholds CBR Control

In N-thresholds CBR Control (N-CBR), the two extreme
values that are minimum and maximum value of CBR for each
RSUs and the number of aggregation levels are considered.
The target CBR window (CBRW) size for each aggregation
level can be calculated from Equation (5). Where CBRmax

is the maximum CBR, CBRmin is minimum CBR and n is
number of aggregation levels. This method can be explained
further using an example, from Table II: n is considered as
5, CBRmin = 0.25 and CBRmax = 0.40, following the
thresholds in [13]. Similar configuration with 6 aggregation
levels is shown in Table III according to the thresholds in
[14]. The CBRW size is calculated and each window size is
assigned to aggregation level. First each RSU checks its CBR
and compares it with the aggregation level. If there is a change
then it updates its aggregation level. RSU checks its CBR every
1sec and updates its aggregation level accordingly.

CBRW =
CBRmax − CBRmin

n
(5)

Aggregation Level 0 0 <= CBR < 0.25
Aggregation Level 1 0.25 <= CBR < 0.30
Aggregation Level 2 0.30 <= CBR < 0.35
Aggregation Level 3 0.35 <= CBR < 0.40
Aggregation Level 4 0.40 <= CBR < 1

TABLE II. MAPPING OF CBR TO AGGREG. LEVELS BASED ON [13]

Aggregation Level 0 0 <= CBR < 0.19
Aggregation Level 1 0.19 <= CBR < 0.27
Aggregation Level 2 0.27 <= CBR < 0.35
Aggregation Level 3 0.35 <= CBR < 0.43
Aggregation Level 4 0.43 <= CBR < 0.51
Aggregation Level 5 0.51 <= CBR =< 1

TABLE III. MAPPING OF CBR TO AGGREG. LEVELS BASED ON [14]

VI. EVALUATION

A. Simulation Setup

The network simulator ns-3.18 was used for evaluation. It
was extended by ITS modules enabling simulation of ETSI
ITS-G5A [1] and GeoNetworking protocols [15] as well as
positioning and mobility modules. The wireless channel as-
sumes Nakagami highway propagation model with 6 MBit/s
data rate and 10 MHz bandwidth using the control channel
180 at 5.9 GHz for all communication. Transmission power is
15 dBm for all vehicles and RSUs. The targeted maximal CBR
is 0.40, following the channel states from [13]. CAMs are gen-
erated by each vehicle with dynamic frequency between 1 and
10 Hz based on the movement of the vehicle, following CAM
generation rules [2]. CAM payload size is set to 250 Byte.

Data Rate 6 MBit/s
Frequency 5.9 GHz

Transmission power 15 dBm
Minimum CBR 0.25 (0.19)
Maximum CBR 0.40 (0.51)

Propagation model Nakagami Highway
Highway length 10 km

Number of vehicles 800
Number of RSUs 10

Distance between RSUs 400 m
Speed of vehicles (free) 20 - 40 m/s
Speed of vehicles (jam) 3 - 8 m/s

Traffic jam 3 min
Number of aggregation levels 5 (6)

Max. interval length (ILmax) 800 m

TABLE IV. SIMULATION SETUP

A realistic highway traffic scenario is used in the evaluation
- a 10 km highway with three lanes in each direction and
800 vehicles randomly distributed on these six lanes. 10
RSUs are placed in a distance of 400 m to each other. The
mobility models assume vehicles velocity between 20 - 40 m/s
in free traffic flow in both directions. RSUs receive CAMs
from vehicles in both direction, but extract only relevant
CAMs for further process. After 2 minutes a sudden single
directional traffic jam in the middle of the equipped road
segment forces the velocity to drop to 3 - 8 m/s. For the
next 3 minutes vehicles queue in one direction. Afterwards,
traffic jam dissolves slowly for the next 4 minutes, restoring the
original velocity distribution. Up to 600 vehicular data records
per second per RSU containing 9 different metrics each were
received by RSUs and transmitted multihop over 10 RSUs
with in-node and in-network aggregation to a processing traffic
application. Additional simulation parameters are depicted in
Table IV.

B. Simulation Results

The main objective of the adaptive data aggregation is to
reduce the load on the wireless channel. We compare the CBR
and aggregation level changes of each RSU followed by the
trade-off in resulting precision errors.

Figure 4(d) shows the CBR of a system that only forwards
vehicular data in the tree-based data structure but does not fuse
any data. Thus, the channel load can not be reduced and the
targeted CBR threshold of 0.40 is exceeded. The smoothed
CBRs of the flexible aggregation scheme with 2-CBR and
N-CBR control are depicted in Figure 4. In the traffic free
flow (0-2 min) the CBR is almost stable around 0.25 for all
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Figure 4. Channel Busy Ratio

RSUs. As the traffic jam starts in the middle of the road
section the CBR rises for affected middle RSUs and later also
lower RSUs experiencing dense traffic. The CBR decreases for
higher RSUs having low traffic down to 0.15 for RSU10. As
the traffic jam moves on in the direction of higher RSUs at
min 4-7 every RSU is effected and their CBRs rise having a
peak at min 5-7. Both 2-CBR and N-CBR control adapt to the
channel load and change their aggregation level accordingly. 2-
CBR control slightly peak over the target limit of 0.40, N-CBR
control keeps under the limit at all times. While the traffic jam
dissolves, CBR lowers for all RSUs back to the initial value.

Increasing and decreasing of aggregation levels regulates
the channel load of aggregated data. Figures 5(a) and 5(b)
show the aggregation levels for the two control approaches
corresponding to the CBR in Figure 4. In the 2-CBR control
the aggregation levels start to rise quickly at RSUs 5-6 as soon
as CBR reaches the target of 0.40. While the traffic jam moves
slowly forward, the aggregation levels rise also at RSUs 7-9.
Beginning with min 7 the traffic jam starts to dissolve and the
aggregation levels quickly decrease back to zero. The N-CBR
control reduces some additional channel load from the start,
as lower and middle RSUs (4-6) already rise their aggregation
level significantly from min 2. RSUs 5-10 reach their peaks
in min 5-7 and are back to initial values at min 8. The early
increase of aggregation levels causes the CBR to stay below
the target limit at all times.

N-CBR with configuration from Table III (N-CBR-2),
shown in Figure 5(c) includes one additional level compared
to N-CBR from Table II (N-CBR-1), shown in Figure 5(b).
The first threshold in level 1 is lower, therefore the aggregation
level is increased earlier and the following CBR relaxes earlier
at the cost of the precision. The thresholds are wider apart in
N-CBR-2 and the level will not change as early as in N-CBR-1.
The adaptive data aggregation is more flexible towards higher
CBR in N-CBR-2 because of the higher upper threshold.

Data precision is an important performance indicator to
evaluate decision schemes. The data fusion introduces an
error that each decision scheme aims at keeping low. The
error introduced by each scheme is compared in two metrics:
position and velocity error. Each figure states the number
of data records received with a certain error, the average
difference from true value (Mean Absolute Error - MAE) and
the Root Mean Square Error (RMSE). During free flow traffic
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Figure 5. Aggregation Level

both control approaches deliver data precision with almost no
errors because of low CBR. During the traffic jam peak (min
4-7), however, the data fusion introduce different errors which
are presented next.

The precision error regarding the position metric is illus-
trated in Figure 6. The adaptive standard score with 2-CBR
control performs best (MAE = 8.1m) followed by adaptive
cost-aware with 2-CBR (MAE = 22.1m). Both the adaptive
decision algorithms show less precision error with 2-CBR
control compared to N-CBR. While keeping the channel load
low, the N-CBR approach rise the aggregation level more often
and therefore cause increase in precision error. Both adaptive
decision algorithms result in higher data precision compared
to non-adaptive algorithms because the algorithms adapt their
parameters to receiving values in real time. Figure 7 shows the
precision error analysis of the velocity metric with equivalent
results.
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Figure 6. Position Precision Error
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Figure 8. Aggregated Data Load

The resulting channel load caused by additional aggrega-
tion data load is depicted in Figure 8. In 2-CBR approach a
higher amount of aggregation data is transmitted between RSU
5-10 during the traffic jam (min 2-5) resulting in higher data
quality in this road section. Less aggregation data is transmitted
in N-CBR approach because the channel load already exceeded
first limit resulting in increasing the aggregation level. In both
cases, the aggregation data load is heavily reduced after the
traffic jam dissolves and vehicles start to move with high
velocity again causing high channel load based on CAMs.

VII. CONCLUSIONS

In our paper we presented two adaptive decision algorithms
within the aggregation framework which decide which data is
aggregated in real time. Furthermore, two different approaches
for aggregation level control were described and evaluated
in a traffic scenario. Simulation results show that both adap-
tive algorithms had lower precision errors than non-adaptive
algorithms especially in dynamic traffic scenarios where the
vehicular data change rapidly.

Additionally, the simulation results show that both aggre-
gation level control approaches are able to adjust the aggrega-
tion levels to current channel load thresholds within seconds
resulting in improved data quality even in congested traffic
situations. The 2-CBR control keeps the precision error lower
compared to N-CBR approach but may exceed the targeted
CBR limit for the magnitude of seconds. This approach might
be useful in use cases with one optimal CBR threshold
where exceeding this threshold for short time frame does not
affect the performance of the system significantly. The N-CBR
adjusts its aggregation level earlier and manages to keep the
CBR below the target limit at all times. This approach might
excel in use cases where exceeding certain CBR limit has
severe negative impact on the whole system.

We observed that the aggregation level control has natural
limits for its impact on the regulation of the channel load
- it does not influence the base line CBR based on CAMs.
However, with increasing number of applications and therefore
increasing channel load based on these applications we expect
even more impact on aggregation schemes regulating the
channel load.

In further simulations, the decentralized congestion control
(DCC) on application layer of this framework will be com-
bined with DCC for access layer [13], where all nodes adjust
their transmit power and other parameters dependent on CBR.
An evaluations with more complex street topology, mobility
models and traffic scenarios will follow.
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