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Abstract

On July 24, 2010, 21 people died and more than 500 were injured in a stam-
pede at the Loveparade, a music festival, in Duisburg, Germany. Although
this tragic incident is but one among many terrible crowd disasters that oc-
cur during pilgrimage, sports events, or other mass gatherings, it stands out
for it has been well documented: there were a total of 7 security cameras
monitoring the Loveparade and the chain of events that led to disaster was
meticulously reconstructed.

In this paper, we present an automatic, video-based analysis of the events
in Duisburg. While physical models and simulations of human crowd be-
havior have been reported before, to the best of our knowledge, automatic
vision systems that detect congestions and dangerous crowd turbulences in
real world settings were not reported yet. Derived from lessons learned from
the video footage of the Loveparade, our system is able to detect motion
patterns that characterize crowd behavior in stampedes. Based on our anal-
ysis, we propose methods for the detection and early warning of dangerous
situations during mass events. Since our approach mainly relies on optical
flow computations, it runs in real-time and preserves privacy of the people
being monitored.
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Year Place Deaths
2010 Loveparade, Duisburg 21
2010 Water Festival, Phnom Phen >380
2006 Stadium, Yemen 51
2006 Pilgrimage, Mena 363
2005 Religious Procession, Bagdad >640
1999 Subway Station, Minsk 53
1990 Pilgrimage, Mena 1426
1989 Stadium, Sheffield 96
1982 Stadium, Moscow 340

Table 1: Examples of recent deadly stampedes and crowd disasters (see [1]).

1. Introduction

Mass events are (and always have been) popular in human societies all
over the world. Nowadays, typical examples include sports events, festivals,
or concerts. Due to increasing populations and higher mobility, mass events
attract ever growing numbers of visitors and adequate safety measures are
becoming more and more important. Nevertheless, despite all precautions
and the use of technology such as video surveillance, deadly stampedes and
crowd disasters still occur rather frequently (see Table 1).

Work towards the prevention of crowd disasters is often based on experi-
ments and the analysis of video footage from crowd catastrophes. Researchers
try to understand the mindset of panicked people and develop physical mod-
els in order to simulate human behavior in crowded environments, in partic-
ular to devise evacuation strategies. Using such simulations, one can identify
and defuse places in an environment that are potentially dangerous. For in-
stance, a study of video footage from a crowd disaster in Mina during the
annual muslim pilgrimage by Helbing et al. [2] led to structural alteration of
the site and helped to re-organize the pilgrimage. Indeed, since then, there
has not been another deadly stampede during the Hajj.

However, human reactions and mass behavior are often unpredictable,
in particular, whenever alcohol consumption is an integral part of a mass
events. Moreover, gathering areas are often large and become unmanageable
if there are many thousands of visitors. In cases like these, automatic video
surveillance systems may help to estimate the visitor density and to detect
indicators of critical situations. This can buy crucial time in which security
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personnel can be dispatched and streams of pedestrians can be redirected.
In this paper, we analyze video footage of the crowd disaster at the

Loveparade 2010 in Duisburg, Germany. During that event, 21 people died
and more than 500 people were injured in a stampede in a passage way that
was too narrow to accommodate thousands of visitors. In our experiments,
we observe critical motion patterns of the crowd that manifest shortly be-
fore the deadly congestion occurred. These motion patterns are in fact very
characteristic for human behavior in congestion situations and can inform
the automatic detection of over-critical densities of pedestrians.

We present a system for motion behavior analysis of masses that computes
dense optical flow fields which can be calculated in real-time. By using optical
flow, our system avoids the need for detection and tracking of individual
pedestrians which is often impossible due to inappropriate camera viewpoints
or occlusions due to the large number of people. Based on the results obtained
from this approach, we propose methods to automatically detect congestions
and shock waves. To the best of our knowledge, this is the first vision-
based system that robustly detects dangerous situations like overcrowding
and crowd turbulences in real-time.

1.1. Related Work

Pedestrian dynamics have been studied intensively for more than 40 years.
In the past, empirical studies were mainly conducted in order to support plan-
ning of urban infrastructure, for instance, in the design of pedestrian facilities.
More recently, knowledge about crowd dynamics has been used to improve
evacuation strategies in emergency situations and to prevent congestions and
overcrowding (see [3] for an overview). Simulations are a standard tool in the
study of self-organizing effects of large groups of pedestrians. Physical mod-
els modeling pedestrians based on the analogy to gases, fluids or granulates
have been developed in order to account for individual behavior. The social
force model [4] as well as cellular automata [5] which both model pedestrian
dynamics on a microscopic level are among the more widely used approaches.

The social force model assumes socio-psychological and physical forces
that influence human behavior. It captures interactions between nearby
pedestrians as well as effects caused by the environment by integrating repul-
sive and attractive effects into a force model that represents crowd behavior.
In [6], Helbing et al. extend the basic model towards effects of escape panic
by adding further random forces. Models based on cellular automata [5] rep-
resent the environment as a grid and superimpose static and dynamic force
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fields that alter transition probabilities of the pedestrians moving on the grid.
These fields model obstacles and regions being more attractive to pedestrians
as well as influences of other pedestrians. This modeling approach has also
been applied to evacuation situations [7]. Both models are frequently used in
simulations and, indeed, they were shown to reproduce several phenomena
that can be observed in crowds (see section 1.2).

In addition to simulations, experimental studies are conducted in order
to understand human behavior and improve existing physical models. Pa-
rameters such as crowd density, speed, flow, and crowd pressure (see [2, 8]
for definitions) are determined either manually [9] or by means of digital im-
age processing [10, 11]. Usually the resulting representations are based on
experimental data and do not consider real data. Moreover, video-based ex-
periments are typically carried out using top-view cameras in order to avoid
occlusions and to facilitate automatic video analysis. Techniques that are
applied in this context usually detect and track individuals but there also
exist holistic approaches that make use of optical flow features.

Over the years, various visual tracking approaches have been reported
that were specifically developed for tracking pedestrians in crowded scenes
[12, 13, 14]. More recently, ideas adopted from simulations of pedestrian dy-
namics were incorporated into the design of visual tracking systems. Ali and
Shah [15] present a tracking framework inspired by the cellular automaton
model [5]. They automatically calculate force fields that integrate informa-
tion on human behavior as well as the locations of obstacles and important
regions such as exit doors. In their previous work [16], Ali and Shah pro-
pose a flow segmentation framework which enables them to detect changes
in flow patterns. Mehran et al. [17] adopt ideas from the social force model
and estimate interaction forces in order to detect abnormal events. Both
these works do not detect and track individuals. Instead, they apply the
technique of particle advection that places particles onto a grid and moves
them according to the underlying optical flow field. However, in our case,
particle advection is not applicable due to the the camera view point and the
resulting occlusions in situations of high pedestrian density.

1.2. Phenomena observed in Dense Crowds

At mass gatherings such as concerts, sports events or religious proces-
sions the density of the crowd easily becomes extremely high; studies report
densities up to 11 people per square meter [18]. High pedestrian densities
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usually come along with typical patterns of mass behavior such as stop-and-
go waves or crowd turbulences [1]. These motions patterns in a crowd are
first indicators of dangerous overcrowding that may get out of control and
entail disaster (see Table 1).

In situations of high pedestrian density, jams and bottlenecks are build-
ing up rapidly and moving and passing becomes uncoordinated. In studies
of pilgrim flows in Makkah [1], stop-and-go waves have been observed even
in areas without any obvious bottlenecks. These waves are characterized by
intermittent flow of pedestrians and can last over a long period of time (over
20 minutes). Essentially, stop-and-go waves show alternating forward pedes-
trian motion and backward gap propagation. They occur when the pedestrian
density is critically high and unobstructed pedestrian flow becomes impossi-
ble [2]. Stop-and-go waves are first signs of critical and dangerous pedestrian
densities. Researchers observed transitions from stop-and-go waves to even
more critical motion patterns called crowd turbulence. This effect occurs in
situations of extremely high densities and is characterized by movements into
all possible directions. It is caused by people moving involuntarily inducing
sudden movements of other people nearby. People are pushed around and
fall down. They are trampled down and, moreover, they turn into obstacles
for others leading to more stumbling people. As a result, most people die by
suffocating due to dangerous pressure of up to 4500 N/m on their chests [1].

1.3. Outline

In the following section, we present background information on the Lovepa-
rade stampede. We describe the festival area and the locations of the surveil-
lance cameras and give a detailed account of the incident. In section 3, we
describe video analysis experiments carried out using the security camera
footage recorded during the Loveparade. We use our findings in section 4
to develop a method for the automatic detection of situations of dangerous
congestion. In section 5, we present an approach to detecting and tracking
of shock waves that propagate through the crowd. A conclusion will close
this contribution.

2. Loveparade Stampede

On July 24, 2010, the Loveparade in Duisburg ended in a terrible stam-
pede where 21 visitors died and more than 500 were injured. As of this
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writing, many questions as to the reasons of this catastrophe remain unan-
swered. However, it is unquestionable that at some locations of the festival
area there were too many people present to guarantee their safety. At the
main entry ramp to the festival area, the density of visitors was temporarily
so extremely high that people who fell were trampled down by other visitors.
All victims were crushed to death or suffocated due to enormous pressure on
their chests.

2.1. Festival Area

The Loveparade took place at the compound of the former freight station
of Duisburg which is located near the city center. It is situated about 2 km
from the main station and lies between railway tracks and a highway. The
former freight station has an area of about 230 000 square meters and about
half of the total area was accessible for the visitors [19]. Figure 1 shows
an aerial view of the festival area during the event and Figure 2 shows a
schematic view of the compound. During the event, there were two entries
for the visitors: The eastern tunnel which is about 250m long and the western
bridge area. Both meet at the main ramp which simultaneously served as
the main entry to- and the exit from the festival area. Another smaller exit
ramp did exist but had been closed by the police during the event.

Figure 1: Aerial view of the festival area [20].

Figure 2: Schematic view of the festival area and locations of surveillance cameras [21].

2.2. Surveillance Cameras

The festival area was continuously monitored by seven cameras. Figure
2 shows the locations of each camera. Exemplary screen-shots of all cameras
can be seen in Figure 3. The entrance area in the eastern tunnel and the
western bridge area were monitored by 4 cameras (referred to as camera 13
– 16) where three of them were static cameras (camera 14–16). Cameras 4,
5 and 12 were non-static cameras and did monitor the main festival area in
the upper part. Video footage recorded by all cameras can be downloaded
from [21]. In order to protect the privacy of the victims, video recordings are
only available for the time between 13:30h and 16:40h.
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2.3. Chronology
In the following, we summarize the chronology of the Loveparade. For a

full account see [21].
The festival area is opened for visitors at 12:00h and the festival begins

at 14:00h. 30 minutes later the number of visitors starts to increase at the
main entry/exit ramp. At 15:00h, the security guards at the tunnel entrances
close some access control points thus reducing the number of visitors in the
western bridge area. At 15:50h, a first police cordon is formed in the western
bridge area. At the same time, the small exit ramp is closed. A crowd in front
of the small exit ramp results from visitors trying to leave the area. Between
15:50h and 15:57h a second police cordon is formed at the entrance of the
eastern tunnel. At 16:00h, the western access control points are closed, so
that only a few visitors are visible in the western bridge area. Two minutes
later, the access control point is re-opened resulting in a sudden increase of
the number of visitors in the western bridge area. A crowd starts to form
behind the police cordon which has been established near the small exit ramp
in the western bridge area. At the same time, a third police cordon is built
on the main entry/exit ramp stopping those visitors that want to leave the
festival area as well as arriving visitors that want to enter the main festival
area. Only a few visitors are visible in the lower part of the main ramp,
whereas in the western bridge area the crowd increases. Starting around
16:09h, visitors being stopped by the third police cordon create a bottleneck
on the main ramp. At 16:13h, the small exit ramp is opened as an entry
ramp. Due to the police cordon in the western bridge area the large amount
of visitors can hardly move. Some of the visitors begin to climb a fence.
At 16:15h the second police cordon in the eastern tunnel dissolves and the
number of visitors in the lower part of the ramp increases. Five Minutes
later, the first police cordon in the western bridge area dissolves as well. The
huge crowd that was blocked by this cordon, suddenly moves to the lower
part of the ramp where they meet the visitors from the eastern tunnel. The
visitor flows from both entries increase, but due to the third police cordon,
they cannot enter the festival area. Thus, the pressure on the third police
cordon increases and it is dissolved at 16:24h. Some visitors begin to escape
by climbing a small flight of stairs at the bottom of the ramp as well as light
poles. A fourth police cordon is formed at the upper part of the main ramp
increasing the pressure in the lower part. Starting from 16:40h, the situation
gets out of control. More and more people try to escape by climbing the
stairs and light poles. In the following, 21 visitors die, more than 500 visitors
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are injured.

3. Automatic Video Analysis

We conducted a series of video analysis experiments in order to determine
to which extent typical motion patterns that characterize different phases of
critical crowd behavior can be extracted automatically. For most of the re-
sults reported here, we concentrate on camera 15 (see Figure 3) which is a
static camera that was located in the western bridge area. Next, we describe
our feasibility experiments. Then, based on our findings, we develop meth-
ods for the detection of potentially dangerous situations in crowds. Since
real-time capability is pivotal in our application domain, we focus on the
automatic analysis of motion vectors. In contrast to traditional approaches
to real-time surveillance, we did not attempt to detect and track individual
people because the high densities of pedestrians and the challenging camera
viewpoints that characterize our setting would necessitate considerable com-
putational efforts. Instead, we consider dense optical flow fields to determine
major motion patterns and motion directions in the crowd. In addition to
computational efficiency, this also guarantees the privacy of the people being
monitored.

3.1. Histograms of Dense Optical Flow Fields

In our first experiment, we investigate the utility of dense optical flow
fields as a feature to represent global crowd movements. For optical flow
computation, we apply the method proposed by Farnebäck [22] who uses
quadratic polynomials to estimate translations of a local neighborhood and
determines motion vectors from polynomial expansion coefficients. Figure 4
shows an example of the resulting optical flow fields for camera 15.

Given the dense optical flow field for a frame of a video sequence, we
compute two-dimensional histograms (36 · 100 bins) of motion magnitude
and motion direction of the flow vectors of the entire frame. Next, we cluster
all of the resulting two-dimensional histograms using the k-means algorithm.
Figure 5 shows results for k = 5.

Figure 5(a) depicts how the individual frames of the video footage of cam-
era 15 are assigned to different clusters. Up until about 15:50h, most frames
(colored in blue) correspond to the cluster whose centroid is shown in Figure
5(b). This cluster of flow vector histograms represents a general motion to
the right (250◦) of a rather high magnitude: large numbers of people are
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marching towards the festival area. Shortly after 16:20h, however, all his-
tograms are assigned to the cluster (colored in green) whose centroid is shown
in Figure 5(c). This cluster of motion vectors histograms is characterized by
weak motion oscillating between right (270◦) and left (90◦). This pattern is
indicative of congestion where there is no globally dominant motion direction
anymore; instead of moving forward the crowd has come to a halt and people
are stepping from one foot to the other in order to keep their balance.

From the results of these initial feasibility experiments, we conclude the
2D histograms that summarize magnitude and direction of optical flow vec-
tors provide a suitable means to characterize basic motion patterns and phase
transitions between general crowd behaviors.

3.2. Extracting Basis Histograms

In our second experiment, we consider complex motion that can be ob-
served at a mass event as the superposition of various motion behavior per-
formed by many different people. Obviously, it is very difficult or even im-
possible to extract motion behavior of every single human visible in the
scene. Thus, we aim at extracting motion behavior of groups of people
that perform similar actions. Thereto, we examine complex motion patterns
and decompose them into basic motion patterns. Since motion varies over
time and space, we divide the video sequence both spatially and temporally.
We superimpose a grid of cells over the video frames where grid cells to-
wards the back of the scene are smaller in order to account for perspective
distortions. For each cell of the grid, we again compute two-dimensional
histograms (36 · 100 bins) of motion direction and magnitude for the whole
video sequence. Then, we apply Non-Negative Matrix Factorization (NMF)
[23] to sets of histograms obtained during time intervals of 30 seconds. Non-
Negative Matrix Factorization and other matrix decomposition methods have
successfully been applied to action recognition [24, 25], for example. By this
means, complex motion patterns can be decomposed into a set of simpler
motion patterns. The set of m optical flow histograms is regarded as an
n × m matrix V in which all entries are non-negative and where each col-
umn vector corresponds to a flattened histogram of size n. NMF finds an
approximate factorization of V as V ≈ WH with multiplicative update rules
in an iterative procedure [23]. In our case, each column of W represents a
basis histogram of motion magnitude and motion direction. In particular,
we decompose complex histograms of magnitude and motion direction into a
set of five basis histograms. Each histogram describes motion patterns that
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are characteristic for certain parts of the scene as well as for particular time
intervals.

Figures 6 to 8 show basis histograms for three different time intervals:
The basis histograms shown in Figure 6 represent typical motion patterns at
14:40h. At that time, the flow of pedestrian flow is normal, visitors proceed
to the main entry without encountering major obstacles. In the histograms
this is reflected by a sharp peak corresponding to a motion direction of about
250◦and a magnitude of 3 to 4 pixels.

Figure 7 shows basic motion patterns at 15:53h shortly after the police
cordon had been established. Now, most visitors are blocked and just a few
continue moving towards the festival area. In the extracted basis histograms,
a distinct dominant motion is not visible anymore.

On the other hand, Figure 8 shows two motion patterns that are charac-
teristic for the general crowd motion at about 16:28h when the visitor density
is very high and causes congestion. The basis histogram in Figure 8(a) cor-
responds to rightward motion (270◦); the histogram in Figure 8(b) reflects
leftward motion (90◦). Indeed, similar motion patterns showing both motion
to the right and to the left can be observed for the whole period between
16:22h and 16:40h when then visitor density is over-critically high.

Given all the resulting basis histograms, we cluster them using the k-
means algorithm (k = 5) and, for each time interval of 30 seconds, we de-
termine the nearest cluster center. Figure 9(a) shows the cluster assignment
for the entire video sequence. In time intervals of normal pedestrian flow,
we observe motion patterns with a distinct peak at approximately 250◦and
a magnitude of about 3 to 4 pixels (see Figures 9(b) and 9(f)). At 15:50h
when the first police cordon is formed, no distinct motion is visible in the
corresponding histograms in Figures 9(c) and 9(e). Contrarily, the motion
patterns after 16:22 are composed of rightward and leftward motions as de-
picted in Figure 9(d).

4. Detection of Congestions

The experiments described in section 3 reveal several phases of charac-
teristic motion patterns: In the first phase (between 13:40h and 15:50h),
we mainly observe motion directions of approx. 250◦and a magnitude of 3-4
pixels. This pattern corresponds to movement of visitors into the direction
of the main entry. The second phase begins at 15:50h when the first police
cordon is formed in the western bridge area. At that time, we cannot observe
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any motion into a distinct direction anymore. The last phase begins at about
16:22h shortly after the police cordon has been dissolved. The large crowd
that was previously blocked from entering the festival area suddenly moves
forward and quickly jams. In this congestion situation, the pedestrian den-
sity is very high and the only type of motion visible is to the right (270◦) and
to the left (90◦) corresponding to a situation where people are stepping from
one foot to the other in order to keep their balance resulting in oscillating
motions.

In fact, such oscillating motions of a crowd are frequently observed in
congestion situations and they result from the upper bodies of the people
in the crowd swinging rightwards and leftwards. Liu et al. [10] reported
experiments with several groups of pedestrians moving with different speeds
from 0.26 m/s to 1.72 m/s. Their movements were filmed from above and
the authors generally observed lateral oscillation in the trajectories. This
is due to the fact that people do not move along a straight line, instead,
it is a characteristic of human gait, that they tend to swing laterally. Liu
et al. [10] also observed that while the amplitude of the lateral oscillation
is higher for lower speeds, the frequency increases for higher speeds. The
authors found linear relationships between the velocity and the amplitude as
well as between the velocity and the frequency.

4.1. Feature for Congestion Detection

Given these observations and the findings of our feasibility experiments,
we propose a method for the automatic detection of dangerous congestion
situations. First, we compute dense optical flow and corresponding two-
dimensional histograms of motion direction and magnitude. Then, we aver-
age the histogram over short time intervals. As described above, histograms
that are indicative of congestion situations show small motion along two
major directions (rightwards and leftwards in our case) which reflect lateral
oscillation of the people’s upper bodies. Such histograms show a high de-
gree of symmetry (see Figure 9(d)) so that we measure the mirror symmetry
of an optical flow histogram and consider the resulting value a feature for
congestion detection.

We compute the symmetry measure by summing up the the absolute
differences between the histogram and a flipped version of itself. As described
above, we subdivide each frame into a set of cells with cells in the background
of the scene being smaller to account for effects of viewing perspective. Let
Ht,c(dir,magn) be the two-dimensional histogram of direction and magnitude
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of cell c at time t. Then, denoting by Ĥt,c(dir,magn) the flipped version of
Ht,c(dir,magn), we compute

symt,c =
∑

dir,mag

∣∣Ĥt,c(dir,magn)−Ht,c(dir,magn)
∣∣. (1)

Accordingly, low values of symt,c indicate that Ht,c(dir,magn) is highly
mirror-symmetric and is indicative for a congested area. Figure 14 shows
the result of a corresponding analysis for camera 15. To create this plot, we
summed the values of symt,c for the cells in the scene foreground.

4.2. Sequential Change-Point Detection

From the graph in Figure 14, one can clearly distinguish different phases
of crowd motion. However, the scale of the values of symt,c is not clear: It
was stated above, that low values indicate that the optical flow histograms
are highly mirror-symmetric which is indicative for congestions. But the scale
depends on different factors, such as the camera view point, the number of
people visible in the scene as well as the environment.

In order to overcome this problem, we learn typical values of symt,c and
detect deviations for identifying anomalies. Thereto, we apply a sequential
change-point detection algorithm enabling us to detect unusual events as
well as congestions in particular. The method proposed by De Oca et al. [26]
extends the conventional cusum algorithm [27]. It is a non-parametric cusum
algorithm that allows for distributions varying in time and uses historical
data for obtaining suitable thresholds above which an alarm is raised. We
extend this algorithm to compute an additional measure that characterizes
the severity of an alarm.

Let Y denote the value of symt,c. Now, consider a sequence of observa-
tions {Yi}Ni=1. We use previous observations {Yj}i−kj=i−k−l to estimate a ref-
erence distribution where k is a fixed time interval and l is a fixed number
of historical observations that are used for estimating the reference distri-
bution. Next, we denote the upper and lower α-percentiles of the reference
distribution as Q(α) and Q(1− α), respectively, where α is specified by the
user and controls the degree a deviation from the reference distribution is
considered as critical. See Figure 10 for an illustration.

The cusum algorithm continuously accumulates deviations of incoming
observations from the reference distribution:
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S+
i = max{0, S+

i−1 + Yi −Q(α)}, S+
0 = 0

S−i = max{0, S−i−1 +Q(1− α)− Yi}, S−0 = 0
(2)

It raises an alarm if either S+
i > Θ or S−i > Θ, where in the first case,

we detect an upward shift of the signal and a downward shift in the latter
case. The threshold Θ is calculated from the reference distribution as follows:
Suppose that the sequence of observations is drawn from the reference distri-
bution, that is, no anomaly occurs. Using a bootstrap resampling method,
Θ is selected so that the probability of a false alarm is equal to γ, a param-
eter specified by the user. For that purpose, M sequences are sampled from
the reference distribution. For each sampled sequence m, cusum statistics
according to equation 2 are computed and max{S+

sampled,m, S
−
sampled,m} is de-

termined. Next, for each sampled sequence m, we select the maximum value
of max{S+

sampled,m, S
−
sampled,m} and compute the threshold Θ as the (1 − γ)-

percentile from these maximum values.
Whenever either S+

i or S−i exceeds the computed threshold Θ, we raise an
alarm (see Figure 11). De Oca et al. [26] also propose a method for detecting
the end time of an alarm. They apply a slope testing technique for detecting
a downward trend in the cusum statistics which indicates that the deviations
from the reference distribution become smaller: Without loss of generality,
we assume that S+

i exceeds Θ at time a (The same rationale holds for S−i .).
Then, a linear regression model is continuously fitted to a sliding window of
cusum values {S+

i }ni=n−ν+1 for n = a, a + 1, . . . and ν being a fixed size of
the sliding window, see Figure 12. The end time of an alarm is detected,
when the slope of the linear regression model is less than or equal to zero.
Then, cusum statistics S+

i or S−i , respectively, are set to zero. Additionally,
we propose to measure the severity of the raised alarm as a value L ∈ [0 . . . 1]
by computing the angle of the regression line in degrees and dividing it by
90◦. This is motivated by idea that the slope of the linear regression model
of the cusum statistics S+

i (or S−i , respectively) depends on the deviation
of the current observation Yi to the reference distribution: The higher the
deviation is compared to the reference distribution, the larger the slope of
the regression line is. If L is near to one, the slope is large and the situation
is considered to be very critical.

In particular, congestions are characterized by low values of symt,c as
described above. Thus, an alarm raised by the system is very severe and
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may indicate a congestion, if L is near to one and S−i exceeds the threshold
indicating that symt,c decreases due to optical flow histograms becoming
more and more mirror-symmetric. Section 6 gives results obtained from
video sequences showing congested areas.

5. Detection of Crowd Turbulences

In areas of extremely high pedestrian density, the movement of a per-
son affects other nearby people. Shock waves might occur and propagate
through the crowd. Situation like these are extremely dangerous since peo-
ple cannot control their motion anymore but are moved by the crowd; people
who loose their balance and fall down in a shock wave typically get crushed
and suffocate.

The video footage from the Loveparade shows short sequences of shock
waves in the vicinity of the main entry which was monitored by camera 13
(a non-static camera). Shock waves as they can be seen in the video footage
are characterized by a sudden increase of the magnitude of the optical flow
motion vectors as well as a high standard deviation of the magnitude of
flow vectors as some people in a local region are already pushed by the
wave whereas other nearby people do not move. Moreover, since several
people in a local neighborhood move into the same direction, the standard
deviation of local motion directions σdir is small. Therefore, in order to
accomplish the automatic detection of shock waves, we divide the frame into
C cells. For each cell c and each time t, we compute the average magnitude of
optical flow motion vectors µmag,t,c, the standard deviation of the magnitude
of optical flow motion vectors σmag,t,c and the standard deviaton of motion
directions σdir,t,c. As described before, shock waves are characterized by a
high magnitude and a high standard deviation of motion magnitudes as well
as a small standard deviation of motion directions. Hence, we also compute

a value pt,c =
µmag,t,c · σmag,t,c

σdir,t,c
for each cell c and each timepoint t. In those

cells of a frame where a shock wave is observed to propagate, pt,c will be
high. In order to normalize the feature pt,c, we compute µrow,t, the average
value of all pt,c values in a row as well as the standard deviation σrow,t of all
pt,c values in a row. Then, we normalize each pt,c by subtracting the mean
value of the corresponding row and dividing by the standard deviation all
pt,c values in the row:

pnormt,c =
pt,c − µrow,t

σrow,t
(3)
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Now, we apply the sequential change-point detection algorithm described
in section 4.2 to learn typical values of pnormt,c for each cell c and detect de-
viations from that value in order to detect shock waves. Figure 13 shows an
example of automatically detected shock wave regions colored in red. Here,
in two cells near the left border of the frame, a shock wave can be observed.

6. Results

6.1. Congestion Detection in the Loveparade Video Footage

We tested the approach to detect unusual events and congestions de-
scribed in section 4 on video footage from camera 15. Figure 14 shows the
development of symt,c measuring the mirror symmetry of the optical flow
histograms. To create this plot, we averaged histograms of optical flow over
a time period of 10 seconds and summed the values of symt,c for the cells
in the scene foreground. We automatically detect change-points in an online
manner using the cusum algorithm presented in section 4.2. Here, we use
l = 90 observations of historical data to estimate a reference distribution
which corresponds to a time interval of 15 minutes whereas k is set to 30
observations (= 5 minutes). We set α, the parameter to control the degree a
deviation from the reference distribution is considered as critical, to 0.95 and
γ which controls the probability of false alarms to 0.1. Next, the parameter
ν used in the detection of the end time of the alarm is set to 8 and M spec-
ifying the number of sampled sequences for computing a suitable threshold
is set to 100. Alarms that have been raised by our system are colored in red,
if the signal is at a low level, whereas a jump to a high value is marked in
green. In the lower part, the alarm level L is depicted which measures the
severity of the alarm.

Comparing the automatically detected alarms with the video footage re-
veals that seven out of ten alarms correspond to anomalies in the video, e.g.
ambulances or police cars crossing the scene. Figure 14 gives interpretations
for these alarms. In particular, at about 16:27 the system raises a severe
alarm (L > 0.7) and reports low values of symt,c which is indicative for a
congestion. In fact, at this time point the crowd is densely packed and has
come to a halt. In this situation, our system would have detected a very crit-
ical situation and alarmed the security personnel to take necessary actions
in order to prevent a deadly stampede.

Only two false alarms at the beginning of the video recordings are reported
which can be explained by the fact that our system has not yet integrated
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enough observations of normal crowd behavior. A third false positive alarm
is raised at 16:17, but has a low severity (L = 0.1) and lasts for just a few
seconds.

6.2. Congestion Detection in the Hermes Dataset

We also tested our approach on a dataset recorded by the Hermes project
[28] under laboratory conditions. Here, pedestrians walk through a corri-
dor with a bottleneck at the end of the corridor. The scene is recorded by
two overhead cameras with a small overlapping field of view, see Figure 15.
The camera viewpoint differs significantly from the camera viewpoint of the
Loveparade videos.

The feature for congestion detection described in section 4.1 has been
designed to capture lateral body oscillation of people that are going towards
the camera by measuring the mirror symmetry of optical flow histograms.
However, due to a different viewpoint in the Hermes dataset, lateral body
oscillation of pedestrians do not result in leftwards and rightwards motion.
As a consequence, we do not make use of the original feature for congestion
detection (section 4.1). However, from an overhead viewpoint, we can di-
rectly make use of the magnitude of optical flow motion vectors to estimate
the velocity of the pedestrians. Thus, we adapt the feature for congestion
detection by computing the center of mass of the two-dimensional optical
flow histogram where the histogram is obtained by averaging optical flow
histograms over a time interval of one second. Let mdir,mag,t denote the
histogram value (or the mass) of the histogram bin with direction dir and
magnitude mag at time t. The center of mass (cdir,t, cmag,t) of the histogram
is computed as the average of the histogram bins weighted by their masses:

cdir,t =

∑
dir,magmdir,mag,t · dir∑

dir,magmdir,mag,t

(4)

cmag,t =

∑
dir,magmdir,mag,t ·mag∑

dir,magmdir,mag,t

(5)

which can be simplified to

cdir,t =
∑

dir,mag

mdir,mag,t · dir (6)

cmag,t =
∑

dir,mag

mdir,mag,t ·mag (7)
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since the optical flow histogram is normalized and, hence,
∑

dir,magmdir,mag,t

sums up to 1. Now, we take cmag,t as a feature for congestion detection for
topview cameras. Low values of cmag,t indicate that the velocity of the people
is low which might be indicative for a congestestion.

Figure 16 shows two optical flow histograms obtained from the Hermes
dataset. The center of mass is marked in red. The histogram in Figure 16(a)
was computed at a timepoint, when people were moving fast. Here, cmag,t
has a value of 4.5. Contrarily, the histogram in 16(b) corresponds to slow
motion and cmag,t = 1.06.

Figure 17(a) shows the development of cmag,t over time for all cells of
camera 1. See Figure 15(a) for the locations of the cells. One can easily
identify different phases in this plot. After approximately 18 seconds, people
enter the camera’s field of view. They are going quite fast which results
in a high value of cmag,t. This value decreases to a low value at timepoint
00:40 min when the corridor is congested. This phase of low velocity lasts
until timepoint 01:50 min (for cell 0) or 02:20 min (for cell 7), respectively,
when people leave the field of view of camera 1. Note the time offset of the
curves for different cells.

Now, we apply the algorithm described in section 4.2 to automatically
detect change-points in these curves. We use the same parameters that were
described previously in section 6.1. We set k to 10 observations and use
l = 10 observations for estimating a reference distribution. Figure 17(b)
shows resulting alarm levels that describes the severity of an alarm. Here,
alarm levels greater than zero indicate an increasing value of cmag,t, whereas
values less than zero indicate a decreasing signal. Our method successfully
detects three change points: At timepoint 00:20 min, when people enter the
field of view, next at 00:40 min, the beginning of the congestion and around
02:00 min, when people leave the camera’s field of view. In particular, our
method detects the phase of congestion and reports an alarm level of −0.3,
which indicates a decreasing signal and thus is a sign of a congestion. Two
false alarms are reported after 12 seconds in cell 0 and cell 2, because the
system has not yet integrated enough observations. Note, that similar to
Figure 17(a), the time offset between different cells is clearly visible.

We also apply the described procedure to video footage from camera 2
(see Figure 15(b)) with the same parameters as described previously. Our
method successfully detects all three change-points without reporting any
false alarm.
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6.3. Shock Wave Detection

We also tested our approach to detect shock waves on videos obtained
from camera 13 (see Figure 3(d)) monitoring the main entry ramp to the
festival area. The video shows short sequences of shock waves propagating
through the densely packed crowd. Regions of high pressure are automati-
cally detected by the method presented in section 5 and are depicted in Figure
13. Two cells at the border of the frame are correctly classified as alarming
cells showing a shock wave. In total, we extracted approximately 4 minutes
of video sequences of camera 13 showing a densely packed crowd. Three
shock waves can be observed which are correctly detected by our method.
However, our methods also reports two false alarms.

7. Conclusion

The stampede at the Loveparade 2010 is a recent example of a terrible
crowd disaster where, in spite of all precautions, many people died during
a mass event. Research on crowd dynamics and behavior that aims at im-
proving security has a history of more than four decades. The two major
directions of research in this context are: first of all, experimental studies
that are conducted in order to understand human behavior in crowds and
mass evacuation situations and that are used to develop physical models of
pedestrian dynamics. Second of all, physical models of crowd behavior are
used in simulations that are intended to identify potentially hazardous loca-
tions in a mass event. However, in spite of the considerable efforts that went
into crowd dynamics research, automatic video analysis systems that would
detect dangerous situations such as overcrowding have not been reported yet.

The extensive video footage of the Loveparade stampede enabled us to
analyze the dynamics of a crowd disaster using computer vision techniques.
We were able to develop automatic approaches to the detection of congestion
situations and shock waves that are propagated through a crowd. We con-
ducted feasibility experiments to assess the utility of computationally efficient
features. Our approach based on histograms of flow vector magnitude and
direction allowed us to automatically detect a re-occurring motion pattern
that is characteristic for congestion situations and is due lateral oscillations
of people’s torsos. This oscillation is a result of the low velocity of people in
a congested crowd and can be identified by computing symmetry measures
from histograms of optical flow vectors. In case of topview cameras, we di-

18



rectly make use of the magnitude of optical flow vectors to estimate velocities
of pedestrians.

Our method is applicable in many different situations and is mostly in-
dependent of local conditions and camera viewpoints. Moreover, since the
proposed approach is based on dense optical flow fields and simple measures
derived therefrom, it works in real-time and thus meets a crucial prerequi-
site in video surveillance. Finally, since our method does not necessitate
identification or tracking of people, it preserves the privacy of the pedestri-
ans being monitored. Our analysis also revealed motion patterns that occur
when shock waves are propagated through a crowd. Here, we developed an
approach that detect and locates shock waves again based on the characteris-
tics of flow vectors only. To the best of our knowledge, our system is the first
video-based system to detect overcrowding and shock waves in real-time.
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Figure 3: Views of the scenes as recorded by the surveillance cameras [21]. See Figure 2
for the locations of the cameras. In the work reported here, we concentrate on camera 15
for the detection of congestions and on camera 13 for the detection of shock waves.

Figure 4: Dense optical flow computed using the method in [22]

(a)(b)(c)

Figure 5: k-means clustering (k = 5) of two-dimensional histograms of motion direction
and magnitude in an entire frame. Figure (a) shows the cluster assignment (encoded in
colors) for camera 15. Figure (b) shows considerably more motion mostly in a direction
of 250◦. Shortly after 16:20h, the frames are assigned to the cluster centroid depicted in
Figure (c). This cluster contains vectors of little motion, mostly in directions 90◦and 270◦.

(a)(b)

Figure 6: Two basis histograms extracted by applying NMF to 2D histograms of motion
direction and magnitude obtained during a time interval of 30 seconds at 14:40h for a grid
cell in the foreground.

(a)(b)

Figure 7: Two basis histograms extracted by applying NMF to 2D histograms of motion
direction and magnitude obtained during a time interval of 30 seconds at 15:53h for a grid
cell in the foreground. At that time, a police cordon stopped the visitors, so that only
little motion can be observed. Just a few visitors are not stopped by the police resulting
in optical flow histograms such as Figure 7(b).

(a)(b)

Figure 8: Two basis histograms extracted by applying NMF to 2D histograms of motion
direction and magnitude obtained during a time interval of 30 seconds at 16:28h for a grid
cell in the foreground. Figure (a) shows motion to the right (270◦), whereas Figure (b)
shows motion to the left (90◦). At that time, the visitor density was very high.

22



(a)(b)
Clus-
ter
cen-
ter
0
(blue)

(c)
Clus-
ter
cen-
ter
1
(green)

(d)
Clus-
ter
cen-
ter
2
(red)

(e)
Clus-
ter
cen-
ter
3
(cyan)

(f)
Clus-
ter
cen-
ter
4
(pur-
ple)

Figure 9: K-Means Clustering (k = 5) of basis histograms obtained by applying NMF.
Figure (a) shows the cluster assignment for the entire video sequence. Figures (b) to (f)
show the five cluster centers. The cluster centers shown in Figures (b) and (f) show distinct
motion peaks with a high magnitude and a motion direction of approx. 250 ◦. This motion
pattern is characteristic for time intervals of normal pedestrian flow. Figures (c) and (e)
show no distinct motion; these basic motion patterns correspond to the situation observed
after the police cordon has been established. The cluster center in Figure 9(d) shows left-
and rightward motion. It is characteristic for motion observed between 16:22h and 16:40h
when the pedestrian density is very high and people are stepping from one foot to the
other in order to keep their balance.

Figure 10: Given the current observation Yi, a reference distribution is obtained from
historical data Yi−k−l, . . . , Yi−k. The upper and lower α-percentiles of the reference distri-
bution (Q(α) and Q(1−α)) are used in equation 2 for calculating cusum statistics. Here,
α controls the degree a deviation from Q(α) or Q(1− α) is considered as critical.

Figure 11: Cusum Statistics S−i for camera 15. Whenever S−i exceeds the threshold Θ, an
alarm is raised. The threshold Θ has been determined automatically by using a bootstrap
resampling method.

Figure 12: Slope test for cusum statistics. At each timepoint a, a linear regression model
is fitted to a sliding window of cusum values {S+

i }ni=n−ν+1 for n = a, a + 1, . . ., here:
ν = 8. The end time of the alarm is detected at timepoint ta = 12, when the slope
of the regression line (labeled as regression line 10) is less than zero for the first time.
Additionally, we measure the severity of an alarm as the angle of the regression line
divided by 90◦.

Figure 13: Detection of Crowd Turbulences. Camera 13 which monitored the main entry
ramp shows short sequences of shock waves that are propagated. We automatically detect
regions of high pressure which are colored red in the above Figure. Note that the saturation
of the alarming cells have been increased for the sake of visibility.

23



Figure 14: Detection of anomalies in the pedestrian flow at the Loveparade 2010 recorded
by camera 15. Alarms raised by our system are colored in red for a abnormally decreasing
signal, whereas jumps to a high level are depicted in green. In the lower part, the computed
severity L ∈ [0 . . . 1] of the alarm is shown. Clearly, our system has detected abnormal
events that deviate from typical observations. In particular, our system raises a severe
alarm at about 16:27 when the crowd is jamming up.

(a)(b)

Figure 15: Setting of the Hermes dataset [28]. The scene is observed by two cameras.
A grid of cells is placed onto the frame, where each cell covers an area of approximately
1m x 3m except for cell 0 in (b) which covers approximately 1m x 1.2m. Note that the
fields of view of the cameras overlap: Cells 5 and 6 seen from camera 2 (Figure (b))
correspond to cells 0 and 1 observed by camera 1 (Figure (a)).

(a)(b)

Figure 16: Two different optical flow histograms obtained from camera 1 of the Hermes
dataset. In (a), people are moving fast, whereas in (b), they are going slowly. Instead of
using the feature described in section 4.1, we directly make use of the magnitude of optical
flow motion vectors and compute the center of mass of the optical flow histogram which
is marked in red.

(a)(b)

Figure 17: The value of cmag,t over time for all cells (see Figure 15(a)) of camera 1 are
shown in (a). One can easily identify different phases in this plot. Interestingly, the time
offet of the curves for different cells is clearly visible. Figure (b) shows alarm levels reported
by our change-point detection algorithm. Alarm levels greater than zero correspond to an
increasing value of cmag,t, lower values indicate a decreasing signal.
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