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Abstract

In this work, we are describing the coupling ofaready existing tire model with a quasi-1D flow deb to
describe the inflation gas cavity fluctuations isimple physical way. Since the gas cavity fludtuzd are due
to excitations - produced by transient tire defdiores based on the interaction with the road serfathe gas
model must be built to fully account for the tifeape variation. Thus, we derive the 1D Euler equatin a
torus having a time and spatial dependent crosioesearea. The equations are discretized with #efin
difference spatial discretization and integratedahyextended Lax-Wendroff scheme, which can hasallgce
terms.

The coupling between the mechanical response anihflation gas model is done in the following waye
transient shape of the tire appears as a souneingthe Euler equations. The local gas cavitytfiations on the
other act on the tire structure and on the rimhledtwhich produce entries into the resulting sf@rfdrces.

We are showing results for the overall non-lineadsdi for transient simulations (cleat runs) andamaparing
the results with and without dynamic gas cavity elahd with measurements.

Finally, we showing how the overall model can beedirized around a steady state. With the resuliimagr
model, a modal analysis can be performed and watifdehe so called ‘cavity mode’ and its dependemn
rotational velocity.
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1.Introduction

In the virtual development process, assessmenbptichization of vehicle suspension and chassisoperdnce
are based on the forces that are transferred byréhfrom road into the suspension. In this loahs$fer, the tire
is one of the most critical components becausditbéhas a strong nonlinear behavior and is veffjcdlt to
model.

ITWM's tire model CDTire supports engineers in abhall analysis scenarios used in modern vehicle
development processes from within modern multi bsidyulation (MBS) tools [1,2,5]. Special focus e telt
dynamics and interaction with 3D road surfaces wtely captures the vibrations in both amplitudel an
frequency behavior.

The CDTire/3D is structural 3D shell based beatddad model with sidewalls and belt that separatelgels
all functional layers of a modern tire [5]. In thisodel, the inflation pressure is modeled as aoumfstress
acting normal to the shell’'s faces. The pressurevealy depending on the application: prescribedhgyMBS-
tool to align to a constant pressure specifiedafgehicle or scenario, but it can also be modiflgdamically to
simulate e.g. a sudden pressure loss in a tiree alththors have also show in previous publicatitvas the
pressure dependency is modeled physical correct.

For many applications, this description of the atiin pressure as a time dependent quantity iscirff.
However, there are tire applications where it isdezl to describe the inflation gas using a dynaagequation
(Euler or Navier-Stokes). One such example is vithertire model is used in NVH (Noise-Vibration-Hangss)
applications where the frequency range extend®8@eHz range. For passenger car tires, a firstemaidhe
inflation gas is at around 200 Hz to 240 Hz, dejp@mndn tire size. This mode couples with the tireicture and
rim and vyields significant peaks in the spindlectorspectrum, which have to be considered in the NVH
assessment of a car.

In this paper, we are modeling the inflation gasa ¢ife by an isentropic compressible Euler equadiod couple
it to the tire dynamics in the nonlinear transiapplication range. After validation of the overaibdel by
comparison with respective measurements, the aiduer also describing how one can derive a linezdein
from the overall transient tire model, which canused in linear FEM based NVH-tools.



It should be pointed out that the tire rotation will yield a split in the aforementioned cavity mode (which
increases with rotational velocity) which is shown at the end of this paper.

2.Tire model

In this chapter, we sketch the modelling concepts of CDTire/3D, which has been used to include the gas cavity
model as a compressible Euler cavity model.

The basic concept of this modeling approach is that the local deformation behavior of a real tire should be
identically observed in the MBD tire model. This leads to the requirement that the model must have a detailed
materialized shell representation of sidewall and belt to feature the deformation behavior of the load bearing
structure. With this requirement, one can correctly feature both in-plane and out-of-plane (transversal or lateral)
deformation behavior. The density properties of the shell are represented by node masses with 3 degrees of
freedom, spanning the load bearing surface. Figure 1 shows a typical discretization:
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Figure 1: Node distribution of tire and cross section

The elastic properties of the shell are realized by an anisotropic elastic membrane part and adaptation of the
Kirchhoff-Love hypothesis for bending. The bending is implemented around all circumferential and lateral
edges, and around two diagonals of each cell. To constitute the bending laws, the 4-point cells will be divided
into their elementary triangles. Bending of adjacent cells relative to the edge is split into bending of two pairs of
triangles. The same is done for bending around diagonals of a cell. Figure 2 shows this principle and the finite
difference properties of this approach:

Figure 2: Triangle pairs used for cell edge bending and around diagonals of a cell (left two), finite difference
stencil of isotropic bending and non-linear reaction forces of center belt node radial unit displacement

The anisotropy of the tire is a direct consequence of the tire structure. The physical tire is built from different
component layers like inner liner, carcass, steel belt layers, cap plies, tread etc., with most of these being
reinforced by synthetic cords or steel wires. Each reinforcement layer introduces a materially preferred direction.
All the characteristic component layers described above have a separate representation in the model. The main
advantage of this description is that the model is completely configurable. One can, for example model an
arbitrary number of steel belt layers. Every steel belt layer can have a specific belt angle and specific local
stiffness properties. This is important for the modeling of truck tires, which can have a varying number of steel
belt layers and varying angles compared to passenger car tires. In a final pre-processing step, these layers are
condensed into one shell representation. Figure 3 shows this layering approach:
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Figure 3: Functional component layers of the tire



For more details on this modeling approach, we refer to [5].

3.Cavity model

From the different sources of interior and external vehicle noise, the cavity mode is probably the less understood.
This is partially due to the existence of complex interactions phenomena between the road and the tire. The
development of numerical models which allows predicting this effect is very important for the product design
development but a non-trivial task.

In the literature, several one dimensional models have been proposed to predict the cavity resonance frequency
based on some assumptions about the deflected geometry of the tire. Thompson [7] were able to identify the
fundamental acoustic resonance peak by expressing the 1D wave equation into a torus. Further works focused
Finite Elements models to numerically investigate the road-tire interactions. However, detailed Finite Elements
Methods lead to a long computational times and the coupling of gas flow model with less time consuming tire
models based on some ring models has been less investigated.

In this work, we first generalize the approach initially proposed by Thompson to describe the 1D gas flow in a
torus in order to fully account for the influence of cross-sectional variation, based on rolling a deflected tire, on
the gas flow properties and describing equations. To achieve that, we derive the Euler equations on a spatial and
time dependent torus. No additional hypothesis about the variation of the shape will be postulated.

Mainly by studying the work of Bourdarias &Gerbi [3] we derived the following equation for the deformable tire
torus cavity:

1
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In (1), p = p(¢,t) is the local density of the inflation gas, v = v(¢, t) is the local flow velocity, A = A(p,t) is
the local cross section area of the tire tube and p = p(p) is the local pressure as a function of the local density.
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Figure 4: Volume element in torus coordinate system

If the cross section area of the tire tube would be constant in spatial coordinate ¢ and in time t, the source term
on the right side of the equation (1) would be zero and we would have the standard homogenous Euler equation
on a torus.

If we introduce the abbreviations @ = p A and u = p A v and prescribe a functional dependence of the pressure
on the density p(p) = c? p and re-write this as p(a) = c? %, equation (1) can be re-written as equation (2) in
conservation form:

1
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A second advantage of this transformation is that now the dependency of A is formally only in the source term on
the right hand side of the second equation and there is no time derivative in the source term.

We are solving equation (2) by using an extended Lax-Wendroff scheme in which for the homogeneous part the
discrete Lax-Wendroff scheme will be used and for the source term a second order approximation in time.

4.Coupling of structural tire model and cavity model

For the coupling of the structural tire model with the cavity model, there is the problem that the underlying
physical regimes have different time scales for the dynamic response. From a numerical point of view, the two
regimes would be time-integrated by different time step sizes. If we consider a typical passenger car tire, the step
size to integrate the Euler equation of the gas cavity - taking into account the Courant-Friedichs-Lewy condition
(CFL) - is expected to be smaller than the step size typically used to integrate the structural tire model.



Considering this, we set up the overall integration scheme by an embedded co-simulation, in which the structural
tire model is the master. To integrate the structural tire model with an explicit Newmark method, a dedicated
variable step-size control is used. This scheme is sketched in Figure 5:

Dt = CDTire step size

Stuctural tire

model I I
(CDTire/3D) Calculate updates tire states fifie
t X(t)—» X(t+Dt) using Explicit Newmark —»X(t+Dt) t+Dt
Use inflation pressure P(X(t),t)
- = Calculate updates cross
Usetoinsertinthe source | ——————— 1 section areas A(X(t+Dt))
term of Euler equation
i
Use CFL condition to calculate
number of sub-steps and stepsize dt
Air cavity N A N N N I
model | | I I I I I I | I I I I |
t Y t+Dt time

dt

Interpolate A on sub-steps {n_t;"zfgteui:nca;::{ezzaetzslixfrom Calculate updated inflation

using A(t) and A(t+Dt) 9 . : pressure P((X+Dt),t+DT)
Wendroff scheme with stepsize dt

Figure 5: Co-simulation time integration scheme

Finally, the overall tire model including gas cavity model is embedded in the integration scheme of the MBS tool
where the vehicle model is integrated. Because the typical step size of the vehicle simulation is usually bigger
than the step size of the tire model, a similar co-simulation scheme is used between MBS master and structural
tire model. The non-linear, transient results shown in Chapter 6 have a dedicated stand-alone driver software
acting as MBS master.

5.Linearization around steady state rolling

Applying finite difference discretization on all spatial derivatives, the non-linear (discretized) tire and
(discretized) cavity model can be abbreviated by (3), where the first equation is the combined kinematical and
dynamical equation of the rim plus tire, with x as positional and velocity state and E containing the mass matrix
of rim and (discretized) tire states. Also, f denotes both the forces acting on rim and tire as well as the first order
kinematical equations. Furthermore, z is the (discretized) first order state of the cavity model (both mass and
momentum) and g denotes the right hand side of the spatially discretized rhs of the compressible Euler equation.

E x f(x,2)
z = gx,2)

For the linearization, a method similar to the so called ALE (Arbitrary Lagrangian Eulerian) method has been
used (see also [4,6] for a discussion on such methods). In this method, the stationary rolling tire is described in a
special spatial description instead of a material description. An important result in this method is the rise of
gyroscopic forces acting on the tire explicitly in the equation of motion (3). This is needed to introduce the
correct velocity dependent modal behavior into the linear system. The same mechanism is performed on the
compressible Euler equation. Formally, this introduces an additional parameter w, the angular velocity of the rim
around the rotating axis of the rim. It has to be pointed out that the linearization is performed around a ‘steady
state’, with all degrees of freedom (dof) of the rim kinematically constraint, except for the rim rotation (see [5]
for more detail). The new functions f, § contain the gyroscopic forces due to w, and f contains additionally the
inverted matrix E.

3
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Linearization yields
$= A(w) s, (5)

with A containing the respective jacobians of f, § and s containing x, z. Solving the eigenvalue problem (EVP)
that arises from (5), eigenvalues (mode frequencies and damping) and eigenvectors (mode shapes) can be
analyzed. In the following we show numerical examples of a typical 225/45 R 17 tire with an inflation pressure
of 2.5 bar. Figure 6 shows typical ‘radial’ modes of the non-deflected, non-rotating tire, where the deformation is
mainly in radial direction.



Figure 6: Radial tire modes R1 (76 Hz), R2 (97 HR3,(120 Hz), R4 (146 Hz)

Figure 7 shows typical ‘lateral’ modes of the naefleicted, non-rotating tire, but they contain adggnificant
amounts of radial and torsional deformations.

Figure 7: Lateral tire modes L1 (59 Hz), L2 (10)HZ (145 Hz), L4 (174 Hz)

It must be pointed out that including the rotatioeffiects adds significant asymmetry to the masidss such,

the resulting EVP is a complex EVP with complex m®dand frequencies. Visualization of the modes was
performed by extracting the positional part;¢f + ¥)e@t, for somet with w as the imaginary part of the
respective eigenvalue. Also, the inclusion of tbhenpressible Euler cavity model introduces zero rapds the
inflation gas is rotationally unconstraint (periotioundary conditions).

6.Results

In the following we show results of a 225/45 R && with an inflation pressure of 2.5 bar in vasacenarios.
If not stated specifically different, it is alwatiee same tire at the same inflation pressure ihjji

Figure 8 compares the simulation results of thestaont (prescribed) pressure cavity model agaimstdbal gas
cavity model, the compressible Euler cavity model the measurement. In this test, the tire is dftk (very
slowly with 5..10 mm/s deflection velocity) agairestigid, flat surface and the corresponding vattforce is
measured. While the tire is first deflected andntlsébowly unloaded - yielding a significant hystéses the
simulations are performed only with progressiveladtion, as the progressive deflection part is iiard (at
these very slow deflection velocities) against mrmd velocity changes. The unloading part feaguthe
hysteresis does depend on range and velocity aigthased here. The sudden non-linearity at arour@d@ N
preload is the start of the ‘tire ground out’, whée tire is deflected so much that the tire besgion starts to
have internal contact with the tire innerlinerte shoulder.
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Figure 8: Vertical load/deflection measurement agfaB cavity models

While below 10000 N preload, all cavity models glighe same result, starting from 10000 N preload an
significantly starting from 15000 N preload, thenstant pressure cavity model underestimates theécaker



stiffness, while both ideal gas and compressibleiEcavity model correctly capture the increasenitation
pressure due to the changing (decreasing) inflagmsvolume. The results for the ideal gas and cessjble
Euler cavity model correctly yield virtually ideoél results, as the quasi-static character ofakjeriment does
not introduce significant dynamics. As a first fgsthis shows that the inclusion of a cavity modah improve
the accuracy of the overall model’s predictive dalitées — even for quasi-static scenarios.

As a further step, we analyze a transient scen#lrocleat run experiment. In such an experimd,tire is
deflected to a prescribed preload (typically ontmt@ting drum) and the vertical displacement cédppalof the

test rig is then mechanically fixed to prevent atynamics other than rim rotation and tire dynamitise

velocity of the surface (typically a drum rotatiam)then increased to a prescribed value. The ciifasmooth
except for mounted obstacle, typically a chamfessdangular cleat (with at least the width of tine)tin either
90° or 45 ° orientation relative to the forwardetition. While the tire repeatedly hits the obstattle resulting
spindle forces are measured. This effectively tdmwdransfer behavior of the tire from road exmtato spindle
forces. Figure 9 shows the schematic setup ofat olm experiment:

Figure 9: Schematic setup of a cleat run experiment

As the tire needs an inflation gas for sensiblerajien, the only way to prove the influence of th#ation gas
on the measurement is to change the propertielseoinflation gas while the tire and the operatiogditions
remain identical, including the inflation gas prags Figure 10 compares the 90° cleat run measursme
(rectangular shape, 10 mm height, 20 mm width) tifeamounted on a 19” rim filled with air as welk helium,
both at 2.5 bar for 3 preloads (3000 N, 5000 N,07Rpand 3 velocities (20 km/h, 60 km/h, 90 km/h)dyum:
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Figure 10: Longitudinal (left) and vertical (righgpindle force of air and helium filled tire on 1®n
The above pictures are only meant to demonstratérdéimsient character of the experiment. Howevalyaing

these measurements in frequency domain vyields sonsgesting insights. Figure 11 shows the same
measurements as FFT signals in frequency domain:
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Figure 11: Longitudinal (left) and vertical (rigtgpindle force FFT of air and helium filled tire #8” rim

The most striking difference between air and helfilled tire response is at around 200 Hz. Thefiled tire
displays peak(s) that the helium filled tire does nThese frequencies can be explained by a reseitzration
of the inflation gas within the tire cavity, hentte name ‘cavity mode’. A rough estimate of thisgiuency can
be obtained by the formulf = =, where c is the speed of sound and R is raditiseofas column. For a tire
mounted on a 19” rim, a good estimate of the tagity radius is 0.28 m. With the speed of soun848 m/s of
air at 20° Celcius, the cavity frequency is 195 With the speed of sound of 981 m/s of helium &t @8Icius,



the cavity frequency is 558 Hz, which is well odesithe resolution of the test rig equipment. Ofrsepysome of
the measurements feature 2 distinct peaks, whizlklae to the splitting of the cavity mode as altedurotation
and this will be explained later.

A secondary difference at closer inspection isighsishift of the main frequencies (30 Hz longitali and 75
Hz vertical force response) with a clear tendemcintreasing the frequency for the helium fillegt tiThis can
be explained by interpreting the sound velocityaaneasure of a ‘stiffness’ in series between tirg @m. An
increase in sound velocity increases this ‘stiffhesmd as a result the frequency. In fact, thelidea cavity
model may be interpreted as a gas with infinitéffess’.

We now continue our comparison of the 3 cavity n@déthe 225/45 R 17 tire. A good estimate of hdius of
the air column is 0.24 m, which yields an estimatadity frequency of 227 Hz. Figure 12 compares3twavity
models against a 90° cleat run measurement (red@mshape, 20 mm height, 20 mm width) at 2400 &gad,
2.5 bar and for 30, 60, 90 km/h in frequency donfRiBD) on a drum surface:
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Figure 12: 90° cleat run vertical force PSD’s af(lgft), 60 (middle) and 90 (right) km/h against&vity models

The measurements again show the cavity mode behavaround 225 Hz. While it is (almost) a singyteak
for 30 km/h, this peak splits into 2 peaks at 60tkiand 90 km/h with the split at 90 km/h being #igantly
larger. This indicates that the split is a diragtdtion of the velocity. An explanation for thisHaeior will be
discussed later. The only cavity model that cartiwrapthis behavior is the compressed Euler cavitgeh Both
constant pressure cavity model and ideal gas camdgel fail to feature the force response amplitat¢he
cavity frequency range. This means that in ordeextend the frequency behavior prediction capabigyond
200 Hz, the compressible Euler cavity model is eeeds a secondary remark, both constant presswigy c
model and ideal gas cavity model show an incremasleei main frequency at ~80 Hz, which is due toitffiaite
‘stiffness’ of these cavity models.

Interestingly, a split in cavity mode frequency daoethe tire’s deformation is not featured in trextical force
response. Figure 13 compares the 3 cavity modelssiga 90° cleat run measurement (rectangularestp
mm height, 20 mm width) at 30 km/h velocity, 2.5 bad for 2400, 4800, 7200 N preload in frequenasain
(PSD) on a drum surface:
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Figure 13: 90° cleat run vertical force PSD’s ab@4left), 4800 and 7200 (right) N against 3 cawtydels

For a better understanding, we move to the restilise linearization. Figure 14 shows the modeudrgy over
the mode number of the structural modes of thewite constant pressure cavity model and with caragible
Euler cavity model. It must be pointed out that ¢benpressible Euler cavity model yields additiomaldes that
the constant pressure cavity model does not: zedemof the circumferentially unbounded (periodicifdary
conditions) cavity states and the cavity modedfitger the non-deflected, non-rotating and rirefixwheel, the
cavity mode frequency here is 226 Hz. For the sdl@mmparison, these additional modes were elirathfitom
the following mode numbering, so that the rest baneasily compared. The cavity modes can be easily
identified by a very small real part of the eigeloea(small damping). The eigenvalues with negaitivaginary
part (negative frequency) are shown as positivquieacies (conjugate complex eigenvalue) and thiepaaa
(damping) is not shown here. However, the sortihddne by ‘smallest magnitude’, so the damping dee®
an impact on the numbering.
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Figure 14: Modal frequencies of non-deflected, nmtating, rim-fixed wheel (without cavity modes)

The conjugate complex modes for this scenario demstical absolute frequency and damping valuesjltiag
in double entries for each mode number. As theyehdentical absolute frequency, this is not visitiany
modes show up as 2 mode rhempairs; these are the modes that have a second linear independent mode shape
(same shape but with a different beginning angbeirgd the rotational axis), but this does not holdal modes.
E.g., mode 1 (LO, constant lateral deformationjnade 4 (CO, constant circumferential deformatiae)unique
modes (apart from conjugate complex) as any ratatiothe shape around the rotational axis yieldsshme
shape. Interestingly, these 2 modes feature almmsifference between the cavity models as themelohange
for these modes is zero (or very small). Otherwtise compressible Euler cavity model reduces thguency of
the corresponding mode of the constant pressuréycenodel. This also explains nicely the effect mai
frequency reduction of the main frequency for tbha-inear, transient model in Figure 12: the assted mode
has a lower modal frequency due to the coupling tie compressible Euler cavity model.

Figure 15 compares the modal frequencies obtainé tve compressible Euler cavity model for the non
deflected, rim-fixed wheel at rotational velocitiesrresponding to 0, 10, 20, 30 m/s. As explaimeflj2,4,6],
the gyroscopic effects yield a split in frequen&ind of Doppler’s effect) with increasing velocitilowever,
that means that in Figure 15, the ordering of modebers (‘smallest magnitude’) yields a possibl&dwof
shapes, meaning the mode shapes at a certain mod®nmay not be the same (and generally aren't).
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Figure 15: Modal frequencies of non-deflected, fixed wheel (without cavity modes) at 0, 10, 20,8

The frequency split due to gyroscopic effects aliaés the ‘pair wise’ ordering of certain modes.iAwepth

analysis of the split per mode shape is worth itigasng, but not performed here. But this depictinakes one
important fact clear: there is no monotone depecel@f frequency content on velocity. At certain medor

frequency ranges) the higher velocity may haveelacgntent, at others smaller or vice-versa.

Lastly, Figure 16 looks at the split due to rotatior the cavity modes (ignoring the zero modes):
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Figure 16: Modal cavity frequencies of non-defleé¢tem-fixed wheel at 0, 10, 20, 30 m/s

This is a clear message: the split due to rotaifaihe cavity modes of the non-deflected tire Imaar function
of the rotational velocity. It also fits nicely withe split in vertical force frequency of the norear, transient
tire and cavity model during cleat runs.

7.Conclusion

The authors have shown how to extend an existingtsiral tire model with a dynamic gas cavity modéie
gas cavity model has been modeled by a 1D nontliaker equation with a source term representiegetifect
that the cross section of the gas cavity can vasgpace and time. Projected to the tire the cres$os variation
is representing the tire deformation due to rollargd dynamical loading running for example overuaeven
road.

Additionally, the coupling of both physical systentise structural tire model and the inflation gasity model
has been discussed.

From the overall non-linear model, the authors hsketched a method to derive a linear model oftittee
around a steady state.

Results and respective correlation to measurentiaws been shown for the transient model and fodéned
linear model.

For the transient model we simulated a cleat rypegrent on a drum test rig and compared this latee
measurement. It could be successfully shown tretite model with dynamic gas cavity covers all ljatve
effects of the so-called cavity mode and fits te theasurements also quantitatively in an impressizg It
could also be shown that the inclusion of the dyicagas cavity model improves the overall accuratcthe tire
model for example in the vertical stiffness beha¥ar very high preloads, but also in the frequenesponses
for typical tire modes far under the cavity freqogn

Using the derived linear model a modal analysisshasen performed and the results have been distudtfea
focus on rotational velocity.

As a perspective, the authors are currently workingan equivalent second order formulation of tae ¢avity
model which allows to export the overall linear rabds a second order MCK system, which can be itagan
FEM based NVH tools like Nastran.
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