
A publication by Fraunhofer IESE

Modeling Variability with Use Cases

Authors:
Isabel John
Dirk Muthig

In part supported by the ITEA Project
EMPRESS Project Nr. 00103

IESE-Report No. 063.02/E
Version 1.0
November 7, 2002

Fraunhofer Institut
Experimentelles

IESE

Software Engineering

Fraunhofer IESE is an institute of the
Fraunhofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists com-
panies in building software competencies
customized to their needs, and helps them
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6
D-67661 Kaiserslautern

Abstract

Use cases are used for single system requirements engineering to capture
requirements from an external point of view. When utilizing use cases for prod-
uct line modeling they cannot be used as is but they have to be extended with a
variability mechanism. Stereotypes can be used as this variability mechanism for
use case diagrams and tags can be used for textual use cases. In this report we
describe how to tailor use cases for product line modeling, describe in which sit-
uations the approach can be applied and illustrate the use case approach by an
example.

The work described herein is based on two publications by Isabel John and Dirk
Muthig “Product Line Modeling with Generic Use Cases” [12] published at
SPLC2 and “Tailoring Use Cases for Product Line Modeling” [13] published at
RE’02.

Keywords: Product Line Engineering, Requirements Engineering; Domain Modeling, Use
Cases, Variability
vCopyright  Fraunhofer IESE 2002

vi Copyright  Fraunhofer IESE 2002

Table of Contents

1 Introduction 1

2 Single System Use Cases 3
2.1 Requirements Engineering with Use Cases 3
2.2 Use-Case Diagrams 3
2.3 Textual Use Cases 4

3 Tailoring Use Cases for Product Lines 6
3.1 Product Line Concepts 6
3.2 Variable Use Case Diagrams 8
3.3 Variable Textual Use Cases 9
3.4 Decision Modeling 11

4 Conclusions 12

5 References 13
viiCopyright  Fraunhofer IESE 2002

viii Copyright  Fraunhofer IESE 2002

Introduction
1 Introduction

During the last decade reuse has been recognized as a key factor for improving
software development efficiency. Product line engineering is a reuse approach
providing methods to plan, control, and improve a reuse infrastructure for
developing a family of similar products. The goal of product line approaches,
such as PuLSETM [3] is to achieve a planned domain-specific reuse by building a
family of applications rather than developing products separately. Distinct from
single-system software development, there are two main life-cycle phases:
domain and application engineering. Domain Engineering constructs the reuse
infrastructure, which is then used by application engineering to build the
required products.

During the domain-analysis phase of domain engineering the common and
varying requirements of the planned set of products are captured. Use cases are
a widely accepted means to support domain understanding, find, and docu-
ment user requirements but there is no generally accepted formalism that inte-
grates variability modeling with use cases in order to do product line model-
ing.Expressing variability in the use cases has benefits in the following ways:

• Seeing variability in the use-cases helps all involved roles in establishing a
variability and product line mindset and in getting a better domain under-
standing

• Explicit variability in use cases supports the instantiation and derivation of
exact models in application engineering

• In market development which is not customer oriented, variable use cases are
a good means of communicating the possibilities of the possible products
between marketing and requirements engineers and product line engineers

In order to be suitable for product line modeling, commonality and variability
has to be integrated and described in use-case diagrams and textual use-case
descriptions. Furthermore decision modeling has to be supported. We illustrate
the adaptations we made with an example, a “cruise control system” that is a
part of the automotive domain. A cruise control system supports the driver in
keeping a constant velocity and does real time monitoring and control of the
cars speed. It exists in variants that have or have not a distance regulator, which
controls the distance between the car to the car(s) ahead and behind.

In this report we describe a method tho extend use case diagrams and textual
use cases with explicit commonality and variability. The work described herein is
based on two publications by Isabel John and Dirk Muthig “Product Line Model-
ing with Generic Use Cases”[12] published at SPLC2 and “Tailoring Use Cases
1Copyright  Fraunhofer IESE 2002

Introduction
for Product Line Modeling”[13] published at RE’02.
There are some approaches on how to extend use cases with variability and how
to support reuse and genericity in use cases. Biddle et.al. [5] suggest to use pat-
terns in use cases and to organize the use cases in a repository. However, they
do not introduce variability. America and Wijnstra [1] describe how to use use
cases in requirements engineering for product lines. Halmans and Pohl [9] show
how application derifaction can be supported by product family specific use
cases but they do not give a concrete notation. Gomaa [7] introduced in his
method the stereotypes <<kernel>> and <<optional>> for use cases and other
UML model elements for modeling families of systems. In his approach he
focuses on the integration of features and use cases but does not say anything
about how textual use cases should be represented. Jacobson et.al. [11] discuss
how the text in use cases may involve variation points that can form the basis for
a hierarchy of use cases from more abstract use cases to more specific ones.
They introduce “variation points” (described as dots in use cases including a
short description of the variation) into use case diagrams. They also use variation
points in textual use cases (described as highlighted text in curly brackets) to
describe different ways of performing actions within a use case. They do not say
anything about how variant or generic use cases can be instantiated. Our
approach is related to the KobrA approach [2], which introduces variation points
in the UML including use cases and supports the instantiation of generic models.
2 Copyright  Fraunhofer IESE 2002

Single System Use Cases
2 Single System Use Cases

2.1 Requirements Engineering with Use Cases

Requirements Engineering for single systems is adressed in research and in prac-
tice since many years. Methods and Formalism which have been used for a long
time are e.g. textual requirements, controlled languages, formal or semi-formal
specification languages like SDL or scenarios. For some years, use cases [10]
have been a means to understand, specify, and analyse user requirements that is
rather often used. Use cases can document the requirements on a system from
an outside or users point of view. Use cases cannot document all requirements,
they normally do not deal in depth with non-functional requirements, with
interfaces, and data formats. But use cases make it easier to understand what
the user wants from the system and give a good means of communication
about the system.

2.2 Use-Case Diagrams

A use case describes the system’s behavior under various conditions. Use cases
are used during the analysis phase to identify and partition system functionality.
A use case describes the actions of an actor when following a certain task while
interacting with the system to be described. A use case diagram includes the
actors, the system, and the use cases themselves. The set of functionality of a
given system is determined through the study of the functional requirements of
each actor, expressed in the use cases in the form of common interactions. So a
use case diagram in UML 1.4 consists of [15]: the system to be described, the
use cases within the system, the actors outside the system and the relationships
between actors and use-cases or in between use cases (associations, generaliza-
tion, include, and extend). Associations denote the participation of an actor in a
use case, a generalization relation means that there is a specialization of one use
case to another. An extend relationship indicates that an instance of a use case
may be augmented by the behavior specified by another use case and the
include relationship indicates that an instance of a use case will contain the
behavior of another use case. Figure 1 shows an example use case diagram for a
cruise control system. The use cases described in this diagram are on the “Sub-
function level” or “Underwater level” in Cockburns classification of Use case
levels [6]. The driver activates the cruise control system by choosing “set veloc-
ity”. He can also tell the system to “keep velocity” with help of the gas regu-
lator if the velocity has already been set. He can also “readopt velocity” which
will bring the car to the fixed speed (e.g. after braking) and then continue keep-
ing the velocity.
3Copyright  Fraunhofer IESE 2002

Single System Use Cases
Figure 1:
A Use Case Dia-
gram for a Cruise
Control System

2.3 Textual Use Cases

There is no standardized form for the content of a use case itself, the standard
describes the graphical representation and the semantics of use case diagrams
only. Use cases are fundamentally a text form although they can be written
using flow charts, sequence charts or petri nets [6]. Use cases serve as a means
of communication from one person to another, often among persons with no
training in UML or software development. So writing use cases in simple text is
usually a good choice. There is no general agreement on the attributes use cases
should have and on the level of description of the use cases. Figure 2 shows an
example of a textual use case in the cruise control domain which describes the
use case “keep velocity”. The template used is a modification of the template
suggested by Alistair Cockburn (see [6]). The use case is described with its
actors, the triggers, which means the actors that can activate the use cases. The
input and output of the use case are described and the post conditions and a
success guarantee (what the user wants from the use case) and a minimal guar-
antee (what should in any case not go wrong) are given. The main part of the
use case is the main success scenario which describes what the use case actually
does.

Cruise Control System

deactivate cruise
control

readopt velocity

keep velocity

Set Velocity
gas regulator

Driver «include»
4 Copyright  Fraunhofer IESE 2002

Single System Use Cases
Figure 2:
A use case for “keep
velocity” of the
cruise control system

Use Case Name: keep velocity
Short Description: keep the actual velocity value over gas regulator
Actors: driver, gas regulator
Trigger: actor driver
Precondition: --
Input: starting signal, velocity value vtarget
Output: infinit
Postcondition: vactual = vtarget
Success guarantee: vactual = vtarget
Minimal guarantee: The car keeps driving
Main Sucess Scenario:
 1.) the actor driver selects <keep velocity>

get vactual, vtarget (<Calculate Velocity>)
- compare vactual and vtarget
If vactual < vtarget : gas regulator increase velocity
- restart <keep velocity>
If vactual > vtarget : gas regulator decrease velocity
- restart <keep velocity>
else restart <keep velocity>
5Copyright  Fraunhofer IESE 2002

Tailoring Use Cases for Product
Lines
3 Tailoring Use Cases for Product Lines

In this section, the use case approach is extended to product families, that is,
use cases do not longer describe the actions of an actor when following a cer-
tain task while interacting with a particular system only, but summarize and
integrate use cases describing analogous tasks for different products in a family
into combined artifacts, product-line use cases. We describe how and why we
tailored single system use cases to capture variability and commonality and
describe how a decision model of those use cases can be built. Before describing
in Section 3.1 the required extensions to the two artifacts, use-case diagram and
textual use-case descriptions, described above, the main product-line concepts
are introduced.

3.1 Product Line Concepts

From an abstract point of view it is the concurrent consideration, planning, and
comparison of similar systems that distinguishes product line engineering from
single-system development. The intention is to systematically exploit common
system characteristics and to share development and maintenance effort.

In order to do so, the common and the varying aspects of the systems must be
considered throughout all life-cycle stages and integrated into a common infra-
structure that is the main focus of maintenance activities. Commonalities and
variabilities are equally important: commonalities define the skeleton of systems
in the product line, variabilities bound the space of required and anticipated
variations of the common skeleton. In Product Line Modeling, modeling com-
monalities and Variabilities is often done with feature modeling (either with
FODA [14] or FeatuRSEB [8]). But feature models often describe a static view on
the systems capabilities. In order to get a dynamic view on the system use cases
are a good choice as a modeling approach that should be used in addition to
feature models.

When the concepts of commonalities and variabilities are applied to use cases,
these concepts produce use cases that have a common story that is valid for all
members of a system family with variation points that explicitly capture which
actions are optional or alternatives. Of course, a use case as a whole may be
optional, as well as use cases under the same label may be realized totally differ-
ent for some products. The common parts are modeled as all parts in a single-
system context, to model variation, additional means are required. The variant
use cases are instantiated during application engineering. The instantiation pro-
cess is guided by a decision model, which captures the motivation and interde-
6 Copyright  Fraunhofer IESE 2002

Tailoring Use Cases for Product
Lines
pendencies of variation points, and produces use case artifacts as used in a sin-
gle-system context (see previous section). We will illustrate, how decision
modeling and instantiation can be done with use cases. These use cases
approach we describe is used within PuLSE CDA [4], the customizable domain
analysis part of the PuLSETM [3] product line framework. CDA is customizable
which means, domain analysis is not always done with the same approach (like
e.g. feature modeling) but customized to the context where the domain analysis
approach is applied. Based on a set of fixed customization factors (c.f. [16]) we
apply this use case approach in the following situation:

Domain characteristics: use cases can be applied in almost all domains. They
can be useful for embedded or information systems. The domain should address
user-level information (e.g have a user interface). The number of possible varia-
tion points in the domain should be low to medium (2 to 100) otherwise the use
cases are not readable anymore

Information sources: Use cases can be derived from paper documents, experts
or legacy systems. So they can be used with all information sources

Implementation characteristics: As use cases are part of UML use case mod-
els are encouraged if an Object oriented modeling and implementation
approach is chosen. For clarification they can also be used with other implemen-
tation approaches

Integratable software artifacts: The use case approach is independent of
existing software artifacts

Project context: A complete set of use cases and use case diagrams makes
sense in larger projects with a staff size bigger than 10. In smaller projects it
might be more useful to make only an overview use case diagram but not all the
use cases

Enterprise context: The use case approach is independent of the organiza-
tional environment

So this approach is selected in situations where user-level information is essen-
tial for the domain model, where variability should be expressed early and
explicit and where overview information (as it can be found in use case dia-
grams) is needed. Of course the use cases do not solely form the domain model,
other approaches like feature modeling or textual requirements should be cho-
sen as additional modeling formalisms depending on the customization.
7Copyright  Fraunhofer IESE 2002

Tailoring Use Cases for Product
Lines
3.2 Variable Use Case Diagrams

In use case diagrams, any model element may potentially be variant in a prod-
uct-line context. An actor is variant, for example, if a certain user class is not
supported by a product. A use case is variant if it is not supported by some prod-
ucts in the family. A generic use case diagram for our cruise-control example is
depicted by Figure 3. There, an optional distance regulator has been added, that
is, three additional (and variant) use case have to be modeled by using the ste-
reotype <<variant>>, as well as an additional actor, the optional radar sensor to
measure the distance of a car in front. The additional feature has an impact on
other use cases, which is modeled in the textual description of the affected use
cases. An example for the use case “keep velocity” is given in the following
subsection. Principally, variability should be written down on a level as low as
possbile. If only parts of a use case are optional, not the whole use case should
be marked as optional but only the parts in the textual description that really are
optional. This helps in localizing variability for later phases. The places where
variability occurs are then collected in the decision model

The new use cases that are included by adding a distance regulator can either
extend existing use cases (as the “keep distance” use case extend the “keep
velocity” use case) or can be handled as extra “standalone” use cases (like the
“set distance” use case and the “deactivate distance regulator “ use case). the
third possibility is that optional use cases are included in existing use cases (no
example here). The question under which circumstances which extension should
be chosen is still unexplored and should be further investigated.

During application engineering, for each variant use case, it is decided whether
the use case is (or is not) supported by the product to be built. The instantiation
is done then with the help of the decision model. If a cruise control without dis-
tance regulator is built, all the variant use cases are removed, and the resulting
use case diagram is the diagram shown in Figure 1.
8 Copyright  Fraunhofer IESE 2002

Tailoring Use Cases for Product
Lines
Figure 3:Generic Use
Case Diagram

3.3 Variable Textual Use Cases

In a textual use case description any text fragment may be variant. Variant text
fragments are explicitly marked by pairs of the XML-like tags <variant> and
</variant>. The decisions are integrated in the use case and underlined. Figure 4
shows an example of this approach, the use case “keep velocity”Decision
modeling and instantiationWhether a use case in a use case diagram is an
optional use case or whether it is an alternative to another use case is captured
outside of the use-case diagram in a decision model. This is done simply because
this information would overload the use-case diagram, make it less readable,
and thus less useful.

The underlined questions in the use cases reflect the parts of the overall decision
model that are relevant for this particular use case. This information is useful in
both workproducts: integrated in the use case description, it helps to under-
stand the use case’s variability from the use case’s point-of-view, in the decision
model, it helps to understand the variability of the whole product family and
what the impact of a particular variability is (e.g., it has an impact on this use
case). Hence the overall decision model captures the relationship between the

Cruise control system
with optional distance regulator

«variant»
radarsensor

«variant»
Set distance

deactivate cruise
control

readopt velocity

keep velocity

Set Velocity
gas regulator

«variant»
keep distance

Driver

<<Opt:distance regulator>>

«extend»

«include»

«variant»
deactivate distanc

 regulator
9Copyright  Fraunhofer IESE 2002

Tailoring Use Cases for Product
Lines
decisions related to the above generic use case diagram and the textual descrip-
tion in Figure 4.

Figure 4:
A Generic textual
use case

That is, if the feature “distance control” is excluded the four variant use cases
are removed and all variant text fragments are removed from the description of
the use case “keep velocity”, as well as the first alternative for step 3 is
selected. This instantiation leads to the use case description given in the previ-
ous section.

Use Case Name: keep velocity
Short Description: keep the actual velocity value over gas regulator
<variant> and control the distance to cars in front </variant>
Actors: driver, gas regulator, <variant> actor distance regulator </variant>
Trigger: actor driver, <variant> actor distance regulator </variant>
Precondition: --
Input: starting signal, velocity value vtarget
Output: undefined
Postcondition: vactual = vtarget
Success guarantee: vactual = vtarget
Minimal guarantee: The car keeps driving
Main Sucess Scenario:
 1.) <keep velocity> is selected by actor driver

2.) Does a distance regulator exist?
get vactual (<Calculate Velocity>)
<variant OPT> get dactual dtarget (<Calculate Distance>) </variant>

3.) Does a distance regulator exist?
<variant ALT 1: no; only cruise control>

- compare vactual and vtarget
If vactual <vtarget : gas regulator increase velocity
- restart <keep velocity>
If vactual > vtarget : gas regulator decrease velocity
- restart <keep velocity>
else restart <keep velocity>

</variant>
<variant ALT 2: yes, cruise control + distance regulator>

- - compare vactual and vtarget
If vactual < vtarget and dactual > dtarget: gas regulator decrease
velocity
- restart <keep velocity>
else If vactual > vtargetand dactual < dtarget: gas regulator increase
velocity
- restart <keep velocity>
else restart<keep velocity>

</variant>
10 Copyright  Fraunhofer IESE 2002

Tailoring Use Cases for Product
Lines
3.4 Decision Modeling

Table 1 shows an excerpt of the decision model in textual form for the use case
diagram and the textual use case. As in this example the variation point is rather
simple (Does a distance regulator exist or not?) the decision model also is very
simple. If there is more and more complicated variability and hierarchical deci-
sions, the decision model gets more complex and can really support the soft-
ware engineers during application engineering.

Table 1:
Partial Decision
Model

Variation
Point

Decision Actions

1 The car has no distance regulator Remove Use Case “set distance“ from use case diagram

Remove Actor “radar sensor” from use case dia-
gram......

remove variant <variant Opt > from use case “keep
velocity” point 2

remove variant <Alt 2> from use case “keep velocity”
point 3......

The car has a distance regulator Remove the <<variant>> tag from all use cases in the use
case diagram

remove the <variant Opt > tag and the </variant> tag from
use case “keep velocity” point 2......
11Copyright  Fraunhofer IESE 2002

Conclusions
4 Conclusions

In this report, we described how use cases can be applied for modeling the
requirements for a system family. Therefore, we showed how a particular single-
system use case approach can be extended to capture product line information
and especially variability. The approach has been illustrated by the running
example “cruise control system”. In our experience, use cases are a good means
to elicit, structure, and represent user-level information during the requirements
phase. Extended with variation points, they also enable people to easily switch
from single-system requirements-engineering practices to domain analysis. The
produced generic use-cases also support and guide application engineering (in
particular, its requirements phase). Thereby, each variation point must be instan-
tiated, that is, each generic use-case with variation points is systematically trans-
formed into a “normal” single-system use-case as it is expected by an individual
customer. In general, the described approach pushes the explicit consideration
of variability to the early phases of product-line development, which is required
to systematically manage and evolve a product-line infrastructure. With the right
decision model that documents the relationships and dependencies among vari-
ation points, the approach captures the traceability paths from variant use-case
actions down to variant implementation elements.

Acknowledgements

The work described herein was based on work done by our Hiwis Jörg Dörr and
Stefan Sollmann. Barbara Paech gave valuable comments on a preliminary ver-
sion and helped improve this report.
12 Copyright  Fraunhofer IESE 2002

References
5 References

[1] P. America and J. van Wijgerden. Requirements Modeling for Fami-
lies of Complex Systems. In F. v. d. Linden, editor, Third Interna-
tional Workshop on Software Architectures for Product Families,
LNCS 1951, Las Palmas de Gran Canaria, Spain, Mar. 2000.
Springer.

[2] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger,
R. Laqua, D. Muthig, B. Paech, J. Wst, and J. Zettel. Component-
based Product Line Engineering with UML. Component Software
Series. Addison-Wesley, 2001.

[3] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid,
T. Widen, and J.-M. DeBaud. PuLSE: A Methodology to Develop
Software Product Lines. In Proceedings of the Fifth ACM SIGSOFT
Symposium on Software Reusability (SSR’99), Los Angeles, CA, USA,
May 1999. ACM.

[4] J. Bayer, D. Muthig, and T. Widen. Customizable Domain Analysis.
In Proceedings of the First International Symposium on Generative
and Component-Based Software Engineering (GCSE ’99), Erfurt,
Germany, Sept. 1999.

[5] R. Biddle, J. Noble, and E. Tempero. Supporting Reusable Use
Cases. In Proceedings of the Seventh International Conference on
Software Reuse, Apr. 2002.

[6] A. Cockburn. Writing Effective Use Cases. Addison Wesley, 2001.

[7] H. Gomaa. Object Oriented Analysis and Modeling for Families of
Systems with UML. In W. B. Frakes, editor, Proceedings of the Sixth
International Conference on Software Reuse, June 2000.

[8] M. Griss, J. Favaro, and M. d’Alessandro. Integrating Feature Mod-
eling with the RSEB. In Proceedings of the Fifth International Confer-
ence on Software Reuse, Vancouver, BC, Canada, June 1998.

[9] G. Halmans and K. Pohl. Considering Product Family Assets when
Defining Customer Requirements. In K. Schmid and B. Geppert, edi-
tors, Proceedings of the International Workshop on Product Line
Engineering - The Early Steps: Planning, Modeling, and Managing
13Copyright  Fraunhofer IESE 2002

References
(PLEES’01). Fraunhofer Institute for Experimental Software Engineer-
ing (IESE), Sept. 2001. IESE-Report No. 050.01/E.

[10] I. Jacobson. Object-Oriented Software Engineering, A Use Case
Driven Approach. Addison Wesley, 1992.

[11] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse. Architecture,
Process and Organization for Business Success. Addison-Wesley,
1997.

[12] I. John and D. Muthig. Product Line Modeling with Generic Use
Cases. In Workshop on Techniques for Exploiting Commonality
Through Variability Managemen, Second Software Product Line
Conference, San Diego, USA, August 19-22 2002, http://
trese.cs.utwente.nl/splc2-variability/, Aug. 2002.

[13] I. John and D. Muthig. Tailoring Use Cases for Product Line Model-
ing. In Proceedings REPL’02 International Workshop on Require-
ments Engineering for Product Lines,RE’02, Essen, Sept. 2002.

[14] K. C. Kang, K. Lee, J. Lee, and S. Kim. Feature Oriented Product Line
Software Engineering: Principles and Guidelines. In Domain Ori-
ented Systems Development – Practices and Perspectives. Gordon
Breach Science Publishers, 2002.

[15] Object Management Group. OMG Unified Modeling Language
Specification, Version 1.4, September 2001.

[16] K. Schmid and T. Widen. Customizing the PuLSE Product Line
Approach to the Demands of an Organization. In R. Conradi, editor,
Software Process Technology, 7th European Workshop,
EWSPT’2000, LNCS 1780, Kaprun, Austria, Feb. 2000. Springer.
14 Copyright  Fraunhofer IESE 2002

Copyright 2002, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Document Information

Title: Modeling Variability with
Use Cases

Date: November 7,2002
Report: IESE-063.02/E
Status: Final
Distribution: Public

	Modeling Variability with Use Cases
	Abstract
	Table of Contents
	1 Introduction
	2 Single System Use Cases
	2.1 Requirements Engineering with Use Cases
	2.2 Use-Case Diagrams
	2.3 Textual Use Cases

	3 Tailoring Use Cases for Product Lines
	3.1 Product Line Concepts
	3.2 Variable Use Case Diagrams
	3.3 Variable Textual Use Cases
	3.4 Decision Modeling

	4 Conclusions
	Acknowledgements
	5 References

