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Abstract. A structural knowledge-based vehicle recognition method is 
modified yielding a new probabilistic foundation for the decisions. The method 
uses a pre-calculated set of hidden line projected views of articulated polyhedral 
models of the vehicles. Model view structures are set into correspondence with 
structures composed from edge lines in the image. The correspondence space is 
searched utilizing a 4D Hough-type accumulator. Probabilistic models of the 
background and the error in the measurements of the image structures lead to 
likelihood estimations that are used for the decision. The likelihood is 
propagated along the structure of the articulated model. The system is tested on 
a cluttered outdoor scene. To ensure any-time performance the recognition 
process is implemented in a data-driven production system.  

1 Introduction 

Vehicle recognition from oblique high resolution views has been addressed by several 
authors [2][7][6]. Hoogs and Mundy [7] propose to use region and contour 
segmentation techniques and rely on dark regions of certain size and form, that may 
be a vehicle shadow, and on simple features like parallel contours, that some vehicles 
display in a variety of perspectives. Shadows can be exploited, if the pictures are 
taken in bright sunlight of known direction. Omni-directional ambient lighting causes 
a shadowed region directly underneath the vehicle. This is visible in oblique views of 
vehicles but may be occluded, e.g. by low vegetation. Parallel contours are a cue to 
vehicles, but they are present in many environments around vehicles, too (e.g. in 
roads, buildings, ploughed fields).  

A possibility to avoid this difficulties is to use the geometrical shape of the 
vehicles themselves. Viola and Wells [12] render object models and compare 
characteristic properties of the gray value function of the rendered graphic and the 
image using mutual information. Hermitson et al. [6] utilize this approach to oblique 
vehicle recognition. Rendering requires assumptions about the lighting and surface 
properties of the model. If this is not available one has to work with contours on the 
more abstract geometric level. Dickinson et al. [3] proposed generalized cylinder 
models with part-of hierarchies for contour based object recognition. Binfort and 
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Levitt [2] applied this to vehicle recognition tasks. Generalized cylinder models 
capture the coarse structure of a vehicle. For details of vehicles such models are not 
appropriate.   

Grimson [5] proposed polyhedron models and straight line segments. This has a 
high potential discriminative power, because many geometric properties and 
constraints of the targets are exploited. For the reduction of the computational effort 
indexing methods like generalized Hough transform as well as restricting the vehicles 
in position and rotation to the ground plane are proposed [10]. Some vehicles can not 
be covered by one rigid polyhedron alone, because they are composed of parts, that 
are connected by pivots or bearings (e.g. truck and trailer systems or tanks). Such 
objects can be captured by articulated models [11]. The appearance of polyhedrons is 
affected by self occlusion. This may be treated by aspect graphs [4], or by linear 
combination of characteristic views [11]. We use an equidistantly sampled set of 
views for each model [8]. In this contribution we incorporate probabilistic 
calculations into a structural approach.  

Sect. 2 presents the accumulator method to solve the problem of vehicle 
recognition from single oblique views. The probabilistic model is described in Sect. 3. 
A result of an experiment on a difficult scene is given in Sect. 4. In Sect. 5 a 
discussion of pros and cons of the approach and an outlook on future work are given. 

2 View-Based Recognition of Vehicles  

View-based object recognition matches the model to the data in the 2D image space. 
For this purpose 2D views of the 3D model parts are constructed. It is possible to use 
structured models with part-of hierarchies. Then the consistency check for correct 
mutual positioning requires back projection.  

A set of 2D lines constructed by perspective hidden-line projection from a 
polyhedron is called a view. In contrast to this an aspect is a line graph. Changes in 
the view that don't change the topology provide the same aspect [11]. 

2.1  The Space of views 

The space of views is originally continuous and has dimension six (three rotations and 
three translations). Vehicle recognition from oblique imagery constraints the distance 
to an interval and the spatial rotation to one off-image plane rotation (the azimuth). 
Depending on the focal length translations of the model may lead to geometric 
distortions at the margins of the image. Due to the long focal lengths used here this 
effect can be neglected and the same view model can be used all over the image. The 
model is positioned such that it appears centered in the principal point and the 
azimuth and distance are varied stepwise in an appropriate step width yielding finite 
2D view space containing some hundred views per model. Fig. 1 shows some 
example views. 
 
 
  



a  

b  
 
Fig. 1. Selected set of 2D models projected from a 3D polyhedron model: a) varying 
azimuth with Δα=15o; b) varying distance with Δdis=8m 

2.2  Matching  an Image to the Views 

Object contours in the image are extracted using a gradient operator and 
morphologic thinning. The contours are approximated by short line segments. A line 
prolongation process improves the orientation estimation of the line objects. The set 
of such line objects can be matched with the lines in the views. For this task we use a 
generalized Hough transformation [1].  

To decrease the computational complexity of the correspondence search we use L-
shaped objects constructed from the lines. The L-shaped objects in all the model 
views are constructed off-line. As key to establish the correspondence between image 
and model structures the two orientations of the sides of the L-shaped objects are 
utilized. A structure in the image supports a part of a view if both orientations are 
sufficiently similar. The position of the reference point of the view is obtained 
subtracting the position of the part in the model view from the position in the image. 

2.3  Robustness through Accumulation 

Often not all modeled structures are present in images of outdoor scenes. 
Therefore, as much evidence as possible has to be merged from consistent cues to one 
specific pose. While a single cue may result from background or clutter multiple 
consistent cues from different structures of a specific view probably result from the 
presence of the modeled object in the corresponding pose. Therefore all cues are 
inserted in a 4D accumulator at their image position, azimuth, and distance. Resulting 
from different errors (modeling, imaging, feature 
extraction) consistent cues form a fuzzy cluster in 
the accumulator. For the detection of vehicles we 
search for dominant clusters of cues in the 
accumulator.  

 
 

Fig.2. Searching for a proper 
subset in the accumulator 

Each cue locates a 4D search area. The size of 
this area results from the maximal expected 
errors. Cues within a search area are a candidate 
subset for a cluster object and are used to estimate 
the center of mass. The center of mass locates a 
new search area and a new subset. Such 



calculations are performed until convergence occurs. Fig. 2 exemplifies such 
procedure in 2D where the dark square indicates the position of a cue and the black 
square shows the corresponding search area. While the leftmost cue is missed in the 
first attempt it will be included in a later step, because the position of the new search 
area is determined by the center of mass indicated by the cross. 

2.4  Part-of Hierarchies and Articulated Models  

Not all vehicles are adequately described by a single shape fixed polyhedron model. 
Parts of a vehicle may be mutually connected and constrained by hinges or pivots 
(truck-trailer systems, tanks). Therefore we consider 3D models of vehicles that have 
a part-of hierarchy. Such a model is described by a directed graph where each basic 
part is a polyhedron. If the parts have mutual degrees of freedom in rotation such a 
model is called articulated model [11]. The resulting constraints are used by 
recognition process. For the consistency test the parts are projected back to the 3D 
scene. If a pivot or hinge is not located at the reference position of a model part, then 
auxiliary position attributes are used to define the search areas for partner clusters. E. 
g., the 2D position of the trailer hitch of a vehicle view depends on its pose. These 
auxiliary position attributes locate the search area for possible partners.   

The information on which auxiliary attribute of which part of the model connects 
to which attribute of which other part, and which azimuth angle differences are 
permitted at this connection is given by the user in a standardized format in addition 
to the polyhedron models. 

2.5  Production Nets and Implementation 

We describe structural relations of the object models by productions. A production 
defines how a given configuration of objects is transformed into a single more 
complex object (or a configuration of more complex objects). In the condition part of 
a production geometrical, topological, and other relation or attributes of objects are 
examined. If the condition part of a production holds, an object specific generation 
function is executed to generate a new object. Such productions operate on sets of 
objects instead of graphs, strings etc. The organization of object concepts and 
productions can be depicted by a production net [9] which displays the part-of 
hierarchies of object concepts.  

Our production nets are implemented in a blackboard architecture. Blackboard-
systems consists of a global data base (blackboard), a set of processing modules 
(knowledge sources), and a control unit (selection module). The productions are 
implemented in the processing modules, which test the relations between objects and 
generate new objects. Starting with primitive objects the searched target objects are 
composed step by step by applying the productions. The system works in an 
accumulating way, this means a replaced initial configuration will not be deleted in 
the database. Thus all generated partial results remain available during the analysis to 
pursue different hypotheses. The classical backtracking in search-trees is not 
necessary.  



3. Probabilistic Error Models 

A critical issue is the choice of the optimal size of the search areas in the accumulator. 
With rising distance of a cue from the center of a cluster the likelihood for its 
membership decreases. A cue with a large distance from the cluster is probably due to 
background or clutter. Wells [14] used Gaussian distributions for the error of features 
that are in correct correspondence to the model and equal densities for background 
and clutter features. While he uses contour primitives attributed by their location, 
orientation and curvature we operate in the 4D accumulator. 

3.1  Probabilistic Calculations in the Cluster Formation 

Applying Wells theory we first have to estimate a reward term λ as contribution of 
each single cue which replaces the entry into the accumulator. From a representative 
training-set where the features are labeled either as correctly matched or as 
background or prior information λ is set to 
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The middle factor in this product is calculated from the ratio between the probability 
B that a feature is due to the background, and the probability (1-B)/m that it 
corresponds to a certain model feature, where m is the number of features in the 
model. The rightmost factor in the product is given by the ratio between the volume 
of the whole feature domain W1 ... W4 and the volume of a standard deviation ellipsoid 
of the covariance matrix ψ for the correctly matched features. As feature domain we 
set βT=(x,y,α,dis). Locally our accumulator domain may be treated as linear, 
justifying the application of this theory and its error models. The objective function L 
is calculated for each cluster of cues:  
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Yi is the position of the i-th cue in the accumulator domain. The pose β is estimated as 
mean  of the poses of  the member cues of the cluster. The 
correspondence Γ is coded as an attribute of the cues. For each model feature j put 
into correspondence in the cluster the closest cue i to the mean is taken as 
representative of the set of all cues i corresponding to j. This is done, because we 
regard multiple cues to the same model feature as not being mutual independent.  

)isd̂,ˆ,ŷ,x̂(ˆ T αβ =

Recall that the maximization must not take those Γ into account, that include 
negative terms into the sum. Fig. 4 displays the 1D case: Full reward λ is only given 
for a precise match. With rising error the reward is diminished by a negative parabola. 
Finally it reaches zero level. At this point Γ is changed, setting the feature in 
correspondence to the background. This condition gives a new way to infer the 
threshold parameters for the search region in the cluster process. In 1D the covariance 



matrix reduces to a single variance σ 
and the single threshold parameter d is 
given by the root of λ/σ. For higher 
dimensional cases (e.g. 4D) the 
bounding box of the ellipsoid is used, 
that is determined by the covariance Σ 
and λ.  

Wells rejects scenes as non 
recognizable, if λ turns out to be 
negative according to Eq. 1. This gives a profound criterion for the applicability of the 
approach to a task for which a test data set is provided. 

 
Fig. 3. Reward function after Wells [11] 

3.2  Propagation of likelihood along the part-of structure 

The cues have an auxiliary attribute Y1 for the position, where the partner cue should 
connect, e.g. the trailer hitch. This attribute is calculated by inverse projection into the 
scene, proper rotation of the 3D model, and projection into the image again. A search 
area is constructed around Y1. For each partner cue with position Y2 in this area the 
aggregation is regarded as valid and the two accumulator values are summed up 
yielding the accumulator value for the new aggregate object. Its position Yn is 
calculated as weighted mean. This neglects the quality of the fit. 

For the probabilistic setting the likelihood L is propagated along the links of the 
part of hierarchy. If the position Y2 of the partner cue exactly matches the auxiliary 
position Y1, we infer that there is independent evidence for the aggregate from both 
parts. This justifies multiplication of probabilities or adding the likelihood values. 
Otherwise some of the predecessors of the cue clusters may be contradicting. Lacking 
the precise knowledge of the distribution, the evidence for each part is assumed to be 
equally distributed over its search volume. Fig. 4 shows the 1D case. 

 

 
Fig 4: combining evidence from two different parts of a model into evidence of an aggregate: 
Below reward function; above density estimations. 

The two cue clusters with centers Y1 and Y2 and their error parabolas displayed in 
dashed lines include mutually affirming evidence, if their distance is smaller than 3d. 



We indicate their evidence densities b1 and b2 by the differently shaded piecewise 
constant functions. In the overlapping region evidences b1, b2 are added. The reward 
function integrates the piecewise densities using the error parabola of the new 
position estimate Yn yielding a sum of three integrals: 
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In the 2D case the upper and lower border of the integral in the middle are replaced by 
circular sections in the attribute domain and the parabola is replaced by a paraboloid. 
In the case of rigid connections the hyper ellipsoid on which the reward paraboloid is 
constructed is 4D, namely (x,y,α,dis). In the case of an articulated connection the 
azimuth α is free contributing no error. Therefore the domain is 3D containing only 
(x,y,dis).  

4 An Experiment 

Fig. 5a shows a section of a gray level image containing a vehicle with a small trailer. 
From this lines are extracted (Fig. 5b). Experiments very carried with this data. Both 
decision criteria, the maximum accumulator value as well as the maximum likelihood 
(ML) work. In the cluttered image region on the left (branches of a tree) and in the 
fairly homogenous region in the center accumulator and likelihood field are empty.  

The pose estimation of the maximal elements is roughly correct. Fig. 5c shows the 
ML result. The interesting section of the likelihood field is enlarged in Fig 5d. The 
white blobs on the left correspond to correct localization. Some less significant false 
evidence is found on the right. Both the discrimination and the pose estimation are 
slightly better for the likelihood criterion. 

5 Discussion 

In this contribution we demonstrated the inclusion of probabilistic calculations into 
a structural method. Compared to previous experiments [8] the discriminative power 
of the accumulator on cluttered regions, e.g. in the left part of the image, has much 
improved due to a better parameter setting. The new settings were obtained from the 
probabilistic considerations. We occasionally experienced better performance of the 
accumulator compared to the likelihood. This occurred when the model did not fit 
exactly to the vehicle. The likelihood approach is more sensitive to errors in the 
model. Fig. 5c shows that the pose is not optimal (see nose of the vehicle). EM type 
optimizations including a top down search in the correspondence space can improve 
the result [13]. 



 

Fig. 5. Localization of an aggregate consisting of a vehicle and a small trailer. a) Image section 
(1000x200 pixel), b) extracted line objects; c) overlaid articulated model of ML-result, d) 
section of the likelihood field corresponding to the dashed box in a). 

The probabilistic calculations of Wells rest on certain assumptions on the 
distribution of the data. Background features are assumed to be equally distributed all 
over the picture. Such assumption is valid only in special situations or if nothing else 
is known about the background [9]. If additional information is given, e.g. on certain 
preferences on the orientations of the lines (e.g. vertical or horizontal), this can be 
included in the probabilistic model. The features in correspondence to the target are 
modeled with a Gaussian distributed additive error. If knowledge about the error 
sources is available, other error models may be considered. 

As shown in Fig 5 the evidence for the two partners of an aggregate is estimated as 
being equally distributed over the search volume. The evidence for the new aggregate 
has a stepwise constant density (lower, high and then lower again). If we include such 
an aggregate as a part of a higher aggregate using the same calculations, we permit a 
systematic estimation error. For shallow hierarchies like the one presented here this is 
not important. For deep hierarchies such effect has to be estimated. 
In our approach all possible model views are approximated by views valid for the 
principal point only. This is justified for long focal lengths but will pose severe 
problems for views near the image margin of wide angle pictures. These are distorted 
by systematic errors. 

Still the preliminary experiments presented in chapter 4 yielded promising results, 
so that we are confident in combining statistical and structural methods.  
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