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Abstract—We present a BTI compact model that is able to
account for the complex BTI stress patterns encountered in
complex electronic circuits. Such stress patterns are composed of
various blocks corresponding to different circuit operation states,
protocol modes or input conditions, and the blocks repeat within
a composite, hierarchical structure. The present work extends
a previously introduced physics-based accurate NBTI modeling
while preserving its numerical efficiency. We provide insight
into some principal characteristics of BTI degradation under
hierarchical stress patterns, such as a non-trivial dependence
on multiple duty cycles. In particular, the NBTI degradation
can sensitively depend on the temporal sequence of NBTI stress
blocks, and building a model on just the average stress or on
stress histograms can be misleading. An SRAM cell example
demonstrates this method and compares the cell’s BTI failure
statistics for two different hierarchic-periods stress patterns.

I. INTRODUCTION

Circuit designs in advanced technologies require the accu-
rate prediction of bias temperature instability (BTI) margins.
This trend triggers the development of accurate BTI compact
models, addressing in particular BTI recovery and variability
[1–4]. Industry standards traditionally use power-law models
for time independent stress [5] and multiply duty factors for
digital patterns. Advanced digital-stress modelings introduce
capture-emission time (CET) maps and calculate the mean
degradation mostly analytically [6]. Their generalization to
analog stress [7, 8] takes into account the defect dynamics
beyond CET maps. Deeply scaled technologies show a strong
NBTI variability, the corresponding statistical distributions
[9, 10] were applied to an SRAM failure analysis under time-
independent BTI stress [11] with high resolution of the distri-
bution tails. A methodically independent approach calculates
the NBTI variability of an operational amplifier [12].

We aim at a BTI compact model for application in analog
and digital circuit design. This compact model accounts for
BTI recovery and BTI variability. It provides high-accuracy
degradation predictions and has a fast numerical implementa-
tion [12], permitting its coupling to Spice-type electric circuit
simulators. The model’s benefit are predictions about the BTI
drift and BTI variability of performance parameters for a par-
ticular circuit design after arbitrarily large (virtual) operation
times. It thereby assists a circuit designer in the preparation
of reliable circuits while reducing the costly overdesign.

This paper presents the generalization of NBTI compact
models from simple digital or analog periodic stress to stress
voltages with a complex periodic structure, such as encoun-
tered in complex electronic systems. Due to the particular

nature of NBTI recovery, the full information about the stress
pattern sequence (beyond stress histograms) is important to
correctly predict the NBTI degradation. We demonstrate this
method on the example of an SRAM cell and calculate its
failure statistics under BTI stress with periodically changing
profile.

II. BTI COMPACT MODEL

The Markov two-state model [3] accounts for interface-state
defects (double-well model) and (projected) oxide traps (non-
radiative multi-phonon model): each defect occupies either an
electrically neutral or a positively charged state (Fig. 1). The
latter contributes to the NBTI threshold voltage shift via a
modification of the oxide electric potential. We parametrize
our effective NBTI model from the statistical defect sampling
[13] for a 22nm technology [14], this provides the transition
rates (discretized in voltage and temperature space) and the
defect-specific step height for ∼ 3000 representative defects
(Fig. 2).

The two-state model defects undergo transitions between the
neutral state “1” and the positively charged state “2” with an
effective capture time τc and effective emission time τe. These
defect-specific times sensitively depend on the gate voltage
and temperature. The probability w(t) of being in state “2”
satisfies a first-order differential equation

ẇ(t) = a(t)w(t) + b(t), w(t0) = w0, (1)

its coefficients

a(t) = −
(
τ−1
e (t) + τ−1

c (t)
)
, b(t) = τ−1

c (t) (2)

inherit (from the analog gate-source voltage Vgs) the property
of taking continuous values. A fast solution algorithm [7]
rewrites w(t) as follows: the quantities

P1(t2, t1) = exp

(∫ t2

t1

ds a(s)

)
, (3)

P2(t2, t1) =

∫ t2

t1

ds b(s) exp

(∫ t2

s

dr a(r)

)
(4)

are arranged in the 2 × 2 matrix

P (t2, t1) :=

(
P1(t2, t1) P2(t2, t1)

0 1

)
, (5)

which propagates the solution from the initial time t0 to the
solution time t > t0,(

w(t)
1

)
= P (t, t0)

(
w(t0)

1

)
. (6)
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Fig. 1: Two-state model defects undergo transitions between a neutral state
“1” and a positively charged state “2” with an effective capture time τc and
effective emission time τe. These defect-specific times sensitively depend on
the gate voltage and temperature. The probability w(t) of being in state “2”
satisfies a first-order differential equation with time-dependent coefficients.

Notice that the matrices P (t2, t1) and P (t4, t3) in general
do not commute. This reflects the particular nature of the NBTI
recovery, where the full information about the stress pattern
sequence (beyond simple stress histograms) is important to
correctly predict the degradation.

The BTI-induced mean (in the sense of averaging about
stochastic processes) threshold voltage shift

∆Vth(t) =
∑

defectsj

ηj × wj(t) (7)

results from the contribution of all defects j, which is summed
with the defect-specific step height ηj as a weighting factor.
This method calculates the degradation and the NBTI variabil-
ity after an arbitrarily large stress time with little numerical
effort.

III. HIERARCHIC-PERIODICITIES STRESS

In many cases, complex digital or analog circuits gen-
erate complex gate-source stress voltages at the transistor
level. Such stress patterns are composed of various blocks
corresponding to different circuit operation states, protocol
modes or input conditions. These blocks repeat with complex
hierarchical periodicities. The present model is able to accu-
rately calculate the BTI degradation (including BTI variabil-
ity) resulting from such stress patterns. We demonstrate our
method on the simplest non-trivial pattern. More complicated
stress patterns (analog voltages, more pattern blocks, more
hierarchy levels, dynamic voltage/frequency scaling) can be
easily treated with the present methodology.
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Fig. 3: Stress voltage pattern with two hierarchic periodicities: a digital AC
pattern (period Tmic, duty cycle λmic) is periodically switched on/off with
period Tmac and duty cycle λmac. The phases of this stress signal are chosen
such that the maximum degradation ∆Vth occurs at the end of each Tmic
stress period (and not at any other time within one period). In this study, we
fix Tmic = 100ns and Tmac = 10h. We use two duty cycle scenarios A, B
(see main text), both have the same effective duty cycle λeff := λmic × λmac
but lead to very different aging.

The Vgs(t) pattern of Fig. 3 results from a FET exposed
to standard digital AC stress (period Tmic =100ns, duty cycle
λmic). Furthermore, the circuit is periodically switched on/off
with period Tmac =10h and duty cycle λmac. In this exam-
ple, we associate the microscopic periodicity with a pattern
inherent to the circuit operation, whereas the macroscopic
switching mimics a user interaction. The circuit designer will
be interested in the maximum ∆Vth occurring within each
stress period. Therefore, the present stress signal was chosen
to start with a recovery interval followed by a stress interval,
such that the largest ∆Vth occurs at the end of each Tmic period.

One might expect that an effective duty cycle
λeff := λmic × λmac sufficiently characterizes this BTI
stress pattern. However, we find that two stress scenarios
with equal λeff, namely

(A) λmic = 0.99, λmac = 0.50 and
(B) λmic = 0.50, λmac = 0.99,

lead to very different NBTI degradation: Fig. 4 shows the
normalized mean ∆Vth after 100 Tmac periods for a 22nm
pFET. Notice that
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Fig. 2: Our approach uses multi-state defects with statistically distributed properties. We illustrate the present 22nm defect dataset [14] by three capture-
emission-time maps relevant for digital-circuit studies. Our approach is not limited to digital applications, though.
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Fig. 4: Left: The stress pattern of Fig. 3 with multiple periodicities causes a non-trivial dependence of the NBTI degradation on the duty cycles λmic, λmac.
It cannot be described with just one “effective” duty cycle λeff = λmic × λmac. Instead, ∆Vth shows a sharp peak near λmic = λmac = 1. Apart from that,
∆Vth levels off, without a large slope, at λmac = 1. Right: Sections of the left plot: only λmic = 1 features the well-known “s-shape” duty cycle dependence.
The degradation data results from 100 Tmac periods and is normalized to ∆Vth(λmic = λmac = 1) ≈ 86mV.
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Fig. 5: 6T-SRAM schematic. We study the BTI degradation of the four pull-up
and pull-down FETs.

(a) the limiting cases λmic = 1 or λmac = 1 lead to the well-
known “s-shape” dependence [15],

(b) ∆Vth has a sharp peak at λmic = λmac = 1, and
(c) away from λmic = 1, the dependence on λmac is not s-

shaped: instead, it levels off near λmac = 1.

Notice furthermore that if the description of this hierarchical-

periodicities stress pattern in terms of λeff was sufficient, the
NBTI ∆Vth contour lines (blue lines in Fig. 4, left) would be
simple hyperbolas λmic = λeff/λmac, which in particular is not
true for larger λmic.

Technically, the application of many BTI compact mod-
els to stress voltages with complex periodicities is numeri-
cally highly challenging. In the present scheme, the matrix
P (t1, t0) mediates the solution of the two-state-model differ-
ential equation (1), and it satisfies the “composition property”
P (t2, t0) = P (t2, t1)P (t1, t0). The resulting simplification
P (nTmac, 0) = [PdACPoff]

n permits the efficient (and exact)
solution of the differential equation for hierarchic-periodicities
stress.

IV. APPLICATION TO SRAM

We apply the present method to the analysis of a 6T-SRAM
cell (Fig. 5) in a 22nm predictive technology model [16] plus
the corresponding MoRV NBTI defect characterization [14].
The FETs are 25nm long and 80nm (PU), 50nm (PG), 60nm
(PD) wide. Exposing the cell to the bit pattern Q(t) of
Fig. 3 generates a BTI drift of both the pull-up and pull-
down FETs, and results in a reduction of the cell’s read
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Fig. 6: NBTI degradation of the SRAM pull-ups under the bit pattern of Fig. 3. Left: ∆Vth probability density after 104 Tmac periods. Right (two plots):
∆Vth cumulative probability F after 1 and 104 Tmac periods. The PU1 (dashed line) and PU2 (solid line) degrade differently for λmic = 0.99, λmac = 0.5
(blue), whereas they age similarly for λmic = 0.5, λmac = 0.99 (red). In fact, the two red curves are practically indistinguishable in each of three the plots.
The plots on the left and on the right contain the same information.
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Fig. 7: The SRAM read-snm as a function of the pull-up FETs’ shifts ∆Vth,1 and ∆Vth,2, at decreasing read-phase power supplies Vdd (left to right).
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Fig. 8: SRAM read-snm probability distributions after 100 Tmac cycles. The
Fig.-3 stress scenarios A (solid line) vs. B (dashed line) generate a vastly
different SRAM aging, despite coinciding λeff.

static noise margin (rsnm, [17]). To be specific, the bit state
Q = V PD1

gs corresponds to the gate-source voltage of PD1
and takes the values Vh = Vdd or Vl = 0. As a result,
Q = V PD1

gs = −V PU2
gs and Q̄ = Vdd − Q = V PD2

gs = −V PU1
gs .

We choose Vdd = 2Vdd,nom to be twice the nominal Vdd and a

temperature of 170◦C, such that high BTI stress is generated.
Since currently no PBTI two-state-model defect sampling

is available, we use the modified NBTI data (with step
heights multiplied by −1/2) as an estimate in the present
demonstration.

Using our modeling in combination with a Monte Carlo
approach (106 FET samples), we calculate the pull-up FETs’
distributions of the threshold voltage shift resulting from NBTI
variability, see Fig. 6. Whereas for scenario B (Sec. III) both
SRAM pull-ups see the same stress and age equally (red
curves), scenario A leads to a strongly asymmetric degradation
of these two FETs (blue curve). This qualitative difference has
immediate consequences on the SRAM stability and originates
from two facts: on the one hand, PU1 is exposed to quite
different NBTI stress in the two scenarios (this is an effect of
really switching the circuit on/off on the macroscopic scale).
On the other hand, PU2 ages differently in both setups because
of the λmic−λmac asymmetry discussed in the previous section
(notice the difference in the two solid lines in the Fig.-6 plots).

Via a Spice circuit simulation, we translate the ∆Vth distri-
butions into distributions for the cell’s read static noise margin.
Fig. 7 shows the rsnm as a function of the pull-up ∆Vths for
several inverter power supplies Vdd. We thus obtain for the
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Fig. 9: Read-snm cumulative probability F for different read-Vdd (left to right) and for increasing number of stress periods in the Fig.-3 pattern (bottom-up).
Stress patterns with similar effective duty cycle show a different behavior (solid line: λmic = 0.99, λmac = 0.5 vs. dashed line: λmic = 0.5, λmac = 0.99).
In particular, there are substantial deviations in the small-snm tail and hence in the cell failures.
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Fig. 10: Small-rsnm distribution tail for various ts and Vdd (conventions:
Fig. 9). The probability F(1mV) of failing devices at 1mV SRAM noise can
differ by a factor of 10 . . . 100 between the Fig.-3 scenarios A (solid), B
(dashed).

hierarchical-periods stress the rsnm distributions of Figs. 8 and
9, for several combinations of the power supply Vdd (during
rsnm testing) and of the stress time ts. As expected from
Fig. 6, the two scenarios A (solid lines) vs. B (dashed lines)
result in very different rsnm distributions. In particular, there
are substantial deviations in the small-rsnm tail and hence
in the device failures. For instance, after 36ks stress and at
Vdd =0.45V plus 1mV circuit noise (Fig. 10), 0.1% of the
SRAM cells fail in scenario A (asymmetric aging) as opposed
to 0.001% failures in scenario B (symmetric aging).

V. CONCLUSIONS

The present BTI study demonstrates how to exactly treat
complex realistic stress patterns within a physically validated
compact model. Due to the particular nature of BTI recovery,
conventional stress histogram approaches (e.g. based on λeff
in the digital case) lack important periodicity information
to correctly predict the BTI degradation of a pFET under
hierarchical-periods stress. Instead, an accurate simulation
requires to take into account further information about the
hierarchical periodicities (period durations, duty cycles, block
sequence). The predicted aging deviations in the given SRAM
example emphasize the relevance of the presented modeling.
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