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Abstract. This paper addresses the problem of aligning two unsynchronized
video sequences. We present a novel approach that allows for temporal and spa-
tial alignment of similar videos captured from independently moving cameras.
The goal is to synchronize two videos of a scene such that changes between the
videos can be detected automatically. This aims at applications in driver assis-
tance or surveillance systems but we also envision applications in map build-
ing. Our approach is novel in that it adapts an efficient information retrieval
framework to a computer vision problem. In addition, we extend the recent ECC
image-alignment algorithm to the temporal dimension in order to improve spa-
tial registration and enable synchro refinement. Experiments with traffic videos
recorded by in-vehicle cameras demonstrate the efficiency of the proposed method
and verify its effectiveness with respect to spatio-temporal alignment accuracy.

1 Introduction

Video alignment requires matching scene points in both space and time. Given two
or more video sequences, the goal is to find correspondences between projections of
the same scene point in a time-coherence framework so that frames from the different
videos can be registered.

Most related contributions either assume stationary cameras or consider settings of
jointly moving cameras in a fixed relative orientation [2,9,14]. With the exception of [9],
these works also consider a linear model for temporal displacements between videos.
Independently moving cameras have been studied either in the context of a constant
temporal offset between sequences (overlap in time) [13] or of a dynamic time shift
(no overlap in time) [3,10]. Since the latter poses difficult problems when moving
cameras accelerate irregularly, related contributions assumed nearly coincident cam-
era trajectories or the availability of metadata such as GPS coordinates [3,10]. While
most approaches to video synchronization attempt to align trajectories of interest points
[2,9,13,14], other methods rely on spatial intensity information [2,3,10]. To establish
the geometry between synchronized frames, models such as 2D homographies [2], fun-
damental matrices [2,9], 3D rotations [3], or affine projections [14] have been used.

In this paper we consider independently moving un-calibrated cameras whose trajec-
tories are similar. In particular, we consider in-vehicle cameras that are mounted behind
the windshield and record everyday street scenes. We aim at aligning videos that are
recorded on different days from within different vehicles driving the same route and
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Fig. 1. Top: An example of two video sequences [3]. Due to non-overlapping capture times, dif-
ferent moving objects appear in the sequences. Bottom: Examples of corresponding frames with
noticeably different scene content.

following approximately the same lane (see Fig.1). In this scenario, velocity and accel-
eration of the cameras naturally vary and the corresponding temporal mapping is highly
non-linear. Unlike previous works, the method we propose in this paper can even deal
with backward motion of cameras. It is fast enough to allow for online application and
the recorded 3D scene is not required to be static.

Our scenario is closely related to [3,10], yet, we consider completely different algo-
rithmic approach: we treat video synchronization as an information retrieval problem
where we apply highly efficient low-level descriptors and efficient subsequent matching
steps. As our video data sets are captured at sensibly different times, the first recorded
sequence can be preprocessed and indexed before the second sequence becomes avail-
able for analysis. This mimics a recent trend in computer vision where computations
are pushed back to an off-line task in order to accelerate online procedures [6,12]. In
our case, pre-processing focuses on efficiently storing the frames of the first sequence in
a database, indexing the database, and structuring the index appropriately. This way we
can handle the subsequent synchronization problem by means of querying the database
for content that is similar to a given frame in the second video sequence. Having thus
obtained a rough synchronization, we then address the spatial registration between syn-
chronized frame and the problem of subframe correction and propose a space-time ex-
tension of the recently introduced ECC algorithm [4].

Our presentation proceeds as follows: Next, we formalize the video alignment prob-
lem. Section 3 casts video synchronization as an information retrieval problem and
Section 4 presents our extension of the ECC algorithm to the space-time dimension.
In Section 5, we discuss efficiency and, in Section 6, we evaluate our approach on real
world sequences. Finally, Section 7 concludes this contribution.

2 Problem Formulation

Suppose we are given two image sequences Sr = Ir(x̂) and Sq = Iq(x), where the first
is a reference and the second is a query sequence and x̂ = [x̂, ŷ, t̂]t , x = [x,y, t]t denote
space-time points. The goal of video alignment is to match space-time points in the two
sequences. We are interested in a spatio-temporal mapping W (x;p) where p is a space-
time parameter vector, such that x̂ = W (x;p). Following [2], we define the mapping
model as W (x;p) = [Ws([x,y]t ;ps)t ,Wt(t,pt)]t where Ws() is the spatial- and Wt() is the
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time-warp parameterized by ps and pt respectively, and p = [pt
s, pt

t ]
t . For independently

moving cameras, both parameter vectors ps and pt vary along Sq. Yet, in the case of
irregular and backward motion, both vectors must be re-estimated for all query frames.

In order to efficiently handle such cases, we propose a new approach to video syn-
chronization that can also be viewed as an initialization scheme for the spatio-temporal
alignment. Let us suppose that the time mapping is roughly expressed through a finite
discrete-time signal T : IN→ IN, such that t ′= T (t) and t ′ is close to t̂. Towards the goal
of finding integer values T (t) for all time indices t, we consider this signal to be the out-
come of an information retrieval step. More specifically, we consider the whole set of
reference frames as a database of images and all input frames as query frames. Then,
by querying the database with an input frame assigned to time index t0, we retrieve the
corresponding frame assigned to time index t ′0 = T (t0).

Given the pair (t0,T (t0)) we adopt a time-local spatio-temporal model W (), which
permits us not only to spatially align synchronized frames, but to refine the time align-
ment result, thus providing subframe accuracy. Note that this model does not imply a
short-time sequence-to-sequence alignment but an image-to-sequence, or better frame-
to-subframe, alignment. Given a query frame Iq(x,y, t0) and the mapped pair (t0,T (t0)),
we are looking for a spatio-temporally warped image (subframe) from the short-time
sequence Ir(x̂, ŷ,T (t0)± μ), where μ is a small integer so that a predefined error crite-
rion between corresponding frames is satisfied. As a result, we obtain subframe accu-
racy without using expensive spatio-temporal manifold computations [2]. This is due to
the space-time extension in parameter-domain only. Next, we discuss how to determine
the time-mapping T () and the spatio-temporal model W ().

3 An IR Approach to Video Synchronization

We adopt an information retrieval approach to deal with the video synchronization prob-
lem. This allows us to preprocess the reference data without any knowledge of the query
sequence and to devise an efficient synchronization step. Similar to modern informa-
tion retrieval methods [8,12] we apply inverted index lists and weighted voting scores
in order to improve the reliability of the retrieval process.

Although most retrieval works in computer vision society rely on multidimensional
descriptors [7,12], our scenario permits the use of short-length descriptors. In order to
describe image patches we apply a geometric hashing method introduced in [6] for
astrometry. Specifically, let us assume that we have applied an interest point detector
[11] in an image and the locations of the interest points are available. Then we consider
quadruples of nearby interest points to characterize local image structures.

Suppose a quadruple (quad) of interest points x̄i = [x̄i, ȳi]t , i = {a,b,c,d,} as shown
in Figure 2. x̄a, x̄b are the control points which are defined by the most widely separated
pair of points. By s we denote the distance (diameter) between control points; ϕ denotes
the orientation of the diameter vector and c denotes the centroid of the quad. That is

s = ‖x̄a− x̄b‖, ϕ = tan−1 ȳb− ȳa

x̄b− x̄a
, c =

1
4∑

i
x̄i , (1a-c)

where ‖·‖ denotes the Euclidean distance. We then consider a local coordinate system
oriented and centered with respect to the control points x̄a, x̄b, so that their locations
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Fig. 2. (a) Geometric hashing using a quad structure; (b) query frame with extracted Harris points;
(c) and (d) valid quads of the query and corresponding reference frame; red dots are quad centers

coincide with (0,0) and (1,1), respectively. This allows for hashing the remaining
points x̄c, x̄d in the local coordinate system through their new coordinates (x′c,y′c),
(x′d ,y

′
d). Accordingly, any quad of nearby features can be coded using a length-four

hash-code (x′c,y′c,x′d ,y
′
d). In other words, each quad is represented as a 4D point space

and similar quads correspond to nearby points in this space. Similar to [6], we only
consider quads where the points x̄c, x̄d lie inside a circle of diameter s. Any different
order of points in pairs (x̄a, x̄b) and (x̄c, x̄d) creates a different symmetry which can be
easily resolved [6].

This novel local descriptor is translation-, scale-, and rotation invariant which is re-
quired to match quads between frames. Also, small localization errors from interest
point detection entail only small displacements of the hash code in the 4D feature space.

3.1 Indexing, Structure, and Retrieval

Once the reference sequence is available, we store each frame Ir(x̂, ŷ, t̂n) as an image In

in a database where n = 1,2, · · · ,N. We apply an interest point detector (e.g. Harris) to
all images, extract all valid quads and assign to the jth quad of the nth image its hash
code qn j = (x′c,y′c,x′d ,y

′
d)n j, where j = 1,2, · · · ,Jn. Since the discriminative power of the

quad descriptor is low, we do not apply vector quantization [12] but keep working with
continuous hash-codes. In addition, the short-length descriptor allows us to store all
hash-codes qn j and create an inverted index list assigning to every record its reference
set Rn j = {n,cn j,sn j,ϕn j}.

Given a query quad, we do not search for the nearest neighbor but look for similar
quads inside a range. This implies a range search problem and in order to quickly
answer a query we apply a kD-tree structure (k = 4). Searching for a corresponding
frame to a query frame can then be cast as a voting approach. Given a query image
and its quads qk,k = 1,2, · · · ,K, we query the database with all qk and any quad qn j

which is ε-close to qk votes for the nth image. By initializing all image scores vn to 0,
we increase the score of each retrieved image by vn← vn + f (qk,qn j), where

f (qk,qn j) =

{
wn if ‖qk−qn j‖< ε
0 otherwise.

(2)

The weights wn could be chosen to be the terms frequency - inverse document frequency
(TF-IDF) scores used in text retrieval [8]. However, since quads correspond to continuous



290 G.D. Evangelidis and C. Bauckhage

Fig. 3. Frame synchronization for the Rural sequence [3] based on pure retrieval results (left), af-
ter enforcing spatio-temporal consistency with R0 = 50 (middle) and after additionally enforcing
rotation consistency constraints with |ϕk−ϕn j|< π/12 (right)

vectors and thus are unique with high probability, the TF factor does not add to the preci-
sion. The IDF factor, on the other hand, improves the retrieval precision since quads that
appear in a similar form in many images are not indicative of image content. Hence, we
choose wn = log N

Nk
, where Nk is the number of the retrieved images after querying qk.

3.2 Spatio-temporal Coherence

In order to reject false positive matches before voting, we enforce a spatio-temporal
coherence constraint which agrees with our basic assumption that the trajectories of
two cameras are approximately coincident. Since we would like to retrieve that frame
which has been captured from the closest point to the viewpoint of the query frame, it is
justified to not allow matches between far apart quads. Therefore, for correspondence,
we require a quad in the database image to be inside a circular region whose center
coincides with the centroid of the query quad, i.e. ‖ck−cn j‖< R0. Due to large overlaps
between images this constraint favors both spatial and temporal coherence.

We can also enforce additional constraints like scale- and rotation-consistency by
enabling appropriate coarse coherence measures for s and ϕ respectively. However, we
found such constraints not to be as vital as the spatio-temporal one. Fig 3 shows the
synchronization result before and after enabling constraints.

4 Spatial Alignment and Synchro Refinement

The above rough video synchronization step results in a sequence T : IN → IN and
matched frames (t,T (t)). Ideally, however, synchronization would yield a sequence
T : IN→ IR+ providing subframe accuracy. To further refine synchronization results
and to spatially align synchronized frames, we extend a recent, robust image alignment
algorithm [4].

The Enhanced Correlation Coefficient (ECC) scheme as reported in [4] supposes
that Iq(x,y,t0) is the template image and Ir(x̂, ŷ,T (t0)) is the input image that must be
warped towards the alignment. If A = {xm|m = 1,2, . . . ,M} is the set of space-time
points of the query image, ECC then determines the corresponding set Â = {x̂m|x̂m =
W (xm;p), m = 1,2, . . . ,M} in the other sequence. This requires to explicitly define the
spatio-temporal mapping W (). Although the fundamental matrix would apply to our
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scenario, its use only characterizes pixel motions up to an epipolar line and entails extra
effort for computing dense correspondences [5]. Moreover, estimating the fundamental
matrix is susceptible to errors and moving cameras may increase this uncertainty. There-
fore, we approximate the spatial motion using a 2D homography model. Incorporating
only temporal shifts for the time warping and using homogeneous spatial coordinates,
we can write the space-time model as⎡

⎢⎢⎣
x̃
ỹ
w̃
t̂

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

h1 h2 h3 0
h4 h5 h6 0
h7 h8 1 0
0 0 τ 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x̂
ŷ
1
t0

⎤
⎥⎥⎦ , (3)

where x = x̃/w̃, y = ỹ/w̃, ps = [h1, . . . ,h8]t and pt = τ , being τ appropriately initialized
via the synchronization task.

ECC alignment aims at estimating the optimal parameter vector such that the cor-
relation coefficient between the query image and the warped retrieved image is maxi-
mized. Stacking the intensities of the points contained in A and Â we form the vector
iq = [Iq(x1), Iq(x2), · · · , Iq(xM)]t and the warped vector ip = [Ir(x̂1), Ir(x̂2), · · · , Ir(x̂M)]t ,
and let īq and īp be their zero mean counterparts. Then, the objective function that must
be maximized is the enhanced correlation coefficient defined as

ρ(p) =
ītq īp

‖īq‖ ‖īp‖
. (4)

In order to solve the maximization problem, we assume similar to [4] that a nominal
parameter vector p̃ is known, such that p = p̃ + Δp. Then, using a first order Taylor
expansion on īp, the ECC function amounts to

ρ(Δp; p̃) =
ītq[īp̃ + Jp̃Δp]

‖īq‖
√
‖īp̃‖2 + 2ītp̃Jp̃Δp+ ΔptJt

p̃Jp̃Δp
, (5)

where Jp̃ is the Jacobian of the vector īp with respect to parameters evaluated at p̃.
However, our extension requires the redefinition of this matrix. Its size is M× 9 and
the mth row is formed by the product ∇It

rJW where ∇Ir = [ ∂ Ir
∂ x̂ , ∂ Ir

∂ ŷ , ∂ Ir
∂ t̂ ]t is the spatio-

temporal gradient of image Ir evaluated at point W (xm; p̃) and JW is the Jacobian of the
transformation in (3) evaluated at p̃. Note that both spatial and temporal gradients build
on first-order central differences of smoothed intensities. As far as JW is concerned,
based on (3) we have

JW =

[
∂Ws
∂ps

0

01×8
∂Wt
∂τ

]
=

1
w̃

⎡
⎣x̂ ŷ 1 0 0 0 −x̂x −x̂y 0

0 0 0 x̂ ŷ 1 −ŷx −ŷy 0
0 0 0 0 0 0 0 0 w̃

⎤
⎦ . (6)

Despite the non-linearity of the function ρ(Δp; p̃), its maximization results in the fol-
lowing closed form solution

Δp = (Jt
p̃Jp̃)−1Jt

p̃
{

λ īq− īp̃
}

, (7)
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(a) (b) (c) (d)

Fig. 4. (a) A query frame and (b) the best retrieved frame; (c) the space-time alignment after 2
and (d) after 10 iterations; differences between frames are indicated in lawn-green and hot-pink

with λ being given by

λ =
ītp̃(IM−PJ)īp̃
ītq(IM−PJ)īp̃

, (8)

where IM is the identity matrix and PJ = Jp̃(Jt
p̃Jp̃)−1Jt

p̃ is a projection operator.

By translating this solution into an iterative scheme p{i} = p{i−1}+ Δp{i}, we can
approximate the solution of the highly non-linear problem of maximizing the function
in (4). This yields the optimum parameter vector for dense spatio-temporal correspon-
dences of subpixel and subframe accuracy. The complexity per iteration of this scheme
can be shown to be O(Mη2), where η is the number of parameters [4]. Figure 4 shows
an example of the resulting spatio-temporal alignment.

5 Efficiency

An important characteristic of our proposed framework is that we can exploit the se-
quential nature of video data which implies a coarse time-consistency for synchroniz-
ing successive frames. We thus propose to split the database of frames into β subsets
of successive frames and use a separate kD-tree for the quads of each subset. For a re-
gular split (Fig.5 left), we would need to investigate two adjacent subtrees whenever the
current results are inside a transition area. To avoid this, we allow overlap between ad-
jacent subtrees in the forest (Fig.5 right). This way, we need to query only one sub-tree
and have to change the tree index if the current retrieval results are above a threshold
(e.g. the median of the overlap area).

For range search problems, querying a 4D-tree structure requires O(n
3
4 + κ) where

n is the number of points and κ is the number of neighbors within range [1]. Adopting
the above splitting method, the query time reduces to O((n/β )

3
4 +κ/β ), which acceler-

ates the synchronization process without affecting its precision. For spatial alignment,
we can apply a pyramid based scheme [2] which not only accelerates the alignment
algorithm but also compensates for large displacements. Additionally, since gradient-
based alignment schemes mainly rely on high frequent parts of a signal, we ignore low-
frequency pixels and aggregate only those pixels around key points. Taking into account
the complexity O(Mη2), where M� η , the computational burden of spatio-temporal
alignment drastically reduces via these two modifications.
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Fig. 5. Subtrees of quads that belong to subsets of reference frames. Regular split (left) and split
with overlap (right).

6 Results

Following the methodology of [3], we evaluate the accuracy of the proposed synchro-
nization method via the resulting synchronization error. As we adopt an IR approach,
we compare our method with the recently proposed SIFT-flow algorithm [7] and the
method presented in [3]. SIFT-flow estimates temporal alignments by histogram match-
ing whereas spatial correspondences result from a pixel-based flow algorithm. The work
in [3] models synchronization as a MAP inference problem in a Bayesian network and
considers the common least-squares framework for spatial registration.

We experiment with three real-world video sequences recorded from within mov-
ing vehicles at different times, namely the Backroad, the Campus and the Highway
sequences [3]. Each dataset shows footage from accelerating and decelerating cars.
Ground truth is available in form of lower and upper bounds of synchronization in-
dices. If the sequence ft (t) represents any synchronization result and L(t) and U(t) are
the sequences of the lower and upper bounds respectively, the synchronization error is

e( ft(t)) =

{
0 if L(t)≤ ft(t)≤U(t)
min{| ft(t)−L(t)|, | ft(t)−U(t)|} otherwise

. (9)

The resolution of sequences is 540×720 pixels in space and 1500 frames on average
in time. The interest point detector we used is the Harris detector as described in [11].
We also tested other detectors, but our results were in accordance with the results of
[11] verifying the favorable repeatability of Harris detector. Each subtree of the forest
structure (Fig.5 left) efficiently stored the descriptors of 250 successive frames, being
the overlap equal to 20 frames. Based on equation (2) we considered a tolerance thresh-
old with ε = 0.07 while retrieval results were re-ranked by the space-time coherence
constraint with R0 = 50 pixels (the latter should be defined with respect to the video
resolution). Finally, ECC run within a coarse-to-fine framework in spatial domain only,
using a 4-level gaussian pyramid and running 5 iterations per level.

Table 6 shows the performance of the methods in terms of the synchronization error,
i.e. the percentage of values where e( ft (t)) > δ . We provide results for δ = 0 and δ = 1
to indicate the error variance. We observe that the proposed method performs better for
Highway dataset since the vehicle follows an almost straight road with high velocity;
the latter leads to fewer reference frames as candidate matches to a query. Moreover,
the low error variance favors the refinement, as ECC cannot cancel out strong synchro-
nization errors. In other words, even if the quad-based alignment returns false positives,
what seems to be important is the distribution of errors, being their concentration around
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Table 1. Synchronization Error (%)

Backroad Campus Highway Average

δ = 0 δ = 1 δ = 0 δ = 1 δ = 0 δ = 1 δ = 0 δ = 1

Quad-based 29.4 15.4 26.4 13.5 25.3 8.7 27.0 12.5
Quad-based-ECC 25.4 8.4 23.8 11.4 8.3 2.9 19.1 7.5
Diego et al. [3] 37.4 31.9 17.7 9.17 32.6 27.7 29.2 22.9
SIFT-flow [7] 27.7 13.6 18.5 11.7 25.7 12.9 23.9 12.7

Fig. 6. (Top) Alignment results and (bottom) pixel-wise differences after alignment by applying
(left) the proposed approach, (middle) SIFT-flow and (right) the method in [3]

zero particularly desired. On the other hand, in Campus and Backroad sequences there
appear near-camera “objects” and road turns; the former affects the quad-based align-
ment while the latter gives rise to homography uncertainties. The SIFT-flow method
provides slightly higher error scores while it obviously requires many more operations
due to the descriptor’s size (a 128-dimensional vector). Still, our method also exhibits
better performance than the method in [3] which actually incorporates GPS data.

Figure 6 illustrates change detection results obtained from the three approaches. The
proposed method detects scene changes with higher accuracy. SIFT-flow seems to be
affected by the presence of moving cars and creates artifacts and truncated objects. The
method in [3] performs poorly. As far as the complexity is concerned, the average syn-
chronization time of the proposed method is 0.22 sec per frame (Matlab implementation
on a 3GHz Pentium) and the space-time alignment requires 1.12 sec. As a result, we
envision online execution of the proposed algorithm in a GPU-based environment. The
retrieval time of the SIFT-based histogram matching is 9.46 sec per frame, while SIFT-
flow re-ranks the top-5 list in terms of the flow energy and register the frames in 160.5
sec (5× 32.1). The method in [3] compares each input image to all reference images
and the comparison is meaningless.

Please refer to http://xanthippi.ceid.upatras.gr/people/evangelidis/DAGM2011/
for alignment videos of the real sequences.
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7 Conclusions

A novel method for video alignment with applications in change detection was pre-
sented. This method enables the spatio-temporal alignment of similar videos captured
from independently moving cameras. We proposed an efficient method adopted from
information retrieval that applies short-length descriptors of frame content for video
synchronization and a spatio-temporal alignment scheme for accurate change detec-
tion between synchronized frames. We experimented with a series of real world traffic
videos captured from within moving vehicles. Our results verified both the efficiency
and the effectiveness of the proposed method. Although we aim at driver assistance and
security scenarios, the proposed framework obviously also applies to problems such as
automated 3D map building or visual odometry.

Acknowledgements. This work has been funded by ERCIM. We also thank the ADAS
group of the Computer Vision Center of Barcelona (Spain) for video data sharing and
Ferran Diego for discussion.
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