

Fehlpassung bei der Homo- und Heteroepitaxie

Birgit Kallinger

Fraunhofer Institute for Integrated Systems and Device Technology (IISB) Department Crystal Growth / Group Epitaxy

Schottkystr. 10 91058 Erlangen, Germany

Gliederung des Vortrags

- 1. Was ist Epitaxie?
 - 1. Definition, Unterscheidung Homo- und Heteroepitaxie
 - 2. Anwendungen in der Halbleiterindustrie
 - 3. Unterteilung der Epitaxieverfahren
 - 4. Fehlpassung und kritische Schichtdicke
- 2. Heteroepitaxie der Gruppe III-Nitride
 - 1. Gitterfehlpassung
 - 2. Thermische Fehlpassung
 - 3. Resultierende Grenzflächenspannung
- 3. Homoepitaxie von 4H-Siliziumkarbid
 - 1. Dicke 4H-SiC Schichten für Anwendungen in der Leistungselektronik
 - 2. Dotierungsinduzierte Gitterfehlpassung
 - 3. Kritische Schichtdicke
- 4. Zusammenfassung

Was ist Epitaxie? Definition und Unterteilung

- Aus dem Griechischen:
 - "epi": auf, über
 - "taxis": ordnen, ausrichten
 - Aufwachsen einer kristallinen Schicht auf einem kristallinen Substrat, wobei mindestens eine kristallographische Orientierung des Substrats durch die Schicht übernommen wird
 - Atterialien von Substrat und Schicht (und damit die Kristallstruktur*) stimmen überein: Homoepitaxie
 - → Heteroepitaxie: Substrat- und Schichtmaterial stimmen nicht überein

Was ist Epitaxie?

Anwendungen in der Halbleiterindustrie

- Optoelektronik
 - GaP-System für Leuchtdioden und Laserdioden
 - GaN-System, v.a. für blaue Leuchtdioden
 - → GaN meist als Schichten, als Substrate kaum verfügbar!
- Mikro- und Leistungselektronik
 - Silizium
 - Siliziumkarbid
 - GaN-AIN-Schichten (z.B. HEMT)
- Detektormaterialien
 - CdTe und Mischkristalle

- Chemische Gasphasenabscheidung:
 - Chemical Vapor Deposition (CVD)
 - Metal-Organic Chemical Vapor Deposition (MOCVD)
 - Hydride Vapor Phase Epitaxie (HVPE)
- Physikalische Gasphasenabscheidung (PVD):
 - Molecular Beam Epitaxy (MBE)
 - Ion Beam Assisted Deposition (IBAD)
- Flüssigphasenepitaxie (LPE)

Homo- und Heteroepitaxie

Materialeigenschaften und deren Bedeutung für die Epitaxie

Substrat- und Schichtmaterialien können sich u.a. unterscheiden in:

- Kristallstruktur
 - → Entstehung von Mosaizität, Korngrenzen ...
- Gitterkonstanten, wichtig v.a. in-plane Gitterkonstante
 → Gitterfehlpassung
- Thermische Eigenschaften, v.a. thermischer Ausdehnungskoeffizient
 Thermische Fehlmeseurer
 - → Thermische Fehlpassung

→ (temperaturabhängiger) Spannungszustand im Schichtsystem

- Elastische Eigenschaften
 - → Spannungs-/Dehnungsverteilung
 - → Spannungsabbau durch Versetzungsbildung

Gitterfehlpassung und kritische Schichtdicke Pseudomorphes und relaxiertes Schichtwachstum

Mit zunehmender Schichtdicke:

- elastische Verspannung des Systems \rightarrow Waferbiegung
- plastische Deformation → Versetzungsbildung
 - \rightarrow Rissbildung, Bruch

Crystal Grows

Fehlpassung bei der Heteroepitaxie Beispiel III-Nitride: Berechnung der Gitterfehlpassung

alle Gruppe III-Nitride:

- Wurtzit-Struktur
- "lückenlos mischbar"
- Vegard'sche Regel

Gitterkonstanten* der Nitride

	AIN	GaN	InN
a [A]	3,112	3,189	3,545
c [A]	4,982	5,186	5,693

Gitterangepasstes Substrat-Schicht-System: Al_{0.8}In_{0.2}N auf GaN → in allen anderen Kombinationen:

Gitterfehlpassung

Fehlpassung bei der Heteroepitaxie Beispiel III-Nitride: Berechnung der thermischen Fehlpassung

therm. Ausdehnungskoeffizienten*

	AIN	GaN	InN
α_a [10 ⁻⁶ /K]	4,15	5,59	3,8
α_{c} [10 ⁻⁶ /K]	5,27	3,17	2,9

$$\epsilon_{th} = (\alpha_s - \alpha_f) \cdot \Delta T$$

Abkühlung um 1000K: thermische Fehlpassung auf GaN: AIN auf GaN: 1,4 x10⁻³ InN auf GaN: 1,8 x10⁻³

thermische Fehlpassung auf AIN: GaN auf AIN: $-1,4 \times 10^{-3}$ InN auf AIN: $3,5 \times 10^{-4}$

Fehlpassung bei der Heteroepitaxie

Beispiel III-Nitride: Berechnung der Grenzflächenspannung σ

 $\sigma = \epsilon \cdot M$

Elastische Konstanten in [GPa]				
	AIN	GaN	InN	
c_11	410	390	190	
c_12	149	145	104	
c_13	99	106	121	
c_33	389	398	182	
M**	508	478	133	

Electicobo Konstanton in [CPa]*

- thermische Fehlpassung***: ullet
 - AIN auf GaN: 0,7 GPa
 - InN auf GaN: 0,2 GPa
 - GaN auf AIN: -0,7 GPa
 - InN auf AIN: 0,5 GPa
- Gitterfehlpassung: ۲
 - AIN auf GaN: 12 GPa
 - InN auf GaN: -13 GPa
 - GaN auf AIN: -11 GPa
 - InN auf AIN: -16 GPa
- \rightarrow Tensile u/o kompressive Verspannung → Geeignete Pufferschichten

Folie 10 **Birgit Kallinger** * von loffe-Homepage/Levinshtein

** biaxialer Modul, abhängig von Spannungszustand

*** bei 1000 K Abkühlung

Fehlpassung bei der III-Nitrid Heteroepitaxie Zusammenfassung

Substrat- und Schichtmaterialien können sich unterscheiden in:

- Kristallstruktur
 → Alle Gruppe III-Nitride: Wurtzit-Struktur
- Gitterkonstanten, in Abhängigkeit der Schichtzusammensetzung
 → Gitterfehlpassung im Bereich 10⁻² bis 10⁻¹
- Thermische Eigenschaften, v.a. thermischerAusdehnungskoeffizient \rightarrow Thermische Fehlpassung im Bereich 10⁻⁴ bis 10⁻³ (Δ T = 1000K)
- → temperaturabhängiger Spannungszustand im Schichtsystem

... und bei der Homoepitaxie?

Anwendung von 4H-SiC in der Leistungselektronik Beispiel PiN-Diode

Vorteile gegenüber Si:

- Bandlücke $E_g (4H-SiC) = 3,23 \text{ eV}$ $E_g (Si) = 1,12 \text{ eV}$
- geringere elektrische Verluste
 → höhere Energieeffizienz
- hohe thermische Leitfähigkeit und höhere Betriebstemperaturen
 → geringere Kühlung
 - → kleinere und leichtere Leistungsmodule möglich
- für Sperrspannungen > 2 kV: Bipolare Bauelemente

Schematischer Aufbau PiN-Diode (ausgelegt für $V_{br} = 6,5 \text{ kV}$):

- → Aktives Bauelementvolumen nur epitaktisch herstellbar
- → Dicke, homoepitaktische Schichten

Anwendungen von 4H-SiC in der Leistungselektronik Bipolardegradation in 4H-SiC: Drift der Vorwärtskennlinie

Flusskennlinien von PiN-Dioden (Sperrspannung 6,5 kV) vor und nach der elektrischen Belastung mit 100 A/cm² für 1h.

Im aktiven Bauelementvolumen (= Epitaxieschichten):

- Bildung und Ausbreitung von Stapelfehlern durch "Rekombinations-verstärktes Versetzungsgleiten (REDG)¹"
- Ausgangspunkt der Stapelfehler: Basalflächenversetzungen in Epitaxieschicht

→ Unterdrückung der Bipolardegradation: BPD-freie Epischichten

→ BPDs als misfit dislocations?

Homoepitaxie von 4H-SiC Chemical Vapor Deposition: Prozess

4H-SiC Homoepitaxie

- Auf 4H-SiC Substrat, 360 µm dick
- Verkippte Substrate f
 ür Stufenwachstum (Polytypie!)
- Für Anwendungen in der Leistungselektronik
- Dicke Schichten bis 100 µm (etwa 1/4 der Substratdicke)

CVD-Prozess:

- Horizontaler hot-wall Reaktor
- Wachstumstemperaturen im Bereich 1450 ℃ bis 1700 ℃
- Wasserstoff als Trägergas
- Silan (SiH₄) und Propan (C₃H₈) als Reaktanden
- Stickstoff (N₂) und Aluminium (TMA) als Dotierstoffe
- Typische Wachstumsraten*:
 5 15 μm/h, max. 50 μm/h

Gitterfehlpassung bei der 4H-SiC Homoepitaxie Bestimmung der Fehlpassung ε_{rsm} mittels HRXRD

Reziproke Gitterkarten (RSM)

- Intensitätsverteilung im reziproken Raum um Basisreflexe
- Peakaufspaltung wegen unterschiedlicher Gitterkonstanten von Substrat und Schicht

konventionelle Methode
 ungeeignet f
 r N-dotierte
 Schichten auf n-Substrat

Gitterfehlpassung bei der 4H-SiC Homoepitaxie Bestimmung der Fehlpassung durch Biegungsmessungen

- Bestimmung der
 - Schichtdicke h_f,
 - Substratdicke h_s,
 - Biegungsdaten (x, h)

$$\varepsilon_{bow} \approx \frac{8h}{x^2} \cdot \frac{h_s^2}{h_f}$$

- Berechnung der Fehlpassung ε_{bow}
 nach dem Stoney Modell¹
 - Voraussetzungen erfüllt
 - Übereinstimmende elastische Eigenschaften von Substrat und Schicht angenommen

vstal Grow

Gitterfehlpassung bei der 4H-SiC Homoepitaxie Ursache der Gitterfehlpassung: Dotierungsunterschied?

Wirtsatom/	Kovalenz-	Δr^3
Dollersloll	radius r	[4 0 25
	[pm]	$[10^{-23} \text{ Cm}^3]$
С	77	
N auf C Platz	70 75	-1,135
Si	117	
Al auf Si Platz	125	+3,515

r: Kovalenzradius des Wirts-/Dotierstoffatoms²

- c: Dotierstoffkonzentration [cm⁻³]
- K: Kompressionsmodul, K = 220 GPa
- G: Schermodul, G = 159 GPa

Modell von Jacobson¹:

- Substitution von Wirtsatomen durch
 Dotierstoffatome mit unterschiedlichen
 Kovalenzradien
- Änderung des Elementarzellvolumens f_s

$$f_s = 4\pi \cdot c \cdot \Delta r^3 \cdot \frac{3K + 4G}{27K}$$

Berechnung der Fehlpassung $\epsilon_{ ext{theory}}$

$$\mathcal{E}_{theory} = 1 + \frac{1}{f_s - 1}$$

Folie 17 Birgit Kallinger ¹ Jacobson et al., APL 82 (2003) 3689.
 ² S. Hauptmann, G. Mann; Stereochemie. Spektrum Akadem. Verlag, Heidelberg, 1996.

Gitterfehlpassung bei der 4H-SiC Homoepitaxie Vergleich von Experiment und Theorie (Jacobson-Modell)

- Kovalenzradius von Stickstoff:
 - Literaturwerte streuen:70 pm bis 75 pm
 - r(N) als Fitparameter
 für Jacobson-Modell:
 → r* = 66 pm

→ quantitative Übereinstimmung bei N-dotierten Schichten mit effektivem Kovalenzradius

→quantitative Übereinstimmung bei Al-dotierten Schichten

Kritische Schichtdicke bei der 4H-SiC Homoepitaxie Modell von Matthews und Blakeslee¹

$\mathbf{h}_{\mathbf{f}}(\varepsilon) < \mathbf{h}_{\mathbf{krit}}$

- elastische Verspannung
- keine Fehlpassungsversetzungen
- Versetzungen aus Substrat pflanzen sich fort

$h_{f}(\varepsilon) > h_{krit} (MB)$

- plastische Verformung
- Gleiten des TED-Segments in der Schicht
- BPD-Segment in Grenzfläche
 - = Fehlpassungsversetzung
- an Oberfläche nicht nachweisbar

Kritische Schichtdicke bei der 4H-SiC Homoepitaxie Vergleich von Experiment und Theorie (MB-Modell)

Folie 20 Birgit Kallinger

- Epitaxie ist ein Verfahren von großer technologischer Bedeutung
- Fehlpassung ist ein grundlegendes Thema bei der Epitaxie
- Fehlpassung bei der Heteroepitaxie (III-Nitride auf GaN):
 - Gitterfehlpassung im Prozentbereich
 - Thermische Fehlpassung ~ 100x geringer
 - Temperaturabhängiger Spannungszustand
- Fehlpassung bei der Homoepitaxie (4H-SiC):
 - Dotierungsinduzierte Fehlpassung
 - Kritische Schichtdicke bei dicken Schichten!

© Fraunhofer IISB / Kurt Fuchs

