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Abstract 

In order to face the challenge of energy system transformation within the next 20 to 40 years the 

increase of energy efficiency on the demand side is known to be the most significant driver. Bottom-up 

based energy-economic models are a tool often applied to analyze energy demand ex ante with a high 

level of detail. However, because of limited knowledge about the long-term technological progress, the 

applicability of this approach is restricted for long-term modelling horizons. The objective of this study 

is to consider technology myopia in long-term energy demand modelling in the residential sector using 

a newly developed methodological concept that consists of a combination of three well-established 

approaches utilized in futurology: bottom-up, top-down and patent-based modelling. In contrast to 

other studies that integrate the advantages of different modelling approaches within one energy 

model, this concept couples the bottom-up and the top-down model chronologically, including patents 

as indicators of innovation to consider the myopic technological knowledge. The concept will be 

applied to the German residential sector in terms of two explorative long-term scenarios up to 2050 to 

analyze the energy efficiency potentials. Overall, the analysis highlights technological myopia as a key 

limitation of bottom-up methodology when calculating long-term energy scenarios for the residential 

sector. For some energy-using appliances (e.g. information and communication end uses) bottom-up 

based projections are merely possible for short-term horizons (<10 years). To emphasize the added 

value of the concept, the discussion focuses on methodological issues. 

Introduction 

In view of climate change, there are political, scientific, economic and social interests in decarbonizing 

the energy system during the upcoming decades. Increasing energy efficiency on the demand side is 

known to be the most significant driver of this transformation process (IEA, 2012). One tool for 

analyzing the impact of energy efficiency on future energy demand is the energy scenario technique 

based on energy-economic models (Koch et al., 2003; FES, 2002). As the currently discussed 

transition will take several decades, the time horizon for energy scenarios is often 20 to 40 years (e.g. 

German Energy Concept (BMWi et al., 2010)). To take into account the diversity of socio-economic 

and techno-economic drivers, technology-based bottom-up models are applied to describe energy 

demand with a high level of detail. However, because of limited knowledge about long-term 

technological progress, the applicability of this approach is restricted for long modelling horizons 

(Grupp, 1997). This weakness of the bottom-up approach has often been referred to in the literature, 

but proposals to further develop the method are only discussed to a limited extent (Jebaraj et al., 

2006; Suganthi et al., 2012; Vethman et al., 2011).  
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The objective of this study is to consider technological myopia in long-term energy demand modelling 

in the residential sector using a newly developed methodological concept that consists of a 

combination of three well-established approaches utilized in futurology: bottom-up, top-down and 

patent-based modelling. In contrast to other studies that integrate the advantages of different 

modelling approaches within one energy model, this concept is coupling the bottom-up and the top-

down model chronologically, including patents as indicators of innovation to measure the technological 

knowledge stock (Böhringer, 1998; Böhringer, 2006; Koopmans, 2001; Jacobsen, 1998; Rivers et al., 

2005). Furthermore, the concept is applied to the German residential sector in terms of two explorative 

long-term scenarios up to 2050 to analyze the energy efficiency potentials. To emphasize the added 

value of the concept, the discussion focuses on methodological issues. 

Methodological approach 

Overview of modelling concept 

The methodological concept consists of a combination of three well-established approaches utilized in 

futurology: bottom-up, top-down and patent-based modelling. The bottom-up model covers final 

energy demand distinguished by energy-using appliances on an annual basis for the short- to 

medium-term horizon (Energy Appliance Model; abbr.: EAM). Because detailed techno-economic 

parameters (such as standby power) are not available in the long run, the top-down model is used for 

the medium- to long-term horizon, which calculates final energy demand based on energy services 

(Energy Service Model abbr.: ESM). Thus, in the energy service model, energy demand is abstracted 

from certain appliances. Losing the information about techno-economic parameters leads to the effect 

that essential information required e.g. to model the investment decision process or to consider 

appliance efficiency are no longer available. Thus, the only parameters expected to be available to 

calculate energy demand in the ESM are the socio-economic parameters (e.g. size of population) and 

all further parameters that are not technology related (e.g. refurbishment rate). A comparison of the 

characteristics of both energy demand models is shown in Table 1. 

Table 1:  Characteristics of energy demand models: EAM vs. ESM 

 Energy Appliance Model (EAM) Energy Service Model (ESM) 

Modelling horizon Short- to medium-term Medium- to long-term 

Energy demand representation Energy-using appliances Energy services 

Modelling perspective 
Bottom-up approach based on 

simulation 

Top-down approach based on 

regression analysis 

Policy consideration 
Explicitly per energy-using 

appliance 

Implicitly as techno-economic 

data is not available 

Calibration basis 
Empirical data (statistics and 

studies) 

Empirical data and output of 

EAM 

To define the transition between the two energy models, the obsolescence of technological knowledge 

about certain energy-using appliances needs to be captured. In order to do so, a patent-based model 
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is applied that quantifies technological progress by appliances using an innovation indicator 

(Knowledge Stock Model, abbr.: KSM). The structural framework of the modelling concept is depicted 

in Figure 1. This procedure of energy demand modelling and measurement of depreciation rate is 

conducted for every single energy-using appliance or energy service, respectively. The methodologies 

applied are discussed in the following sections. 

 

Figure 1: Structural framework of modelling concept 

Energy Appliance Model (EAM) 

The EAM is constructed as a bottom-up approach, which is based on the simulation method.3 The 

simulation method aims to map the system to be modeled as close to reality as possible with regard to 

its elements, element linkages and characteristics. To calculate energy demand from a bottom-up 

perspective, the model comprises socio-economic parameters (e.g. size of population) and techno-

economic parameters (e.g. operation power) as listed in Table 2. These two types of parameters allow 

macro-economic drivers to be considered, as well as a detailed representation of the energy appliance 

stock. As the age distribution of the appliance stock is also captured, the model is designed as a 

vintage stock model. The technological structure of the model is defined on three hierarchical levels 

with energy appliances (e.g. televisions) at the highest level of aggregation, which are differentiated by 

technology (e.g. plasma, LCD) and then divided again into efficiency classes (e.g. A++, A+). The 

major advantage of this detailed stock representation is that technological change can be modeled 

under consideration of energy policies, rebound effects as well as barriers on an energy appliance 

level. 

                                                      
3 To analyze final energy demand based on a bottom-up approach, the model FORECAST-Residential developed at the 

Fraunhofer ISI is applied. FORECAST-Residential is designed to model the final energy demand on an annual basis for the 

EU 27+3 (3: Norway, Switzerland, Turkey) by country up to 2050. Due to its high degree of technological detail, FORECAST 

is used to examine both energy and climate policy instruments (Matthes et al., 2013) and for scenario analyses at a national 

(Elsland et al., 2013c), international (Elsland et al., 2013d) and European level (ESA2, 2013). 
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Table 2: Techno-economic and socio-economic parameters of the EAM (selected) 

Techno-economic parameters Socio-economic parameters 

Ownership rate per energy-using appliances Size of population 

Market share of technologies / efficiency classes Number of dwellings / buildings 

Operation / standby power Dwelling surface 

Operation / standby hours Litres of hot water usage 

Lifetime (reinvestment cycle) Gross domestic product (GDP) 

Investment, maintenance and energy costs Energy carrier prices for end consumers 

The ownership rate per dwelling of household energy appliances is determined by the Bass function, 

which is shaped as a sigmoid growth curve (Bass, 1969). The Bass function is based on the empirical 

evidence that word-of-mouth recommendation is the key driver of innovation diffusion (Albers, 2004). 

As decision-makers in private households differ with regard to their individual utility due to different 

lifestyles, available information and other characteristics, the type of appliance chosen can vary 

greatly. To consider heterogeneous user behavior, the adoption of new appliances is modeled based 

on a multinomial logit approach (MNLM) (Tutz, 2000). In the EAM, the MNLM captures market 

heterogeneity on a macroeconomic level for a ‘representative individual’ by describing the diffusion 

process of substitution alternatives by market shares. The key descriptive factor used to define the 

individual utility of a decision-maker is the Total Cost of Ownership (TCO): the TCO comprises the 

required initial investment as well as any costs for energy and maintenance. Calculating the TCO is 

done using a dynamic net present value calculation, which allows different investment alternatives to 

be compared in monetary terms (Götze, 2006).  

Energy Service Model (ESM) 

As techno-economic parameters are often not known for long modelling horizons (see left column of 

Table 2), the calculation of medium- to long-term energy demand is based on a top-down approach 

(Gordon, 2005; Diekmann et al., 1999). In this top-down model, calculating energy demand is 

abstracted from certain appliances and represented by energy services. An energy service can be 

defined as an individual’s need, which can be covered by useful energy and other production factors 

(VDI, 2003). As energy services are a more abstract manner for describing electricity demand, the 

amount of services in the ESM is diminished to 12 in comparison to 32 energy-using appliances in the 

EAM (Table 3).  
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Table 3: Assignment of energy-using appliances to energy services 

Energy service Energy-using appliance 

Food preservation Freezers, refrigerators 

Laundry Washing machines, dryers, irons 

Dish cleaning Dishwashers 

Food preparation 
Stoves, microwaves, exhaust hoods, coffee-

machines, toasters 

Information & communication (end-uses) 
Televisions, Computer screens, laptops, desktop 

PCs 

Information & communication (infrastructure) Set-top boxes, modems & routers 

Miscellaneous energy services Small appliances (e.g. vacuum cleaners, hair dryers) 

Lighting Lamps 

Room conditioning (cooling & ventilation) Air-conditionings, ventilations 

Room conditioning (heating)  
Boilers, heat pumps, night-storage heating, 

radiators, solar systems 

Water warming (heating) 
Instantaneous water heaters, boilers, heat pumps, 

solar systems 

Heating (infrastructure) Circulating pumps 

Nevertheless, to ensure consistency between the two energy demand models from a scenario 

perspective, the impact of policy measures, rebound effects, changing energy carrier prices and other 

socio-economic parameters on energy demand need to be considered in the ESM as well (Kavgic, 

2010). The selected methodology chosen that is able to provide this flexible scenario design is 

econometric regression analysis (Tutz, 2000). The parameterization of the regression function is 

derived from elasticities of EAM results. Thus, in spite the fact that detailed techno-economic data is 

no longer available for long-term modelling horizons, the impact of parameters influencing 

technological change like energy carrier price development remains. The data to parameterize the top-

down model consists of two datasets, output data of the bottom-up model and empirical data. The time 

horizon of the bottom-up model’s output data is determined by the pace of technological progress of 

each energy-using appliance (see KSM). Taking empirical data into account extends the data used to 

parameterize the top-down model, which leads to more reliable regression coefficients. 

Transition Stock Model (KSM) 

The knowledge stock per energy-using appliance calculated by the KSM is the key driver to derive a 

time span in which the calculation of energy demand shifts from the bottom-up to the top-down 

approach (Figure 2).4 This knowledge stock depends on the innovation dynamics and the resulting 

pace of technological progress of each energy-using appliance. Thus, the heterogeneity of energy-

                                                      
4  The coupling of EAM with a patent analysis has already been discussed in (Elsland et al., 2013a; Elsland et al., 2013b). 
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using appliances leads to the effect that the transition period between the energy demand models 

differs depending on the innovative characteristics by appliance. The KSM is based on patent 

applications due to the facts that statistically significant basic population of patent data is available in 

publicly accessible databases (e.g. at the German Patent and Trademark Office), patent documents 

are standardized in the International Patent Classification (IPC) and patents do have a high market 

proximity (DPMA, 2006). Patents certify the protected rights of inventions to give inventors the 

exclusive right to economically exploit the patented invention for a defined duration (Gerpott, 2005; 

Rammer, 2002).  

 

Figure 2: Schematic representation of model interaction under consideration of a differing pace of 
technological progress of each energy-using appliance 

When using patent indicators to quantify technology progress, a concordance has to be defined 

between energy appliances and patent classes. Therefore, appliances are broken down into functional 

components based on technical documents to derive IPC patent classes. The indicator applied for 

quantifying technological progress is the technological cycle time indicator (TCT indicator) (Narin et al., 

1993; Kayal, 1997; Daim et al., 2008; Jochem et al., 2009). The TCT indicator is based on the fact that 

new patent documents use backward citations to refer to existing patents on which the new patent is 

based. This yields a direct correlation between the age of the cited patents and the pace of 

technological progress: the younger the cited patents, the faster the technological progress and vice 

versa (Fabrizio, 2009). Within the KSM approach, the TCT indicator is defined as the average age of 

the citations made by a new patent to existing patents (Park et al., 2006). Thus, the age of a citation is 

the time span between the priority date5 of the cited patent and the priority date of the citing patent. 

As the TCT indicator captures the cumulative characteristics of technological progress, the 

technological cycle time permits conclusions about the magnitude of technological myopia (Park et al., 

2006). But, the TCT indicator only represents the expected value for the period of time between two 

interrelated and successive developments of one technology. Since a technology field comprises large 

numbers of patents, there is further development taking place significantly before or after this time 

                                                      
5  The priority date is when the patent application was first submitted to a patent office. 

100

t

Share of energy
demand by model 

type [%]

0

Energy Appliance 
Model

Energy Service Model

Knowledge 
Stock Model



7 
 

span. This implies a continuous drop in the ability to explain the future state of technology 

development (Narin et al., 1993). Analyzing empirical patent data of the German Patent and 

Trademark Office (DPMA) within the period 1990-2010 indicates that backward citations are 

developing exponentially (DPMA, 2012). Due to this empirical evidence, the obsolescence of 

technological knowledge is modeled by exponential depreciation rate (Machlup, 1962). 

Coupling the energy demand models 

When coupling the energy demand models, the appliance-specific depreciation rates serve as a 

weighting factor of energy demand calculated by the bottom-up (EAM) and top-down (ESM) approach. 

The technological knowledge starts with the value of 100% in the presence, assuming complete 

knowledge about the current technological state-of-the-art for each energy-using appliance. 

Consequently, energy demand is calculated completely by the EAM in the base year of the projection. 

With a receding time horizon, the obsolescence of technological knowledge increases and therefore 

more and more energy demand in the hybrid modelling concept is explained by the ESM. The annual 

energy demand of the hybrid modelling concept comprises two parts: the energy demand of the EAM 

weighted with the technological knowledge of each appliance and the energy demand of the ESM 

weighted with the complement of the technological knowledge stock per energy service.  

Case study: Scenario analysis of efficiency potentials in the German residential 
sector until 2050 

Scenario definition 

The hybrid modelling concept is applied in two explorative long-term scenarios for the German 

residential sector until 2050 to analyze the energy efficiency potentials: a reference scenario (REF 

scenario) and a high-policy-intensity scenario (HPI scenario). The scenarios focus on electrical driven 

appliances. The scenarios differ with regard to the ambitiousness of energy policy regulations. In both 

scenarios it is assumed that the energy policy laws and directives which have already been passed, 

such as for example the Eco-design or Labelling directives, are successfully implemented. While the 

reference scenario assumes moderate amendments to these regulations in the future, the high-policy-

intensity scenario reckons a much more ambitious design of these energy policy measures. It is 

assumed that efficient and innovative energy-using appliances are introduced into the market with a 

higher frequency in the high-policy-intensity scenario due to its policy framework. 

Results 

At first, the key findings of the REF scenario are discussed. The framework conditions 

defined in the REF scenario lead to a decrease of electricity demand from 139.5 TWh in 

2008 to 137.1 TWh by 2050 (see Figure 3, left side). Analysing the results of the EAM on an 

energy-using appliance level shows that except for heat pumps stock increase more or less 

compensates efficiency improvements. Analysing the shift from EAM to ESM energy 

demand calculation highlights that beyond 2034 more than 50% of the electricity demand is 

described by energy services, whereas the percental share of overall electricity demand 
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calculated by the ESM increases up to 84.3% by 2050 (average annual decrease of EAM 

electricity demand between 2008-2050 is -2.0%). This means that just for 15.7% 

technological knowledge is sufficient to calculate electricity demand based on techno-

economic parameters (EAM). 

Especially for energy-using appliances like ICT with short reinvestment cycles (lifetime < 10 

years) and a fast pace of technological progress (TCT < 10 years) the consideration of 

technological myopia plays a crucial role. Already in 2018 only 50% of electricity demand is 

calculated based on the EAM and by 2024 the last known ICT-appliances are eliminated 

from the market. This is based on the fact that new ICT-appliances diffusing into the market 

have a very low share of technological knowledge. On the other hand energy-using 

appliances with long reinvestment cycles and a slow pace of technological progress such as 

direct heating are still calculated based on techno-economic input parameters by 34% in 

2050. Accordingly, depending on the appliance characteristics the share of EAM and ESM 

fluctuate strongly, which emphasizes the strengths of the integrated modelling concept. 

In contrast, in the HPI scenario electricity demand decreased down to a level of 100.2 TWh by 2050 

(see Figure 3, right side). This is a difference of 36.9 TWh in comparison to the REF scenario. In 

the HPI scenario the share of 50% of the ESM based energy demand calculation is already reached in 

2030. The percentual share of the overall electricity demand calculated by the EAM in 2050 accounts 

for 1.3 % (average annual decrease of EAM calculated share of electricity demand between 2008-

2050 is -2.2%). Thus, only a small share of heating system electricity demand (1.3 TWh) is still 

calculated based on the bottom-up approach in 2050. 
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Figure 3: Electricity demand of the hybrid modelling concept for the period 2008-2050: REF 
scenario (left side) and HPI scenario (right side) 

A more detailed analysis on an energy-using appliance level emphasises that the suitability 

of modelling energy demand based on a bottom-up approach depends largely on the type of 

appliance. In Figure 4 clusters of energy-using appliances are listed and sorted by their 

share of bottom-up modelled time horizon. Besides various TCTs energy-using appliance 

heterogeneity is based on different reinvestment cycles, market entrance and elimination as 

well as adoption behaviour. The arrows labelled with the time horizons beneath the box 

plots graph give an indication when it comes to the capability of time horizons that could be 

modelled on a bottom-up basis. To emphasize the impact of technological myopia on 

residential electricity demand, information concerning the share of electricity demand in 

base year and the trend of electricity demand development is further added in Figure 4. 

Consequently, the significance of technological myopia of each energy-using appliance 

regarding long-term bottom-up modelling is enhanced or weakened by these two categories. 

Energy-using appliances (dark colours): 

Energy services (bright colours / marked by black dashed line): 

REF scenario HPI scenario 
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Figure 4: Scattering of bottom-up calculated share of energy demand by energy-using appliance 
clusters complemented by their share of electricity demand in the base year and trend of 
electricity demand development for the period 2008-2050 

Conclusions 

Overall, the analysis highlights that technological myopia is a key limitation of bottom-up methodology 

when calculating long-term energy scenarios. The discussion about the chronological coupling of 

different types of energy demand models in combination with patent indicators illustrates that the 

modelling concept developed enables a more transparent analysis of energy scenarios than 

conventional bottom-up studies. The integrative concept essentially provides two general advantages:  

(I) There is no fixed year defined at which energy demand could no longer be calculated 

on the basis of a bottom-up approach, rather the transition from EAM to ESM is 

designed smoothly. Thus, this approach is capable capturing the evolutionary 

process of technological change. 

(II) Although it is assumed that techno-economic parameters are no longer available for 

the medium- to long-term horizon, scenario compatibility is provided as their 

influence on energy demand is implicitly considered by calibrating the ESM based on 

EAM elasticities. Thus, even if just the set of socio-economic parameters is identical 

in both energy demand models, linear and linearized regressions of ESM are 

capable of implicitly capturing the impact of techno-economic parameters on the 

results (e.g. energy policy regulations). 

Besides these general advantages there are three model specific advantages:  

(I) all strengths of bottom-up modelling are retained for the short- to medium term 

projection horizon, 

short-term (0-10 years) 

medium-term (11-25 years) 

long-term (25+ years) 
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(II)   by including an innovation indicator an energy-using appliance specific time horizon 

can be defined that determines the point in time, when energy demand can no longer 

be calculated via techno-economic parameters, 

(III) for the medium- to long-term projection horizon energy demand is abstracted from 

certain energy-using appliances and represented by energy services, whereas 

energy demand is still calculated on a high level of granularity due to the 

decomposition approach. 

Although the gradual transition from EAM to ESM is calculated endogenously from patent time series, 

it has to be emphasized that market entrance of innovations is determined exogenously in vintage 

stock models. Up to the present day innovation theory does not provide any approach to derive this 

point in time, especially not for long-term horizons until 2050. As the determination of market entrance 

has a significant impact on energy scenario results, this has to be taken into account when interpreting 

the degree of technological myopia. According to conventional bottom-up models the point in time 

when innovations enter the market is an exogenous input parameter in the modelling concept 

developed as well. The estimation is based on empirical market data and energy policies that regulate 

the placing of efficient energy-using appliances on the market. This estimation of market entrance is a 

limitation of long-term scenarios due to epistemological reasons and not attributable to the 

methodological elaboration of the concept. A further parameter that cannot be defined precisely from a 

scientific point of view is the maximum level of an appliance’s energy efficiency. For this purpose, 

potential estimations of current studies about best not yet available technologies are taken as an 

approximate value for the long-term maximum level of an appliance’s energy efficiency.  

Furthermore, it can be concluded that the developed concept only models incremental changes of 

technological progress, whereas radical changes like wild cards or black swan technologies that are 

per definition not foreseeable in the long-term are not considered (Hiltunen, 2006; Mendonca, et al., 

2004). Moreover, the concept developed focuses on existing energy services. New types of energy 

services that provide a new utility were not considered in the conceptual development. This issue is 

also related to an epistemological problem that cannot be solved ex ante, as the prospective 

technological development regarding new energy services is per definition unknowable. In terms of 

applicability, the analysis showed that the methodological design of the concept for the consideration 

of myopic technological knowledge in long-term energy demand modelling is not restricted to the 

German residential sector. This concept can also be transferred to the residential sector of other 

countries or to other sectors. 
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