

Developing µController-Systems with UML
A MARMOT Case Study

Author:
Christian Bunse

IESE-Report No. 111.06/E
Version 1.0
September 18, 2006

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competitive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach (Executive Director)
Prof. Dr. Peter Liggesmeyer (Director)
Fraunhofer-Platz 1
67663 Kaiserslautern

Introduction

Copyright © Fraunhofer IESE 2006 v

Abstract

According to its proponents, model-based and component-oriented software
development has the capacity to compete successfully, and perhaps in many
cases displace, traditional commercial development methods even for embed-
ded system development. In order to investigate these claims, the development
of a small embedded system (i.e., control of an exterior mirror) using the
MARMOT development approach is presented. To evaluate the promised ease
of reuse by following a component-oriented approach the components of the
mirror system are used in the context of different projects. Thereby, several as-
pects of reuse, application size, adaptation, and development effort are quanti-
fied. This analysis reveals that model-based and component-oriented develop-
ment performs well for small embedded systems. This allows the conclusion
that applying model-based development for small embedded systems lead to
adaptable systems and a higher-than-normal reuse rate.

Keywords: Embedded Systems, UML. Case Study, MARMOT

Introduction

Copyright © Fraunhofer IESE 2006 vii

Table of Contents

1 Introduction 1

2 Related Work 3

3 Research Approach 4
3.1 Research Questions 4
3.2 Research Procedure 5

4 Overview of MARMOT 7
4.1 Principles of MARMOT 7
4.2 MARMOT Process Model 8
4.2.1 Decomposition 9
4.2.2 Embodiment 9
4.2.3 Composition 9
4.2.4 Validation 10
4.3 The Basic MARMOT Product Model 10

5 CASE-Study 12
5.1 Mirror-Control System 12
5.2 System Description 12
5.3 Hardware 14
5.4 Embedded Software 15
5.4.1 Requirements Modeling – Context Realization 15
5.4.2 Application Engineering 21
5.4.3 Embodiment & Model Transformation to C 51
5.4.4 Testing and Debugging 53
5.5 Follow-Up Projects 54

6 Results 56

7 Summary and Conclusions 59

References 60

Introduction

Copyright © Fraunhofer IESE 2006 1

1 Introduction

One of the most important motivations for the application of object technology
and subsequently component-based software engineering techniques in prac-
tice is that new applications can be created with significantly less effort than in
traditional approaches, simply by assembling the appropriate prefabricated
parts. However, contemporary object and component technologies are still
some way from realizing the vision of rapid application assembly, in particular
when embedded system development is considered. Even today, a high number
of embedded system development projects are targeted at small systems with
8/16 bit processors and limited memory resources. However, the complexity of
these systems is continuously increasing. Thus, engineers used to applying in-
formal but structured development techniques are now resorting to investigate
the use of object-oriented development methods, component technology, and,
as a unifying link, the application of UML [25] as the emerging standard nota-
tion in software development. The underlying hypothesis is that the use of such
techniques will help to control the complexity of embedded systems more eas-
ily, to improve maintainability, adaptability and portability, as well as time-to-
market [11].

Component-based development and reuse are as attractive in the embedded
system domain as they are in other software domains, and they may be consid-
ered the single most important basis technologies to appease the ever increas-
ing demand in new and more complex systems. Component-based develop-
ment methods, technologies, and tools have come along way in the past years
to meet the increasing demand of most con-temporary information systems.
However, in the embedded domain, the impact that component technology, in
particular, and software engineering methods, in general, could have, is not
readily exploited for an apparent reason: The disciplines that are dealing with
embedded system development, mechanical-, electronic-, and software engi-
neering, are not in sync. Moreover, most embedded systems are implemented
in ways leading to the conclusion that the last ten years of advances in the field
of software engineering were entirely meaningless for the embedded world.
This situation cannot really be attributed to one of these fields alone. As a mat-
ter of fact, engineers are struggling hard to master the pitfalls of modern, com-
plex embedded systems, but they only approach the problems from their indi-
vidual perspectives. What is really lacking in embedded system development is a
vehicle to transport the recent advances in software engineering and compo-
nent technologies into the embedded world in a way that engineers of the
three disciplines can actually communicate and understand each other.

Introduction

Copyright © Fraunhofer IESE 2006 2

This report introduces and describes a new system development method,
known as MARMOT, intended to provide all the ingredients to master the
multi-disciplinary effort of developing component-based embedded systems. A
development method provides templates, models and guidelines for the arti-
facts describing a (software) system, the product model, and how these how
these artifacts are related throughout the development life-cycle, the process
model. Furthermore, the paper presents a case-study on applying MARMOT to
the development, adaptation and reuse of components in the context of small
embedded systems. In specific, a control system for an exterior car mirror is de-
veloped, ported to other target platforms, adapted concerning changed func-
tionality, and reused within a larger project. To validate expected benefits con-
cerning reuse, time-to-market, adaptability, etc. several aspects are quantified
and analyzed such as number and size of models, amount of reuse, defect
numbers, etc.

The remainder of the report is structured as follows: In Section 2, a overview on
related work is presented, while Section 3 describes the research methodology
as well as the relevant research questions, followed by a description of the
MARMOT development process in Section 4. Section 5 presents the case study
in more detail including example UML models, and Section 6 presents the
evaluation of the case study and describes its quantitative results. Finally, Sec-
tion 7 presents a brief summary, conclusions drawn, and the hypotheses for fu-
ture research.

Related Work

Copyright © Fraunhofer IESE 2006 3

2 Related Work

The growing complexity and the short release cycles of embedded systems
stimulated the transfer of model-driven development techniques to the domain
of embedded systems. Research in this area focuses primarily on two general
directions: Modeling Languages for embedded system design, and approaches
using standard notations such as UML.

As a first step, formal languages such as Z [16], functional decomposition [23],
or state-based notations [10] were used. However, these approaches are lack-
ing proper tool support, and do not facilitate reuse on higher level of abstrac-
tions than the implementation level. Newer developments such as MATLAB [21]
or MODELICA [8] provide sufficient tool and (additional) methodological sup-
port. However, they lack effective means for reuse and adaptation compared to
those provided by component-oriented approaches. Recently the Unified Mod-
eling Language (UML) [25] was adapted for modeling embedded and real-time
systems. However, UML still lacks precise semantics unlike more formal model-
ing notations such as SDL, and being a mere language, it requires a systematic
method which defines what should be modeled, when and how it should be
modeled.

Approaches such as OMEGA [12], HIDOORS [29], or FLEXICON [19], or the
work presented in [6], [7], [17], [20], [27] define development methods for real-
time and embedded systems using the UML. Although, a step in the right direc-
tion, they often do not use the enhanced features of UML 2.0 concerning em-
bedded systems, do not establish systematic means for handling complexity,
nor do they address reuse according to the component paradigm. In addition,
they often neglect the specific requirements of small embedded systems that
run on a microcontroller and that have scarce resources.

Another problem, as stated by Khan et al [13], is that the support for mapping
UML (2.0) models to code is still inadequate. Typically, embedded system de-
velopers are used to developing systems according to the procedural paradigm.
In general, a complete transition to object- or component-orientation is impos-
sible due to the required time and space efficiency of the product, or due to
standards to be followed (e.g., DO-178B in the civil aviation domain). However,
embedded system development would benefit from the advantages of MDD
[13] if the advocated technologies can be integrated into the existing develop-
ment processes (i.e., keep C as target language). But, most approaches and
tools either map models to languages such as Java (i.e., resulting in run-time
performance, memory, or timing problems [13]), or use straightforward map-
ping strategies (UML to C) that neglect concepts such as inheritance or dynamic
binding.

Research Approach

Copyright © Fraunhofer IESE 2006 4

3 Research Approach

By applying MDD and CBSE, engineers expect an increase of model or compo-
nent reuse, and, thus, shorter time-to-market, improved adaptability, and
higher quality. However, introducing MDD and CBSE principles in an organiza-
tion is generally a slow and incremental procedure [18]. Typically a company
will build some reusable components in the beginning, and, in case of success-
ful reuse, more and more code will be encapsulated into reusable components.
The motivation for performing the case-study presented in this paper is to in-
vestigate the relationship between initial component developments and later
reuse for a real system, as well as the impact of reuse technologies on quality
and time-to-market.

3.1 Research Questions

Several factors concerning the development process and its resulting product
are recorded throughout the case study in order to gain knowledge about us-
ing MDD and CBSE for the development of small embedded systems. The re-
search questions of this case-study focus on two key sets of properties of MDD
in the context of component-oriented development. The first set of questions
(Q1-Q4) will lead to an understanding of basic and/or general properties of a
methodological approach to embedded system development:

• Q1: Which process was used to develop the system?
Answering this question will give a brief qualitative description of the
method used for developing the initial ‘Exterior Mirror System’.

• Q2: Which types of diagrams have been used?
The UML standard, in its current form, offers 13 different diagram types for
modeling software system properties. Are all diagram types needed within
system development or is there a specific subset sufficient for a domain.

• Q3: How were models transferred to source-code?
Embedded system developers typically work in a procedural language envi-
ronment (i.e., C). They often have difficulties to start MDD using UML since
the transformation of UML concepts into C language concepts is tricky [13].

• Q4: How was reuse applied and organized?
Reuse is a central element of MDD and CBSE and it is generally recognized
as the most relevant factor concerning quality, time-to-market, and effort.
How-ever, reuse does not simply happen, rather it must be systematically
built-in and supported (i.e., components have to be developed for reuse).

Research Approach

Copyright © Fraunhofer IESE 2006 5

The second set of questions (Q5-Q9) is concerned with the resulting product of
the MDD/CBSE approach. The developed systems are examined from a cus-
tomer's point of view, with respect to code-size, defect density of the released
code, and time-to-market.

• Q5: What is the model-size of the systems?
MDD often has the smell of creating a large overhead of models even for
tiny projects, assuming more complexity and problems in understanding and
communication. Model-Size is calculated by using standard metrics as de-
fined in [15].

• Q6: What is the defect density of the code?
Defect density is computed per one hundred lines of code.

• Q7: How long did it take to develop the systems and how is this effort dis-
tributed over the requirements, design, implementation, and test phases?
Savings in effort are one major promises of MDD and CBSE [28], though it is
expected that these do not occur immediately (i.e., in the first project), but
in follow-up projects (re-) using pre-defined components. Effort is measured
for all development phases to identify where savings are realized.

• Q8: What is the size of the resulting systems?
In embedded-system development, memory space is a sparse resource (e.g.,
often below 10Kbyte) and program size of uttermost interest. MDD for em-
bedded systems will only be successful if the resulting code size, obtained
from the models, is small.

• Q9: How much reuse did take place?
Reuse is one of the central success factors of MDD and CBSE. However, re-
use has to be viewed as an upfront investment which pays-off in follow-up
projects. Thus, reuse must be examined between projects and not within a
project.

3.2 Research Procedure

The focus of this paper is on methodological support for the component-based
and model-driven development of embedded systems with UML. The assump-
tion thereby is that by using a systematic method, such as MARMOT, efficient
reuse, including other benefits such as shorter time-to-market, can be obtained.
However, such claims need to be evaluated (e.g., in form of a case study). Since
it is expected that the benefits of MDD and CBSE are first realized in follow-up
projects, an initial mirror control system was developed and documented, to be
used as basis for further application engineering.

For the case study, students of the Department of Computer Science at the
Technical University of Kaiserslautern used the initial system documentation and
MARMOT as method in the context of different embedded systems develop-

Research Approach

Copyright © Fraunhofer IESE 2006 6

ment projects. The students were taught basic software engineering principles,
object-oriented development techniques, and UML. All students already had a
good, industrial-level, knowledge of developing micro-controller based applica-
tions due to part-time employment at local companies. Students knew that
data would be collected and that an analysis would be performed on the data.
However, they were unaware of the concrete nature of questions/hypotheses
being tested.

The student projects were organized according to typical reuse-situations in
component-based development. In the context of these projects, a number of
measurements to answer the research questions of section 3.1 were per-
formed. In detail, the data comprised the following measures:

• Model-Size measured using the absolute and relative size measures pro-
posed in [15]. In addition, figures on the number of classes in a model
(NCM), number of components in a model (NCOM), number of diagrams
(ND), etc. were used. In an embedded project NCOM describes the number
of hardware and software components within the system. Since CBSE views
every entity with a significant functionality as a component, NCM is used to
denote the number of software components. In general, these metrics are
comparable to the traditional LOC or McCabe’s cyclomatic complexity
(MVG) metric for estimating the size and nesting of a system’s program code
[14]. They can be used to compare sizes of implementations.

• Code-Size measured in normalized LOC (i.e., without comment and blank
lines).

• The amount of reused elements within a system is described as the propor-
tion of the system which can be reused without any changes or with small
adaptations. Measures are taken at the model and the code level and are
normalized using the system size (model, LOC).

• Defect density is measured in defects per 100 LOC.

• Development effort and its distribution over development phases are meas-
ured as development time. Since all projects are quite small, development
hours are used as the unit for measurement. Effort data was gathered by fil-
ing effort sheets every day.

Overview of MARMOT

Copyright © Fraunhofer IESE 2006 7

4 Overview of MARMOT

Reuse is a key success factor in industry today, and it can be seen as a major
driving force in hardware and software development. Reuse is pushed forward
mainly by the growing complexity of systems. This section introduces a meth-
odology for the component-based development of embedded systems, referred
to as MARMOT that is specifically geared toward facilitating reuse in embedded
systems development. MARMOT is an extension to the KobrA method [2], a
component-based development framework for information systems, and it
adds concepts addressing the specific requirements of developing embedded
systems.

4.1 Principles of MARMOT

Composition is a key activity in component-based development. MARMOT rec-
ognizes this fact in that it advocates composition as the single most important
engineering activity. A system can be viewed as a tree-shaped hierarchy of
components, in which the parent/child relationship represents composition, i.e.,
a super-ordinate component is composed out of its contained sub-ordinate
components.

Structural Model
(UML class/object dia

Functional Model
(operation specifications)

Behavior Model
(UML statechart diagram)

Specification

Structural Model
(UML class/object diag

Interaction Model
(UML collaboration

diagrams)

Activity Model
(UML activity diagrams) Realization

K
obrA

C
om

ponent

Structural Model
(UML class/object dia

Functional Model
(operation specifications)

Behavior Model
(UML statechart diagram)

Specification

Structural Model
(UML class/object diag

Interaction Model
(UML collaboration

diagrams)

Activity Model
(UML activity diagrams) Realization

K
obrA

C
om

ponent

Figure 1 MARMOT Component Model

A long established principle of software engineering is the separation of the de-
scription of what a software unit does from the description of how it does it.

Overview of MARMOT

Copyright © Fraunhofer IESE 2006 8

This facilitates a "divide-and-conquer" approach to modeling in which a com-
ponent can be developed independently. It also allows new versions of a com-
ponent to be interchanged with old versions provided that they do the same
thing and abide by the same interface. Following this principle, each compo-
nent within a system can be described through a suite of models, for example
UML diagrams or other textual documents, as if it was an independent system
in its own right (see Figure 1).

4.2 MARMOT Process Model

The core principle of MARMOT is separation of concerns, so it associates its
main development effort with two basic dimensions that map to four basic ac-
tivities [2]. These are depicted in Figure 2:

Figure 2 Development dimensions of MARMOT

Overview of MARMOT

Copyright © Fraunhofer IESE 2006 9

• Composition/Decomposition dimension.
Decomposition follows the “divide-and-conquer” paradigm, and it is per-
formed to subdivide the entire embedded system into smaller parts that are
easier to understand and control. Composition represents the opposite activ-
ity, which is performed when the individual components have been imple-
mented, or some others reused, and the system is put together.

• Abstraction/Concretization dimension.
This is concerned with the implementation of a system and a move toward
more and more executable representations. The activity is called embodi-
ment, and it turns the abstract system represented by models into more
concrete representations that can be executed by a computer. The move
back is called validation. This activity checks whether the concrete represen-
tations are in line with the abstract ones.

4.2.1 Decomposition

An embedded system development project always starts above the top left-
hand side box in Figure 2. The box represents the entire system to be built. Be-
fore the specification of the box, the concepts of the domain or the physical
world in which the system is supposed to operate have to be determined. This
comprises descriptions of all entities relevant in the domain including standard
hardware components that will eventually appear on the right-hand side to-
wards concretization. In embedded systems, these implementation-specific enti-
ties often determine the way in which a system is divided into smaller parts [9].
During decomposition, newly identified logical parts of the system are mapped
to existing components. Whether these are hard- or software does not play a
role at this early phase because of the way all components are treated in terms
of collections of descriptive artifacts, that is, models.

4.2.2 Embodiment

During decomposition, the shapes of each identified individual component are
defined in an abstract and logical way. The system, or its parts thereof, can
then be moved towards more concrete representations. This means they be-
come platform specific.

4.2.3 Composition

After having implemented some of the boxes and having some others reused,
the system can be assembled according to the abstract model. Therefore, the
subordinate with their respective super-ordinate boxes have to be coordinated
in a way that exactly follows the component standard previously described.

Overview of MARMOT

Copyright © Fraunhofer IESE 2006 10

4.2.4 Validation

A final activity, validation, is carried out in order to check whether the concrete
composition of the embedded system corresponds to its abstract description.

4.3 The Basic MARMOT Product Model

With MARMOT, components are built on the same fundamental principles that
are coming from object technology. Therefore components follow the princi-
ples of encapsulation, modularity and unique identity that most component
definitions put forward [28], and these lead to a number of obligatory proper-
ties:

• Composability is the primary property of a MARMOT component, and it can
be applied recursively: components make up components, which make up
components, and so on.

• Reusability is the second key property that can be separated into develop-
ment for reuse, which deals with how components have to be specified and
treated, so that they can be reused, and development with reuse, dealing
with the integration and adaptation of existing components in a new appli-
cation.

• Having unique identities requires that a component may be uniquely identi-
fiable within its development environment as well as within its runtime envi-
ronment. MARMOT provides the principles for that.

• Modularity/encapsulation refer to a component’s scoping property as an as-
sembly of services, which is also true for a hardware component, and as an
assembly of common data, which is true for the hardware and the software
parts of an embedded component. Here, the software only represents an
abstraction of the hardware that essentially provides the memory for the
data.

• An additional important property is communication through interface con-
tracts which becomes feasible in the hardware or embedded world through
typical software abstractions. Here, the additional hardware wrapper of
MARMOT realizes that the typical hardware communication protocol is
translated into a typical component communication contract.

Composition along the Composition/Decomposition dimension turns a
MARMOT project into a tree-shaped structure with consecutively nested ab-
stract component representations. Such a tree is called containment tree. Every
box in the tree, each representing a component or a system in its own right, is
made up of a component specification and a component realization. The speci-
fication is a suite of descriptive artifacts that collectively define everything ex-
ternally knowable about a component. These descriptions fully specify a com-

Overview of MARMOT

Copyright © Fraunhofer IESE 2006 11

ponent in a way that it can be assembled in a system and used by the system.
The realization is a suite of descriptive artifacts that collectively define how a
component is internally realized. According to the composition principles, com-
ponents can be made up of other components. Any component in a MARMOT
containment tree can therefore be a containment tree in its own right, and, as
a consequence, another MARMOT project.

CASE-Study

Copyright © Fraunhofer IESE 2006 12

5 CASE-Study

5.1 Mirror-Control System

The Mirror-Control system is an embedded system composed of electrical and
mechanical components and is used to control the movement of an exterior
mirror of a car (see Figure 3). The system allows the mirror to be moved hori-
zontally and vertically to a convenient position for a driver. Cars supporting dif-
ferent driver profiles can store the mirror position and recall as soon as the pro-
file is activated. Within this paper a simplified version is used in order to illus-
trate the approach without going into the very detail.

Figure 3 Exterior Mirror

5.2 System Description

The Mirror-Control system was realized in a simplified version using a microcon-
troller, a button, and two servos (aka the Servo-Control System). The microcon-
troller (i.e., an ATMELTM Mega8) has limited performance (i.e., 1-8 Mhz) and I/O
capabilities. In detail, the system controls two servo-drives1 via potentiometers,
and indicates their movement (-45 — +45 degrees) on a small LCD panel.

In detail, this system requires the microcontroller to read in values from the po-
tentiometers (requires an analog-digital conversion), converts them to the turn-

1 A servo drive receives a command signal from a control system, amplifies the signal, and transmits electric

current to a servo motor in order to produce motion proportional to the command signal. Typically the
command signal represents a desired velocity. A velocity sensor attached to the servo motor transmits the
actual motor velocity to the servo drive. The servo drive continually compares the actual motor velocity with
the commanded motor velocity to generate an output to the motor that will tend to correct any error in the
velocity. [wikipedia]

CASE-Study

Copyright © Fraunhofer IESE 2006 13

ing degree, and generates the needed servo control signals (i.e., this requires
PWM signal generation using timers and interrupts), while at the same time in-
dicating movement and degree on the LCD display. In addition, the system can
store a position which can be recalled by simply pressing the button. Positions
are stored by pressing the button for more than five seconds. Storing and re-
calling is also visualized on the LCD display. Figure 4 shows the system based
on the MyAVR-Board.

Servos

LCDPotentiom
eter

Button

Figure 4 Example System

CASE-Study

Copyright © Fraunhofer IESE 2006 14

5.3 Hardware

Figure 5 shows a simplified circuit diagram of the board used for the Servo-
Control system. However, the diagram, it is not complete. In detail, external
components such as the servos or the LCD display are missing. In addition, un-
used components, which are part of the commercial (e.g., three LEDs and a
beeper) are still contained. The missing components are meant to be attached
to the female connectors. Connections between the processor, the button, and
the potentiometers are simply realized using patch cables.

Figure 5 Electronic Circuit – Servo Control [myAVR06]

The control circuitry inside the servo must receive a stream of pulses whose
widths may vary between about 1 ms and 2 ms. These pulses must occur at in-
tervals of about 10 to 20 ms. A potentiometer coupled to the rotation of the
output shaft produces a voltage corresponding to the angle of the shaft. The
control circuitry compares the “average” (i.e., low pass filtered) voltage of the
control signal with the voltage from the potentiometer, and the shaft rotates
until the two voltages are the same.

CASE-Study

Copyright © Fraunhofer IESE 2006 15

Figure 6 Timing and Servo Rotation

As shown in Figure 6 the servo needs a pulse-width modulated (PWM) control
signal in order to position the output shaft. Pulse-widths vary between ap-
proximately 1ms - 2 ms, and have a period of 10 ms - 20 ms. The Atmega8 can
produce these signals directly, however, the timing of these signals must be
very precise in order to keep the servos from jittering. This is not a problem
when all the microcontroller is doing is running servos (as in this system). How-
ever, for more complex systems a multiplexer has to be used.

5.4 Embedded Software

5.4.1 Requirements Modeling – Context Realization

The requirements of the servo control system are described by use case dia-
grams consisting out of a textual and a graphical representation and an activity
diagram representing the general flow of control. Figure 7 presents the use
case diagram for the servo control system. The actor ‘User’ initiates the task of
controlling the servo rotation, represented by the ‘Control Rotation’ use case.
This use case requires …

CASE-Study

Copyright © Fraunhofer IESE 2006 16

Figure 7 Use Case Diagram – Servo Control System

In addition to the graphical depiction every use case is also textually specified in
order to capture necessary details, not contained in the UML diagram. Table 1,
Table 2, and Table 3 presented these textual representations using a tabular no-
tation. In general, the system has to provide three different functionalities: (1)
Control the horizontal and vertical aptitude (Table 1), (2) Persistently store the
current mirror position (Table 2), and (3) Move the mirror to a previously stored
position (Table 3).

Name Control Aptitude

Actor User

Goal To control the vertical and horizontal aptitude of an exterior
mirror.

Description The user controls the rotation of two servos (i.e., horizontal
and vertical aptitude), and can store or recall a specific posi-
tion by pressing a button. All activities are additionally visual-
ized via a connected LCD display.

Exceptions • The aptitude is limited to a range in degrees of -45 to +45
in every direction.

• Direct servo control (using the potentiometer) is disabled
while the button is pressed

Rules NA

Quality Requirements Timing issues are highly important since controlling servos
requires the generation of PWM signals.

CASE-Study

Copyright © Fraunhofer IESE 2006 17

I/O Input
• Potentiometer (2x)

Output
• LCD Display

Pre-Conditions System is powered and initialized

Post-Conditions The vertical and horizontal aptitudes are controlled.

Table 1 Use Case Description – Control Aptitude

Name Store Position

Actor User

Goal To persistently store the vertical and horizontal aptitude of an
exterior mirror.

Description By pressing the button for more than 5 sec the current rota-
tion degree for both servos (i.e., aptitude) is persistently
stored. Storing is indicated on the LCD display.

Exceptions NA

Rules NA

Quality Requirements NA

I/O Input
• Button

Output
• LCD Display

Pre-Conditions System is powered and initialized

Post-Conditions The current mirror position has been persistently stored.

Table 2 Use Case Description – Store Position

Name Recall Position

Actor User

Goal To recall a stored mirror position (vertical and horizontal apti-
tude).

Description By pressing the button not longer than 5 sec the rotation
degree of both servos is brought to the stored, persistent,
position. Recalling is indicated on the LCD display.

Exceptions Assumes that there is a position stored. If not (i.e., at first
start-up) a default position has to be used and stored.

Rules NA

Quality Requirements NA

I/O Input
• Button

CASE-Study

Copyright © Fraunhofer IESE 2006 18

Output
• LCD Display

Pre-Conditions System is powered and initialized

Post-Conditions The mirror was moved to the persistently stored position.

Table 3 Use Case Description – Recall Position

Figure 8 visualizes the interaction diagram related to the context realization of
the Servo-Control system. It provides an alternative view of the way in which
user tasks are performed and shows the typical sequence of operations con-
cerning the overall system. In addition, the figure shows the signals that, cre-
ated by user events, are send from the micro-controller to the software system.
To keep things consistent user and hardware events are named equally.

Figure 8 Interaction Model – Servo-Control System

Figure 9 shows two UML representations of the electronic circuit shown in
Figure 5. These diagrams represent the structural model of the context realiza-
tion. Electronic components are mapped to UML classes marked by the stereo-
types “Component”, to indicate their nature, and “Hardware” to distinguish
them from later driver classes using the same name. This fact is also depicted in

CASE-Study

Copyright © Fraunhofer IESE 2006 19

Figure 10 by distinguishing hardware and software components. In order to en-
sure consistency software components addressing hardware functions (i.e.,
driver components) are named according to the controlled hardware compo-
nent.

Figure 9 UML Representation – Hardware

The diagrams of Figure 9 were manually translated from the circuit diagram
(partly shown in Figure 5) using specific mapping rules and guidelines. In fu-

CASE-Study

Copyright © Fraunhofer IESE 2006 20

ture, mappings (EAGLE format circuit diagrams to XMI based UML diagrams)
will be performed automatically, using the HERMES toolkit currently developed
at Fraunhofer IESE.

HERMES based mappings are performed in three semi-automatic steps. The
first step results in a one-to-one mapping of the circuit to a UML diagram. In
the second step, relevant components and their ports are identified, whereby
all other elements (e.g., resistors, capacitators, etc.) are removed This step then
results in a diagram as that shown on the top of Figure 9. In a final step, com-
ponent ports are minimized, e.g., by removing ground (GND) ports. This then
results in a diagram as that shown on the bottom of Figure 9.

Please note that the class ‘Crystal’ represents a quartz oscillator which deter-
mines the processor clock speed2, and which is therefore needed for timing and
signaling (e.g., PWM signals) issues. However, the ‘Crystal’ class has been re-
moved from the final diagram since it is sufficient to determine the port and
speed at the processor side.

The previously defined diagrams and textual specifications form the ‘context re-
alization’ of the servo control system. In a sense the "context" can be viewed
as a pseudo component at the root of the development tree. The system is then
treated as a regular component, since the context provides the encapsulating
realization against which it can be specified. Using the preliminary information
together with the planned system architecture (see Figure 10), allows the defi-
nition of a preliminary containment hierarchy of the Servo-Control system (see
Figure 10). This hierarchy specifies how course-grained components are "made
up of" finer-grained components, in a recursive manner, down to the level of
small, primitive components.

2 The processor used for the Servo Control System is a ATMEL Mega8L designed for low-power and clock

speeds up to 8Mhz. Concerning the Servo Control system a 4Mhz oscillator is used.

CASE-Study

Copyright © Fraunhofer IESE 2006 21

Figure 10 Containment Hierarchy

5.4.2 Application Engineering

The purpose of the application engineering activity is to generate a specific set
of modeling artifacts that meet the needs of a specific system. Since the hard-
ware environment is pre-defined, development focuses on the software part,
namely the Driver and Application, components. The Controller component is a
container without any software functionality.

5.4.2.1 Application

Figure 11 shows the specification level class-diagram of the Application com-
ponent and denotes its context. Since this is an embedded system, the compo-
nent does not offer any operations to the outer world, but reacts to signals.
This is denoted by the UML 2.0 stereotype <<signal>>.

CASE-Study

Copyright © Fraunhofer IESE 2006 22

Figure 11 Class Diagram - Application (Specification)

Table 4 specifies the functionality of the Application component by means of
an operation specification.

Name Main

Description The turning degree of two servos (i.e., for controlling the vertical and
horizontal aptitude of an exterior mirror) is controlled by means of
two potentiometers. In addition by the press of a button the current
position (turning degrees) can be persistently stored, if the button is
pressed for more than 5. If the button is pressed shorter than 5 sec
the turning degrees of both servos is set to the stored position.

Constraints --

Receives • Signals are received from the Button and the Potentiometer.
• In addition, the System_On and System_Off signals are received

from the microcontroller.

Returns Controls the Servo Position and prints messages on a display (see Use
Cases).

Sends Operations calls to the Driver component concerning
• LCD (init, write)
• Servo (init, set)
• Potentiometer (init, send)
• Button (init)
• EEPROM (store, retrieve)
• Timer (start, stop)

Reads • The ADC value of the Potentiometer (in Driver).
• Stored data within the EEPROM (in Driver).

Changes • The turning degree of both servos (in Driver).
• Stored position data in the EEPROM (in Driver)

Rules • Pressing the Button for less than 5 sec will move the servos to the
stored position

CASE-Study

Copyright © Fraunhofer IESE 2006 23

• Pressing the Button for more than 5 sec will store the actual posi-
tion as the default position

Assumes --

Result The vertical and horizontal aptitudes are controlled, whereby positions
are stored and retrieved.

Table 4 Operation Specification – Application

The state diagram of the Application component (see Figure 12) shows that the
system is typically in the Set state where the position of the servos can be con-
trolled. By pressing the button the system will go into the Recall or Store state
in which manual servo control is disabled.

Figure 12 State Diagram – Application

Figure 13 shows the realization level class-diagram of the Application compo-
nent. The diagram defines that the application component needs services of the
‘Driver’ component to fulfill its tasks. However, there is no direct link between
both components at this level since they appear at the same level of the com-
ponent hierarchy. However, the MARMOT visibility rules define that they can
see each other, via their super component, so that there is a dependency be-
tween these two.

CASE-Study

Copyright © Fraunhofer IESE 2006 24

Figure 13 Class Diagram – Application (Realization)

The class Position, which is a data-entity handled by the Application compo-
nent, has been refined using the <<Persistent>> stereotype. In detail, this
means that stored position data should survive system shutdowns. In turn, this
means that the position data are stored in, and retrieved from the EEPROM of
the controller (i.e., 1KByte concerning the ATMega8), which results in addi-
tional operations concerning the Driver component.

Another refinement within the realization of the Application component is the
addition of the Main() operation which encapsulates the system control algo-
rithm. This is described in more detail within the component’s activity diagram
(Figure 15). Furthermore the general signals mentioned in the specification are
refined to depict the nature of the concrete signals onto which the component
has to react.

Based on the realization class diagram the communication of the Application
component with other components has to be specified by means of interaction
diagrams.

Figure 14 displays the relevant sequence diagrams for the Application compo-
nent and defines the flow of communication between the Application and the
Driver component.

CASE-Study

Copyright © Fraunhofer IESE 2006 25

Figure 14 Sequence Diagrams – Application

The algorithmic behavior of the Application component is specified by means of
an activity diagram (see Figure 15). Basically after an initialization an endless-
loop is started in which the necessary control activities are performed. Using an
endless loop is typical for micro-controller systems in order to prevent the sys-

CASE-Study

Copyright © Fraunhofer IESE 2006 26

tem from resetting or getting in an undefined state. Within the loop the com-
ponent reacts to various signals it receives from the Driver component. In gen-
eral, the flow of control shown in Figure 15 becomes the Main() routine of the
latter implementation.

Figure 15 Activity Diagram – Application

5.4.2.2 Driver

The Driver component encapsulates the Service Access Points (SAPs) of the sys-
tem from the application. Thus, it separates application and hardware, and
thus, allows exchanging hardware components more easily. Therefore, the ap-
plication can only access hardware elements via the Driver component.

Figure 16 shows the specification class diagram of the Driver component and
specifies the operations3 available via its interface. Furthermore, the diagram
depicts that the driver component is able to send signals. These are then re-
routed via the controller (i.e., a container) to the Application component. Thus,
there is no need for a state diagram since Driver has only one state.

3 Please note, that operation names are already indicating the later decomposition of Driver into subcompo-

nents. Naming is a result of later consistency checks, aimed at making decomposition clearly visible.

CASE-Study

Copyright © Fraunhofer IESE 2006 27

Figure 16 Class-Diagram – Driver (Specification)

Name Name of the operation.

Description Identification of the purpose of the operation, followed by an informal
description of the normal and exceptional effects.

Constraints Properties that constrain the realization and implementation of the
komponent.

Receives Information input to the operation by the invoker.

Returns Information returned to the invoker by the operation.

Sends Signals which the operation sends to imported komponents. These can
be events or operation invocations.

Reads Externally visible information accessed by the operation.

Changes Externally visible information changed by the operation.

Rules Rules governing the computation of the result.

Assumes Precondition on the externally visible state of the komponent and on
the inputs (in receives clause) that must be true for the komponent to
guarantee the post condition (result clause).

Result Strongest post condition on the externally visible properties of the kom-
ponent and the returned entities (returns clause) that become true after
execution of the operation with true assumes clause.

Table 5 Operation Specification – Driver´

CASE-Study

Copyright © Fraunhofer IESE 2006 28

Figure 17 shows the realization class diagram of the Driver component. The
diagram specifies that Driver uses several classes to fulfill its services. Basically,
every hardware component, connected to the controller (see Figure 9), is as-
signed to a class of the Driver component. This is also reflected by the naming
of classes. Therefore, Driver is declared to be abstract which means that it will
only route requests to specific “subclasses”. Therefore, the Timer class was
added since, which specifies the use of in-built (hardware) timers.

Figure 17 Class-Diagram – Driver (Realization)

Interaction Diagrams for the Driver component are simple. Since Driver is an ab-
stract component it sends received command directly to its subcomponents.
This is depicted by Figure 184. The assignment of operations to subclasses is
simple, since the specification class diagram uses the class-name as a prefix of
the operation name. The only exception is the Button component. Button does
not provide any externally visible operations but sends signals. Thus, there are
no messages send to the Button component.

4 For reasons of simplicity a wildcard notation has been used to indicated that all operations of a specific

group are meant (e.g., LCD_* stands for all LCD display related operations of the Driver component).

CASE-Study

Copyright © Fraunhofer IESE 2006 29

Figure 18 Sequence Diagram – Driver

Typically the realization of a component MARMOT contains activity diagrams,
describing the algorithms and flow of control concerning specific operations.
Since Driver is a container that propagates messages, activity diagrams would
be quite simple, and are therefore intentionally left out.

5.4.2.3 Button

The Button component is responsible for reacting on physical button
presses/releases in the context of the Servo-Control system. The specification
class level diagram (see Figure 19) specifies that the Button component receives
all its direct input via the Driver component. Communication relationships with
components such as Controller are implicitly given since Controller is a super-
component of Button.

Figure 19 Class Diagram – Button (Specification)

In Figure 20 the state diagram concerning the Button component is shown. Ba-
sically the component has two different states since a button can solely be
pressed or released. If one of these events occurs, the Button component will
notify the Application (via Driver) by sending signals.

CASE-Study

Copyright © Fraunhofer IESE 2006 30

Figure 20 State Diagram – Button

Table 6 specifies Button’s behavior concerning received and send signals by
means of an operation specification.

Name <<Signal>> Button_Pressed / <<Signal>> Button_Released

Description • <<Signal>> Button_Pressed:
• <<Signal>> Button_Released:

Constraints The system is powered and the hardware button is connected to port
25 of the microcontroller (see Figure 9).

Receives The component receives signals (i.e., Pressed and Released) from the
controller as soon as the hardware button has been pressed or released.

Returns NA

Sends As soon as the hardware button is pressed the component sends the
signal Button_Pressed, or the signal Button_Released when the button
is released to the Application component (via Driver).

Reads NA

Changes NA

Rules NA

Assumes NA

Result Signals were sent to the Application component upon the receipt of the
corresponding hardware events or signals.

Table 6 Operation Specification – Button

CASE-Study

Copyright © Fraunhofer IESE 2006 31

The realization class diagram for Button is equal to the specification class dia-
gram (Figure 19) since no additional structural details have been identified.
Therefore, it has been left out.

Figure 21 shows the sequence diagram concerning the Button component. In
principle it sends signals to the Application component (via Driver) upon the re-
ceipt of signals from the microcontroller.

Figure 21 Sequence Diagram – Button

The simple behavior of the Button component is also reflected in the compo-
nent’s activity diagram (see Figure 22). In specific, once the component has ini-
tialized the button (i.e., define ports, interrupts, etc.), it reacts on a signal from
the controller, occurring at physically pressing the button, and sends this signal
on to the Application component.

CASE-Study

Copyright © Fraunhofer IESE 2006 32

Figure 22 Activity Diagram – Button

The reason for having a driver component for the button is not only the encap-
sulation of hardware- from the application. Another reason is that buttons of-
ten bounce (see Figure 23). By physically pressing/releasing a button it might
send a series of ON/OFF signals before it settles in a specific state. This is caused
by the mechanical properties of a button and cannot be avoided easily. Thus,
the hardware signal has to be preprocessed in order to get a clear signaling be-
havior.

Figure 23 Button – Bounce

Timing diagrams provide a notation to specify system behavior with time.
Figure 24 presents the timing diagram concerning storing/recalling positions. In
general, the diagram describes system behavior with time in the context of
messages/events passed among the different objects/lifelines. The ‘Application’

CASE-Study

Copyright © Fraunhofer IESE 2006 33

lifeline represents the ‘Application’ object which takes the main control deci-
sions and which has three different states.

Figure 24 Timing Diagram – Button

5.4.2.4 Potentiometer

The Potentiometer component is responsible for reading in the actual position
of the hardware potentiometer and providing it as a digital value on request.
The specification class level diagram (see Figure 25) specifies that the Potenti-
ometer component receives all its direct input via the Driver component. Com-
munication relationships with components such as Controller are implicitly
given since Controller is a super-component of Potentiometer.

Figure 25 Class Diagram – Potentiometer (Specification)

In Figure 26 the state diagram concerning the Potentiometer component is pre-
sented. Basically the component has two different states an idle or standby
state it is initially in, and a changed state which is entered as soon as the hard-

CASE-Study

Copyright © Fraunhofer IESE 2006 34

ware potentiometer is moved (via an event from the controller). If this event oc-
curs, the Potentiometer component will notify the Application (via Driver) by
sending a signal. Any other events then will bring the component back to the
Standby state. This is denoted by using the ‘all’ specifier.

Figure 26 State Diagram – Potentiometer

Table 7 specifies Potentiometer’s operations, as well as its received and send
signals, by means of an operation specification.

Name Init / Read / <<Signal>> Poti_Turned

Description • Init: Initialize the system concerning the needs of the Potentiometer
component.

• Read: Return the actual value (turning degree) of each potentiometer
to the caller by performing an ADC conversion.

• <<Signal>> Poti_Turned: Notifies the application that the hardware
potentiometer has been changed.

Constraints The system is powered and the hardware poti’s are connected to ports
23&24 of the microcontroller (see Figure 9).

Receives The component receives a signal (i.e., Turned) from the controller as
soon as the hardware potentiometer has been changed.

Returns The Read operation returns two 10-Bit integer values (i.e., 0 -1024)
representing the actual turning degree for the servo of the X- and Y-
Axis.

Sends As soon as the hardware potentiometer is moved the component sends
the signal Poti_Turned to the Application component.

CASE-Study

Copyright © Fraunhofer IESE 2006 35

Reads The Read() operation reads the turning degree of the hardware poten-
tiometer by means of an ADC conversion.

Changes NA

Rules NA

Assumes NA

Result The hardware potentiometer was initialized and, upon request, the
actual turning degree for both servos was returned to the caller. In ad-
dition the Application component was notified of any changes of the
hardware potentiometer.

Table 7 Operation Specification – Potentiometer

The realization class diagram for Potentiometer (Figure 27) is similar to the cor-
responding specification class diagram (Figure 25), but has been refined con-
cerning parameters and their type.

Figure 27 Class Diagram – Potentiometer (Realization)

The interactions of the Potentiometer component are specified using the se-
quence diagram shown in Figure 28. To ease understanding operation calls to
Potentiometer are made directly via the Application component, neglecting that
such requests are routed via the Driver component, although this is not entirely
correct. Signals received from hardware components are directly modeled since
the Controller is a super-component of Potentiometer.

CASE-Study

Copyright © Fraunhofer IESE 2006 36

Figure 28 Sequence Diagram – Potentiometer

The activity diagram concerning the Potentiometer component is shown in
Figure 29. After component initialization (e.g., initializing ports, etc.) the com-
ponent waits for the Turned signal of the microcontroller, validates it (i.e., are
the signals plausible and correct), and sends the Poti_Turned signal to the Ap-
plication component. In addition, the component offers the Read() operation
which return the actual turning degrees of the hardware potentiometers.

CASE-Study

Copyright © Fraunhofer IESE 2006 37

Figure 29 Activity Diagram – Potentiometer

5.4.2.5 Servo

The servo component is responsible for controlling the servos (i.e., concerning
both mirror aptitudes) in the context of the Servo-Control system and therefore
offers two operations to the outer world. The specification class level diagram
(see Figure 30) specifies that the Servo component receives all its direct input
via the Driver component, although in reality these may come from the Applica-
tion component.

Figure 30 Class Diagram – Servo (Specification)

CASE-Study

Copyright © Fraunhofer IESE 2006 38

Name Init / Set

Description • Init: Initialize the system concerning the needs of the Servo com-
ponent.

• Set: Move the connected servos to a specific position specified by
a 10-Bit integer value.

Constraints The system is powered and the hardware servos are connected to
ports 15 and 16 of the microcontroller (see Figure 9).

Receives • Init: NA
• Set: The set operation receives two 10-Bit integer values (i.e., 0-

1024) representing the desired turning degree for the servo of the
X- and Y-Axis.

Returns NA

Sends • Timer: Timer 1 and 2 of the Timer component are started and
stopped.

Reads Externally visible information accessed by the operation.

Changes Externally visible information changed by the operation.

Rules Rules governing the computation of the result.

Assumes Precondition on the externally visible state of the komponent and on
the inputs (in receives clause) that must be true for the komponent to
guarantee the post condition (result clause).

Result Strongest post condition on the externally visible properties of the
komponent and the returned entities (returns clause) that become
true after execution of the operation with true assumes clause.

Table 8 Operation Specification – Servo

Figure 31 State Diagram concerning the PWM Signal generation

The realization class diagram for Servo (see Figure 32) is quite similar to the
specification class diagram (Figure 30). One difference being, that the operation
of the Servo component have been refined by adding parameters and data-

CASE-Study

Copyright © Fraunhofer IESE 2006 39

types. In addition a use relationship to the Timer component has been added
which is implicitly realized via both components super-component Driver.

Figure 32 Class Diagram – Servo (Realization)

Figure 33 presents the flow of control within the servo component in form of
an activity diagram. In addition, Figure 34 presents timing information of the
servo.

Figure 33 Activity Diagram – Servo

CASE-Study

Copyright © Fraunhofer IESE 2006 40

Figure 34 Timing Diagram – Servo

5.4.2.6 LCD

The LCD component (hardware) represents a standard module using a 8/4 Bit
parallel interface5, whereby the example system uses the 4-Bit variant in order
to minimize the number of needed pins.

Figure 35 Class Diagram – LCD (Specification)

5 In detail the module has 16 Pins: 8 data, 3 control, 3 connectors (VCC, Ground and contrast), 2 Backlight
(anode, cathode).

CASE-Study

Copyright © Fraunhofer IESE 2006 41

Name Name of the operation.

Description Identification of the purpose of the operation, followed by an informal de-
scription of the normal and exceptional effects.

Constraints The system is powered and the hardware LCD are connected to the specified
ports of the microcontroller.

Receives Information input to the operation by the invoker.

Returns Information returned to the invoker by the operation.

Sends Signals which the operation sends to imported komponents. These can be
events or operation invocations.

Reads Externally visible information accessed by the operation.

Changes Externally visible information changed by the operation.

Rules Rules governing the computation of the result.

Assumes Precondition on the externally visible state of the komponent and on the in-
puts (in receives clause) that must be true for the komponent to guarantee the
post condition (result clause).

Result Strongest post condition on the externally visible properties of the komponent
and the returned entities (returns clause) that become true after execution of
the operation with true assumes clause.

Table 9 Operation Specification – LCD

The LCD hardware component uses a Hitachi HD44780 controller for control-
ling the display. The controller has its own set of command which are called by
sending 8-Bit ASCII codes to the controller. This controller is slightly slower (2
MhZ) than the controller of the Servo-Control system. Therefore, the software
driver of the Servo-Control system concerning the LCD component has to guar-
antee some timing rules. Basically after initialization the system has to wait
30ms before the first commands are accepted and executed. Furthermore, after
sending a command to the LCD a 5ms pause is required (i.e., for executing the
command) before the next command can be send. This is depicted by the state
diagram (see Figure 36).

CASE-Study

Copyright © Fraunhofer IESE 2006 42

Figure 36 State Diagram – LCD

The realization class diagram for LCD is equal to the specification class diagram
(Figure 35) since no additional structural details have been identified.

Figure 37 Class Diagram – LCD (Realization)

5.4.2.7 EEPROM

Figure 38 Class Diagram – EEPROM (Specification)

CASE-Study

Copyright © Fraunhofer IESE 2006 43

The state diagram for the EEPROM component is quite simple (see Figure 39).
Basically the component is typically in the idle state and goes into the Read or
Write state by calling the Store() or Retrieve() operation. Thus, the EEPROM
component is only able to store or retrieve data sequentially and not in parallel.

Figure 39 State Diagram – EEPROM

The operations of the EEPROM component are specified by the operation
schemata of Table 10. It is important to note that there is a physical life-time
limitation for EEPROM operations and that the operation assumes that there
are stored values, which in turn requires a fail-safe handling by guaranteeing
that always meaningful data is stored. Thus, within the realization this issue has
to be addressed.

CASE-Study

Copyright © Fraunhofer IESE 2006 44

Name Store / Retrieve

Description • The Store operation supports the persistent storage of two inte-
ger values within the EEPROM of the microcontroller.

• The Retrieve operation allows reading two stored integer values
from the EEPROM of the microcontroller.

Constraints The EEPROM allows approx. 100.000 storages before it is physically
damaged.

Receives • Store: X,Y : Integer
• Retrieve: --

Returns • Store: --
• Retrieve: X, Y: Integer

Sends --

Reads The Retrieve operations reads two integer-values from the EEPROM.

Changes The Store operation changes the two stored integer values within
the EEPROM to the new values it has received .

Rules --

Assumes Prior to the first invocation of Retrieve default values were stored.

Result • Store: Two integer values have been persistently stored.
• Retrieve: Two integer values have been read from the

EEPROM and returned.

Table 10 Operation Specification – EEPROM

The realization class diagram for EEPROM (Figure 40) is quite similar to the
specification class diagram (Figure 38). The only difference that the operation
signatures are more precise due to parameter and type definitions.

Figure 40 Class Diagram – EEPROM (Realization)

The EEPROM component does only communicate with its caller, and does not
need any additional external communication relationships. Therefore, the com-
ponents’ sequence diagram is simple (see Figure 41).

CASE-Study

Copyright © Fraunhofer IESE 2006 45

Figure 41 Sequence Diagram – EEPROM

The activity diagram for the EEPROM component (Figure 42) describes the flow
of control/algorithm of its operations. Within the Retrieve operation the con-
straint defined in the operation specification (Table 10), concerning the initiali-
zation of values, has been realized.

Figure 42 Activity Diagram – EEPROM

CASE-Study

Copyright © Fraunhofer IESE 2006 46

5.4.2.8 Timer

The Timer component is used for measuring time between different events.
Since it must be generally applicable timers are started and stopped via opera-
tion calls. Figure 43 shows the specification level class diagram of the Timer
which receives its operation calls via the Driver component. Of course Driver is a
container component without specific operations which reroutes calls from the
Application component directly to the timer.

Figure 43 Class Diagram – Timer (Specification)

The state diagram of Figure 44 describes the externally visible states of Timer
and the transitions between them. Basically the Timer is in the Idle state at
start-up and moves to the Running state as soon as the Start() operation is
called, and stays there until the Stop() operation is called. By entering the Idle
state the counter is set back to zero in order to be prepared for the next run. It
is important to note that the counter cannot be started again if running and
that overflows are handled as self-transitions. The latter is needed in order to
count the number of overflows.

Figure 44 State Diagram – Timer

Table 11 specifies the operation schemata for the Timer operations. In addition
to a textual description it provides formulas and technical background informa-

CASE-Study

Copyright © Fraunhofer IESE 2006 47

tion according the use of timers. At this time an attribute of the Controller
component that is visible to all sub-components becomes important because
clock speed has a major impact on time measurement.

Name Start / Stop

Description This operation starts or stops the timers of the microcontroller. When a
timer is stopped a time value is returned, describing the runtime period
of the timer. In addition, the timer registers of the microcontroller are
reset.

Constraints Given that we are interested in timing periods between 1 - 5s, and that
the controller is running on 4Mhz using an 8Bit counter, there are 15
timer overflows every millisecond. Thus, a pre-scaler (e.g. 1024) should
be used. This results in an overflow rate of 65.6 ms.

Receives • Every operation receives a unique identifier which of the four dif-
ferent timers is addressed.

• The Start() operation receives a Timer_Value which specifies the
value at which the timer sends a signal.

Returns The stop operation returns an integer value describing the runtime of
the timer in milliseconds.

Sends Signals concerning the reach of the predefined threshold value (i.e.,
Timer_Value) are send to the Servo component.

Reads --

Changes --

Rules • Time is calculated by using an controller-internal 8BIT timer by
counting overflows and timer values. In detail the formula can be
defined as:

() ValueTimerOverflowsDuration _65 +∗= ∑

• Multiplying the sum of overflows with 65 adds a little imprecise-
ness, however this is tolerable since using floats increase memory
consumption.

• The Timer_Value for the timer used by the Application component
is preset to 6 secs, since Application is interested in time ranges of
0-5.1 secs.

Assumes The timer will not run for more than 65000 ms (65sec). Otherwise the
data type of the return value has to be changed.

Result The time between the start and stop event has been measured and
returned to the caller. Furthermore timing signals needed by the Servo
component were sent.

Table 11 Operation Specification – Timer

The realization class diagram for Timer (see Figure 45) is quite similar to its
specification class diagram (see Figure 43). The only difference being that the

CASE-Study

Copyright © Fraunhofer IESE 2006 48

Stop operation returns an integer value depicting how long the timer had run.
Furthermore, two new operations (identified within the state diagram) were
added that allows the timer to be initialized and reset. The realizations of the
Application and Servo component require that the Timer component should
handle at least four different timers6. Thus, the Start, Stop and Reset operation
allow selecting a specific timer. This in turn, has to be reflected in the imple-
mentation of the Application and the Servo component (→ embodiment).

Figure 45 Class Diagram – Timer (Realization)

The realization class diagram of Timer does not show any newly identified sub-
components or classes (i.e., Time is a leaf component). This is also supported by
the sequence diagram (see Figure 46) which clearly indicates that Timer does
not need to cooperate with other components to fulfill its task. In general, the
sequence diagram, except concerning the Stop() operation, is therefore super-
fluous and can be neglected.

6 This is also denoted by setting the multiplicity of Timer to four.

CASE-Study

Copyright © Fraunhofer IESE 2006 49

Figure 46 Sequence Diagram – Timer

The algorithmic behavior of the Timer component is specified by means of two
activity diagrams (see Figure 47 and Figure 48). In this context, it was easy to
see that Reset() is an internal operation which is only used in the context of the
Stop() operation. Therefore, Reset() does not need its own activity diagram.

CASE-Study

Copyright © Fraunhofer IESE 2006 50

Figure 47 Activity Diagram – Timer

Figure 48 Activity Diagram – Timer

CASE-Study

Copyright © Fraunhofer IESE 2006 51

5.4.3 Embodiment & Model Transformation to C

The general goal of the MDA approach to software development is to reduce
time-to-market by automating the mapping of models to code. Therefore, the
models and artifacts, generated by the component engineering activities, de-
scribe the properties of components at a level akin to analysis and design. Be-
fore any running software can be deployed, these must be transformed into
semantically equivalent executable forms. In practice this involves a manual
step, in which the artifacts are translated into an intermediate representation
amenable to processing by automatic tools (e.g. source code), and an auto-
mated step in which these tool are applied to generate the truly executable
(e.g. binary) forms. In common with prevailing terminology, this intermediate
representation is termed an implementation, and the manual activity responsi-
ble for transforming a realization into an implementation is known as the im-
plementation activity.

The only constraint on a component implementation is that it faithfully embod-
ies the semantics of the component realization in a way that conforms to the
non-functional requirements. Any implementation technology capable of satis-
fying this constraint can be used to implement components, including high-
level programming languages (e.g. Java, C++, C, Ada, Python), physical com-
ponent technologies (e.g. JavaBeans, EJBs, COM, CORBA), and databases. Be-
cause of the properties of components, physical component technologies are
likely to provide the most flexible and natural implementation of KobrA com-
ponents, followed by programs written in object-oriented programming lan-
guages.

Although a component’s implementation can be thought of as being closely
coupled to its realization, it is not regarded as being part of the component
containment hierarchy. Component implementations exist in a separate dimen-
sion, orthogonal to the component containment hierarchy. This dimension is
concerned with the abstraction level and representation form of components
rather than their containment relationships. The orthogonality of these dimen-
sions is important because it means that, in general, any process capable of
producing a faithful implementation of a component can be used in conjunc-
tion with the KobrA component modeling activities. However, KobrA defines its
own recommended implementation activity that fits in with the spirit of simplic-
ity and systematic development that underpins KobrA. This is the topic of this
chapter.

Within the context of the MARMOT method, the logical component hierarchy
(see Figure 10) is first mapped to the resulting physical component hierarchy
prior to its translation to source-code. This is the goal of the embodiment step.
The resulting physical hierarchy, as shown in Figure 49, is significantly smaller
than the logical one. All hardware related components have been removed
since the MARMOT development focuses on the software part. Furthermore,

CASE-Study

Copyright © Fraunhofer IESE 2006 52

the Driver component, which acted as a ‘forwarder’, does not provide own
functionality and can therefore be left out. Finally the Application component
has been moved up in the component hierarchy in order to allow direct ac-
cesses to the hardware-access components.

Figure 49 Containment Hierarchy – Physical

Concerning implementation, the physical containment hierarchy can nicely be
mapped to source code structure. Figure 50 shows the hierarchy of C body and
header files as well as their dependencies. The Application component, com-
prising the overall system functionality, contains the main() function. A deploy-
ment model is not needed since it is a one-node (processor) system

Figure 50 Source-Code Structure

The final translation step then results in the associated C source-code (e.g., see

Figure 51 for an excerpt). The translation was done by applying the mapping-
rules provided in [13] which were found to be more efficient than other tool-
based generators (e.g., Ameos or Rose Real-Time).

CASE-Study

Copyright © Fraunhofer IESE 2006 53

Figure 51 Source Code – Servo Component

5.4.4 Testing and Debugging

As soon as executable code exists it can be tested to check if all requirements
are fulfilled. In the context of micro-controller based systems testing can be
done in different steps. In principle one can distinguish between:

• Debugging to correct errors and check the general behavior. This is simply
done by compiling the system and using the inbuilt simulator of AVRStudio.
Therefore, we do not have to transfer the binary to the flash memory of the
controller, and are able to step throughout the code and to manually ma-
nipulate registers of the processor.

#include "servo.h"

volatile int servo1, servo2;

SIGNAL(SIG_OUTPUT_COMPARE1A)
{
 //End Servo Pulse 1
 PORTB |= (0<<DDB1);
}

SIGNAL(SIG_OUTPUT_COMPARE1B)
{
 //End Servo Pulse 2
 PORTB &= ~(1<<DDB2);
}

SIGNAL(SIG_OVERFLOW1)
{
 // Trigger every 16ms
 int srv;

 PORTB |= (1 << DDB1);
 PORTB |= (1 << DDB2);

//Servo1
 srv = servo1 + 6000;
 OCR1AH = srv >> 8;
 OCR1AL = srv & 0xFF;

 //Servo 2
 srv = servo2+6000;
 OCR1BH = srv >> 8;
 OCR1BL = srv & 0xFF;

 // Reset Counter
 TCNT1H = 0x00;
 TCNT1L = 0x00;
}

void Init_Servos()
{
DDRB |= (1 << DDB1);
DDRB |= (1 << DDB2);
PORTB &= ~(0<<DDB1);
PORTB &= ~(1<<DDB2);
TCCR1A = 0x00;
TCCR1B |= (1<<CS10);
TCNT1H = 0x00;
TCNT1L = 0x00;
servo1 = servo2 = 0;
TIMSK |= ((1 << OCIE1A) | (1 <<
OCIE1B) | (1 << TOIE1));
TIMSK |= ((1 << OCIE1B) | (1 <<
TOIE1));
sei();
}

void Set_Servo(unsigned char
servo, unsigned int angle)
{
 int intermediate;

 intermediate = ((angle * 4) -
2000);
 if (intermediate < -2000)
 intermediate = -2000;
 if (intermediate > 2000)
 intermediate = 2000;
 if (servo == 1)
 servo1 = intermediate;
 else
 servo2 = intermediate;
}

CASE-Study

Copyright © Fraunhofer IESE 2006 54

• In a second step, the binary is flashed on the micro-controller and the system
is tested by using its user-interface (e.g., button, potentiometer, etc.) and
checking the corresponding behavior and output on the LCD display.

• The previous steps are unsystematic in that the do not use defined test-cases
or follow specific procedures. Therefore, the third testing step requires the
definition of test cases (within the requirements and design phase) in order
to obtain systematic and repeatable tests.

5.5 Follow-Up Projects

Since the effects of reuse can only be measured and analyzed in follow-up pro-
jects, a number of student development assignments, using the original mirror
system as a basis, were defined and carried out. The goal of these assignments
was to cover typical reuse situations such as those defined in [5]. In detail:

• The system was ported to different hardware platform whereby its function-
ality kept unchanged. First, the system was ported to a processor of the
same family but with different characteristics (i.e., ATMega32, 32Kb Flash,
2Kb RAM, 1Kb EEPROM, 16MhZ). Second, the system was ported to a dif-
ferent processor family (i.e., PICF, 7Kb Flash, 192Byte RAM, 128Byte
EEPROM, 20MHz).
In practice, porting a component implementation to other micro-controller
platforms can often be automated at the code-level using high-level pro-
gramming languages and advanced compilers. However, porting is a com-
mon reuse scenario that, following the ideas of the Model-Driven Architec-
ture (MDA) [22], should also be supported on the model level.

• The mirror-system was adapted according to changed system requirements.
In a third project (aka Adapt-), the functionality of storing and recalling posi-
tion data was removed and the system had to be adapted according to this
situation. In a fourth project (aka Adapt+) the mirror-system was extended
by a defreeze/defog functionality using a humidity sensor and a heater.

• The mirror systems (parts thereof) were reused in the context of a different
system (aka Door project). In detail, a door-control system was developed
that controls the window and mirror of a door, including “puddle lights”.
This system was realized using three micro-controller boards (i.e., central
control, window- and mirror control), and serial-line inter-board communica-
tion.

The projects were performed by students, applying MARMOT and (re)using the
mirror system. As development tools the students used Rational Rose [26] or
ARGO UML [1] for modeling and the AVRStudio/GCC environment [3] for pro-
gramming and debugging. The mapping of models to code was performed

CASE-Study

Copyright © Fraunhofer IESE 2006 55

manually without using automatic code generation facilities of software engi-
neering tools.

The first impression of the participants was that reuse on both, the model and
the implementation level, in the context of a MARMOT project is simple and
straightforward. In addition, the participants believed that they completed their
projects earlier than expected. However, these are the subjective statements of
students that must be confirmed by objective measurement data.

Results

Copyright © Fraunhofer IESE 2006 56

6 Results

In the context of these small case studies, a number of measurements was per-
formed in order to get a first impression if the maintainability, portability, and
adaptability of software systems, developed with MARMOT, can be improved.
Table 12 provides data concerning model and code size as well as data on qual-
ity- (e.g., number of defects), and process measures (e.g., effort). The metrics
thereby follow the definitions of section 3.2.

At a first glance, the number of diagrams seems to be quite high for systems of
that size. By modeling components at the specification and realization level, a
component might be described by several diagrams including textual specifica-
tions. However, due to MARMOT’s modeling principles, there is an overlap of
diagrams between levels (e.g., structural diagrams), which reduces model com-
plexity significantly.

It is interesting that porting the system to another hardware platform required
only minimal changes to the models (e.g., UML hardware representation, ports,
etc.). Thus, MARMOT supports the MDA idea [22] of platform independent
modeling. Only in the embodiment step models become platform specific. The
ease of porting a system to different platforms is also supported by the high
amount of reuse with minimal changes, the low effort, and the low number of
defects.

Concerning the adaptation of existing systems by adding or removing function-
ality, the data of Table 12 reveals that MARMOT provides sufficient support.
First of all a large proportion of the systems could be reused from the original
system. Second, in comparison to the initial development project (i.e., ‘Origi-
nal’), the effort for adaptation is low (26hrs vs. 3/10hrs). In addition, the quality
of the system profits from the quality assurance activities carried out in the ini-
tial component development. Thus, the promises of component-oriented de-
velopment concerning time-to-market and quality could be confirmed in this
case-study.

Interesting to note is that the effort for the initial system corresponds to stan-
dardized effort distributions over development phases as used by common cost
estimation methods, whereby the effort for the variants is significantly lower. In
addition, this supports the assumption that component-oriented development
has an effort-saving effect in subsequent projects.

In general, porting and adaptation of a component-based system takes place
during developing system variants. Thus, the systems are highly similar, which,

Results

Copyright © Fraunhofer IESE 2006 57

in turn, explains why reuse works that well. It would therefore be interesting to
look at larger systems (of the same domain) that reuse the original system as a
whole and/or some of its components. The ‘Door’ project is such a project.
When looking at Table 12 it indicates that 60% of the overall system was re-
used in form of the mirror system, which itself did not need major adaptations.
The effort and defect density is higher than those of the mirror system variants
due to the development of new additional components, major hardware exten-
sions, and intensive quality-assurance. Thus, when directly compared to the ini-
tial effort and quality (i.e., the mirror system), a positive trend can be seen that
supports the assumption that with MARMOT embedded systems can be quickly
developed at a low cost but with high quality.

 Original ATMega32 PICF Adapt- Adapt+ Door

LOC 310 310 320 280 350 490

NCM 8 8 8 6 10 10

NCOM 15 15 15 11 19 29

Model Size
(Abs.)

ND 46 46 46 33 52 64

assesNumberofCl
ateChartsNumberofSt

1 1 1 1 0.8 1

assesNumberofCl

erationsNumberofOp

3.25 3.25 3.25 2.5 3 3.4

Model Size
(Rel.)

assesNumberofCl

sociationsNumberofAs

1.375 1.375 1.375 1.33 1.3 1.6

Reuse Fraction(%) 0 100 97 100 89 60

New (%) 100 0 3 0 11 40

Unchanged (%) 0 95 86 75 90 95

Changed (%) 0 5 14 5 10 5

Reuse

Removed (%) 0 0 0 20 0 40

Global 26 6 10.5 3 10 24

Hardware 10 2 4 0.5 2 8

Requirements 1 0 0 0.5 1 2

Design 9.5 0.5 1 0.5 5 6

Implementation 3 1 3 0.5 2 4

Effort (h)

Test 2.5 2.5 2.5 1 2 4

Quality Defect Density 9 0 2 0 3 4

Table 12 Case-Study Results

In summary the small case-studies presented in this paper show that the prom-
ises of component-oriented development concerning, reuse, effort, and quality
can also be achieved in the context of embedded system development. How-
ever, similar to experiences with product-line engineering projects [5], compo-
nent-based development projects require an upfront investment before they
pay-off.

Results

Copyright © Fraunhofer IESE 2006 58

There are some threats to the validity of these ob-served results which may hin-
der their generalization. First, the people participating in this study were stu-
dents, and they may not be representative for software professionals. However,
the results may also be useful in an industrial context, since engineers in indus-
try have often no more experience in model-based development with UML than
students. After all, introducing such methodological support requires a steep
training curve, even in professional organizations. Second, the use of volunteers
may affect the validity of the study (i.e., selection bias). Individuals who volun-
teer for an activity, people who like something, are almost certainly different
from those who do not volunteer. Volunteers are, by definition, motivated to
participate and presumably expect to receive some benefit from the interven-
tion. In companies it is often the case that employees have a negative attitude
toward new technology simply because they are afraid that the new technology
takes too much of their valuable time. These differences between study partici-
pants and people in real organizations limit the ability to generalize the results
of this study beyond the research sample. Finally, the systems developed in the
scope of this paper may not be representative in terms of their size and com-
plexity. However, the results of this study can be used as a trend indicating pos-
sible benefits and therefore allows defining industrial-scale case-studies.

Summary and Conclusions

Copyright © Fraunhofer IESE 2006 59

7 Summary and Conclusions

The growing interest in the Unified Modeling Language provides a unique op-
portunity to increase the amount of modeling work in software development,
and to elevate quality standards. UML 2.0 promises new ways to apply ob-
ject/component-oriented and model-based development techniques through-
out embedded systems engineering. However, this chance will be lost, if devel-
opers are not given effective and practical means for handling the complexity of
such systems, and guidelines for systematically applying them.

This paper has outlined the UML modeling practices, which are needed in order
to fully leverage the component paradigm in the development of software for
embedded systems. Following the principles of encapsulation and uniformity,
and describing both levels with a standard set of models – it becomes feasible
to model hardware and software components of an embedded system with
UML. This facilitates also a "divide and conquer" approach to modeling, in
which a system unit can be developed independently. It also allows new ver-
sions of a unit to be interchanged with old versions provided that they do the
same thing.

To validate MARMOT, a series of case-studies was performed. Quantitative and
qualitative results of these studies indicate that MARMOT supports systematic
reuse and thereby reduces development effort, and improves the quality of a
software system. However, these results are only a starting point for more
elaborate validation and generalization of the results. Therefore, a controlled
experiment with a larger system is currently planned in order to obtain more,
and more objective data. The next step will then be the provision of a tool.

References

Copyright © Fraunhofer IESE 2006 60

References

[1] ArgoUML Homepage: http://argouml.tigris.org/

[2] Atkinson, C., Bayer, J., Bunse, C., et al. Component-Based Product-Line
Engineering with UML, Addison-Wesley, UK, 2001

[3] AVR Studio, Atmel Corp. http://www.atmel.com

[4] Bunse, C., Gross, H.G., Unifying Hardware and Software Components for
Embedded System Development, In: Architecting Systems with Trustworthy
Components, R. Reussner, J.A. Staffort, C.A. Szyperski (Eds), Lecture Notes
in Computer Science, Vol. 3938, Springer, Heidelberg, 2006.

[5] Cohen, S.. Predicting when Product Line Investment Pays. Proc. of the Sec-
ond International Workshop on Software Product Lines: Economics, Archi-
tectures, and Implications, pages 15–18, 2001.

[6] Crnkovic, I., Larsson, M. (Eds.), Building Reliable Component-Based Soft-
ware Systems, Artech House, 2002

[7] Douglass, B.P., Real-Time Design Patterns. Addison-Wesley, 2003

[8] Fritzson, P., Principles of Object-Oriented Modeling and Simulation with
Modelica2.1, Wiley, 2004

[9] Gross, H.G., Component-Based Software Testing with UML. Springer, Hei-
delberg, 2005.

[10] Harel, D., Lachover, H., Naamad, A. et al. Statemate: A working environ-
ment for the development of complex reactive systems. IEEE TSE, 16(4),
April 1990.

[11] Heck, B., Wills, L., Vachtenavos, G., Software technology for Implementing
Reusable, Distributed Control Systems, IEEE Control Systems magazine,
February, 2003

[12] Hooman, J., Towards Formal Support for UML-based Development of Em-
bedded Systems, Proc. of the 3d PROGRESS Workshop on Embedded Sys-
tems, Technology Foundation STW, 2002

[13] Khan, M.U., Geihs, K., Gutbrodt et al Model-Driven Development of Real-
Time Systems with UML 2.0 and C, 3rd International Workshop on Model-

References

Copyright © Fraunhofer IESE 2006 61

based Methodologies for Pervasive and Embedded Software at the 13th
IEEE Int. Conf. on Engineering, 2006

[14] Kim, H., Boldyreff, C., Developing software metrics applicable to UML
models. Proc. of the 6th ECOOP Workshop on Quantitative Approaches in
Object-oriented engineering, Malaga, Spain, June 2002.

[15] Lange, C.F.J., Model Size Matters, Workshop on Model Size Metrics 2006
(co-located with the ACM/IEEE MoDELS/UML Conference); October, 2006.

[16] Lano, K. Formal Object-Oriented Development. Springer, 1995.

[17] Lavagno, L., Martin, G., Selic, B. (Eds.) UML for Real Design of Embedded
Real-Time Systems, Kluwer Academic Publishers, 2003

[18] Li,J., Conradi, R., Mohagheghi, P., et al., A Study of Developer Attitude to
Component Reuse in Three IT Companies, 5th Int. Conference Product Fo-
cused Software Process Improvement, PROFES 2004, Japan, 2004

[19] Marcos, M., Estévez, E., Gangoiti, U., et al., UML Modeling of Industrial
Distr. Control Systems, Proc. of the 6th Portuguese Conf. on Automatic
Control, Portugal, 2004

[20] Marwedel, P. Embedded System Design (Updated Version), Springer, 2006

[21] The MathWorks, Inc., Simulink Reference, 2005.
http://www.mathworks.com

[22] Miller, J., Mukerji, J.: MDA Guide 1.0, omg/03-05-01, 2003
(http://www.omg.org/)

[23] Mills, H.D., Basili, V.R., Gannon, J.D. et al. Principles of Computer Pro-
gramming: A Mathematical Approach. Allyn and Bacon Inc., 1987.

[24] Mockus, A., Fielding, R.T., Herbsleb, J., A Case Study of Open Source Soft-
ware Development: The Apache Server, Proc. of the 22nd International
Conference on Software Engineering, Limerick Ireland., 2000

[25] Object Management Group, Inc. UML 2.0 Superstructure Specification,
OMG document formal/05-07-04, 2005, http://www.omg.org/cgi-
bin/doc?formal/05-07-04.

[26] Rational Rose, http://www.rational.com

[27] Selic, B., Gullekson, G., Ward, P. T., Real-Time Object-Oriented Modeling,
John Wiley & Sons, 1994

References

Copyright © Fraunhofer IESE 2006 62

[28] Szyperski, J., Component Software. Beyond Object-Oriented Programming,
Addison-Wesley, 2002

[29] Ventura, J., Siebert, F., Walter et al., HIDOORS – A High Integrity Distrib-
uted Deterministic Java Environment, Proc. of the 7th Int. Workshop on Ob-
ject-Oriented Real-Time Dependable Systems, USA, 2002

Document Information

Copyright 2006, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Title: Developing µController-
Systems with UML: A
MARMOT Case Study

Date: September 18, 2006
Report: IESE-111.06/E
Status: Final
Distribution: Public

