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Abstract: This report describes problems of Multi-Target-Tracking and gives
an introduction to the state-of-the-art methods of dynamic state estimation
and data association in cluttered environments. A detailed derivation of the
Probabilistic Data Association Filter and Joint Probabilistic Data Association
Filter is given.

1 Introduction

Object detection and tracking is an important task in modern environment per-
ception and surveillance systems. Its aim is continuous localization of people or
objects in an environment by processing data of environment perception sensors
such as sonars, radars, lidars, or video cameras. In general, the problem of object
tracking can be divided into three subtasks: data association (re-identification),
dynamic state estimation (filtering), and track management. The first subtask is
responsible for the correct interpretation of the collected observations, i.e., assign-
ment of sensor measurements to the tracked objects (tracks). The second subtask
deals with estimation of the dynamic state of the objects (e.g., kinematics) from
a sequence of noisy measurements. Finally, the third subtask is responsible for a
consistent internal representation of the tracked objects, which includes initiation
of new and deletion of obsolete tracks. The following sections give an introduc-
tion to the basic state-of-the-art methods for dynamic state estimation and data
association in cluttered environments.
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2 Dynamic State Estimation

Each measurement process contains sources of noise. Thus, obtained measure-
ments may differ from the expected values. The aim of a dynamic state estimator
is the determination of the real value of a not known system state from the obtained
(noisy) measurements. This is done by the so-called filtering algorithms that aim
at minimization of the noise effects. There exists a variety of such methods. Most
of the modern tracking systems use statistical filters that are based on the Bayesian
approach. They model system state and noise as random variables and estimate
their statistics using certain assumptions about their nature.

Applications with real-time requirements often cannot consider the entire mea-
surement history for achieving the best estimation result. Thus, they proceed re-
cursively using only the last estimated system state and the current measurements.
The underlying assumption is that all previous measurements are incorporated in
the estimated state and are not required to be processed again in each time step
(Markov property). The system evolution is thus modeled by means of a Markov
process.

A system state xk at discrete time point k is modeled as a realization of a random
variable X in the state space X . The system state between two discrete points in
time k and k + 1 is assumed to behave according to a known system evolution
function f (system model):

Xk+1 = f(Xk,uk,Wk) ,

where uk represents the (known) system control parameters and Wk represents
the stochastic component which cannot be modeled analytically (system noise).

The observations zk are modeled as a realization of a random variable Z in the
measurement space Z . The measurement process is modeled by means of a mea-
surement model h(Xk,Vk):

Zk = h(Xk,Vk) ,

where Vk represents the stochastic component of the measurement process (mea-
surement noise). Since the system state can not be observed directly, one speaks
of the Hidden Markov Model (HMM). The relation between system states and
observations of a Hidden Markov Model for the case of discrete states is shown in
Figure 2.1.
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Figure 2.1: Relation between system states and observations in a Hidden Markov
Model. Possible state transitions are represented by blue arrows, emission prob-
abilities are indicated as purple arrows. Here, the subscripts of the states and
observations are used not for indicating the time index k but serve for enumeration
of the both sets.

The state estimation is done using the so-called Predictor-Corrector cycle, which
consist of two steps:

Prediction of the probability density functions of the new system state and ex-
pected measurements based on the latest state estimate by using the system
model and the measurement model.

Correction of the estimated system state and adaptation of the both models based
on the actually obtained measurements. It is also called Innovation, Update
or Filtering.

The basic principle of a recursive statistical filter is shown in Figure 2.2. The filter
works recursively in a predictor-corrector cycle starting with an initial system state
estimate x̂0. Given a state estimation at time step k − 1 the filter propagates it in
the time using the system model. In this way, an a-priori estimate of the current
system state x̂−k is obtained. Then, the measurement model is used for estimating
the expected measurement ẑk. After having obtained the actual measurement zk,
a correction step is performed, in which both the current state and the uncertainties
of the both models are updated based on the difference (residuals) between the
predicted and actually obtained measurements.
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Figure 2.2: Illustration of the dependencies between the observed system and the
filtering process of a statistical filter.

One of the simplest statistical dynamic state estimators is the Kalman Filter in-
troduced by R. E. Kalman in 1960 [Kal60]. It assumes Gaussian distributions of
both the state and the noise variables and provides equations for propagation of
those distributions using linear system and measurement models. For the case of
Wk and Vk being uncorrelated and having white Gaussian distribution with zero
mean, the Kalman Filter is an optimal estimator in the sense of the least square
errors and Bayesian filtering.

A Gaussian distribution can be represented by the two first moments (mean and
covariance matrix) and is easily propagated through a linear system resulting in
another Gaussian distribution. In case of non-linearities in at least one of the both
models, this is not the case anymore. For coping with this problem two different
approaches have been proposed. The first one aims at approximation of the non-
linear function by using the Taylor series expansion around the mean of the Gaus-
sian distribution (Extended Kalman Filter (EKF), Iterative Extended Kalman
Filter (IEKF)). The second approach aims at approximation of the distribution
by means of a set of points that can be propagated through the non-linear func-
tions and serve for determination of the new distribution parameters (Unscented
Kalman Filter (UKF), Central Difference Kalman Filter (CDKF) etc.). A gen-
eralization of this approach leads to the family of the Sequential Monte Carlo
Methods (SMCM) also known as Particle Filters (PF). An overview over differ-
ent dynamic state estimators can be found in [BSL93, Bro98, Sim06]. Following
subsections recapitulate the basics of the linear Kalman Filter, Extended Kalman
Filter and Iterative Extended Kalman Filter since they build the basement for the
data association methods presented in this paper.
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2.1 Linear Kalman Filter

In the case of the linear Kalman Filter, system model and measurement model are
given as linear equations

Xk+1 = FXk + Guk + Wk (state equation) (2.1)
Zk = HXk + Vk (measurement equation)

with F, G and H being the system matrix, the control matrix and the measurement
matrix, respectively, and

Xk ∼ N (x̂k,PXkXk
) (2.2)

with

PXkXk
:= Cov(Xk,Xk) = E

[
(Xk − x̂k)(Xk − x̂k)

]
.

The noise components W and V are assumed to be uncorrelated and to have white
Gaussian distribution with zero mean and known covariance matrices Qk and Rk:

Wk ∼ N (0,Qk) , Vk ∼ N (0,Rk) ,

PWkWt
:= Cov(Wk,Wt) = E

[
WkW

T
t

]
=

{
Qk for t = k

0 for t 6= k ,

PVkVt := Cov(Vk,Vt) = E
[
VkV

T
t

]
=

{
Rk for t = k

0 for t 6= k ,

PWkVt
:= Cov(Wk,Vt) = E

[
WkV

T
t

]
= 0 for all t and k ,

PXkWt := Cov(Xk,Wt) = E
[
XkW

T
t

]
= 0 for all t and k ,

PXkVt
:= Cov(Xk,Vt) = E

[
XkV

T
t

]
= 0 for all t and k .

In the considered application there is no possibility to influence the observed sys-
tem. Hence, the control parameter vector u will be omitted in the following.

As mentioned above, the Kalman Filter gives estimates of the two first moments
x̂k and PXkXk

of the distribution of the true state xk. It is initialized at time step
k = 0 with initial state estimate x̂0 and covariance matrix PX0X0 . The recursive
expression for the calculation of the a-priori estimates x̂−k and PX−

k X−
k

at time
step k from the a-posteriori estimates x̂k−1 and PXk−1Xk−1

at the previous time
step k − 1 is derived by using the state equation (2.1) in the expectation value
computation:

x̂−k = E
[
Xk|z1:k−1

]
= E

[
FXk−1 + Wk−1|z1:k−1

]
= Fx̂k−1
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and

PX−
k X−

k
=E
[
(Xk − x̂−k )(Xk − x̂−k )T

]
=E
[
(FXk−1 + Wk−1 − Fx̂k−1)(FXk−1 + Wk−1 − Fx̂k−1)T

]
=FPXk−1Xk−1

FT + Qk . (2.3)

In equation (2.3), Qk represents the unpredictable noise component. The uncer-
tainty PX−

k X−
k

of the state grows in each time step by this expression. The coun-
teraction is achieved by integrating new information about the system state that
is contained in the new measurements. This is done in the correction step using
innovation z̃k = zk − ẑk:

x̂k = x̂−k + Kk(z̃k) = x̂−k + Kk(zk − ẑk) = x̂−k + Kk(zk −Hx̂−k )

= (I−KkH)x̂−k + Kkzk ,

and

PXkXk
= E

[
(Xk − x̂k)(Xk − x̂k)

]
= PX−

k X−
k

+ KkHPX−
k X−

k

with Kalman gain Kk = PX−
k X−

k
HTP−1

Z̃kZ̃k
and innovation covariance

PZ̃kZ̃k
= E

[
Z̃kZ̃

T
k

]
= E

[(
(Zk − ẑk)− 0

)(
(Zk − ẑk)− 0

)T ]
(= PZkZk)

= E
[
(H(Xk − x̂k) + Vk)(H(Xk − x̂k) + Vk)T

]
= HPXkXk

HT + Rk .

2.2 Extended Kalman Filter

In the case of non-linearities in the system and measurement models, the state and
measurement equation are given by

Xk+1 = f(Xk,Wk)

Zk = h(Xk,Vk) .

In the most of the cases, additive noise model is assumed so that

Xk+1 = f(Xk) + Wk

Zk = h(Xk) + Vk .



Data Association for Multi-Target-Tracking 7

The Extended Kalman Filter approximates the non-linear functions f and h using
Taylor series expansion around the current mean estimate. Truncation of the Tay-
lor series after the first element leads to a linear function, which can be used for
propagation of the Gaussian distribution as in the linear case. The a-priori estimate
for the system state and expected measurement can be obtained directly using both
nonlinear functions. When propagating state covariance and computing Kalman
gain, Jacobians Fk−1 and Hk are used:

Prediction: x̂−k = f(x̂k), PX−
k X−

k
= Fk−1PXk−1Xk−1

FTk−1 + Qk

Correction: x̂k = x̂−k +Kk(zk − h(x̂−k )), PXkXk
= (I−KkHk)PX−

k X−
k

with

Kk = PX−
k X−

k
HT
kP
−1

Z̃kZ̃k

PZ̃kZ̃k
= HkPX−

k X−
k
HT
k + Rk

and the Jacobians

Fk−1 =
df

dx

∣∣∣∣
x̂k−1

and Hk =
dh

dx

∣∣∣∣
x̂−
k

.

2.3 Iterative Extended Kalman Filter

The Extended Kalman Filter linearizes the measurement function around the a-
priori state estimate x̂−k although a better state estimate is given after the inte-
gration of the current measurement. Linearization around the a-posteriori state
estimate x̂k may improve the estimation. This potential is exploited in the it-
erative version of the EKF, the Iterative Extended Kalman Filter (IEKF). IEKF
iteratively repeats the correction step with the recalculated linearization of the
measurement model until a termination constraint is fulfilled. For ensuring non-
recurrent integration of the measurement zk during the iterations, a correction term
H

(i)
k (x̂−k − x̂

(i)
k ) is used in each iteration i:

x̂
(i+1)
k = x̂−k + K

(i)
k (zk − h(x̂

(i)
k )−H

(i)
k (x̂−k − x̂

(i)
k ))

K
(i)
k = PX−

k X−
k

(H
(i)
k )T (P

(i)

Z̃kZ̃k
)−1

with

H
(i)
k =

dh

dx

∣∣∣∣
x̂

(i)
k

and start value x̂
(0)
k = x̂−k .
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3 Data association

In order to correctly perform the update step, statistical state estimators such as
the Kalman Filter assume a correct assignment of measurements to tracks. A cor-
rect assignment means that in each time step each track is associated with a single
measurement that has been originated from the corresponding object. The prob-
lem of assigning measurements to the existing tracks is called the data association
problem. Data association is not always a trivial process. Given multiple active
tracks and multiple detections, there are often several assignment possibilities be-
ing more or less probable. Figure 3.1 illustrates the data association ambiguity in
case of three objects and four measurements.

?

?
? ?

?

?

Figure 3.1: Illustration of a possible data association ambiguity in case of three
tracks and four measurements. The three expected measurements are visualized
by blue circles, the actually obtained – by red triangles.

Further uncertainties are introduced through the fact that a measurement may be
evoked not only by a real object but may emerge due to concentration of noise in
the data (clutter) or may be missing due to weaknesses of the sensors or of the
subsequent data processing algorithms. And, finally, in some systems an object
may evoke multiple measurements and several objects may give a joint measure-
ment. This makes unambiguous assignments difficult or even impossible. In case
of extended targets this is even worse since object observability represents another
uncertainty source. Partial and full occlusions result in incomplete and missing
detections and make data association even more challenging.

There exists a number of algorithms for solving the data association problem in
multi-target applications. Hereby, a differentiation between the so-called single
scan algorithms (also referred to as Single Hypotheses Tracking (SHT)) and mul-
tiscan algorithms (also referred to as Multi-Hypotheses Tracking (MHT)) is done.
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While single scan algorithms consider only data of the current frame (scan), mul-
tiscan algorithms simultaneously evaluate multiple hypotheses maintaining them
throughout several frames in anticipation that the new data will allow to resolve
emerging conflicts [Rei79, CH96]. In practice, single scan algorithms are often
preferred due to their simplicity and low computational cost. In the following, al-
gorithms assuming that the number of tracks is known and a detection corresponds
to a single track and vice versa will be presented.

3.1 Nearest Neighbor Algorithms

One of the simplest data association algorithms is the Nearest Neighbor algo-
rithm (NN). It is a typical single scan algorithm since it considers only mea-
surements belonging to the current data frame (scan). NN algorithm considers
only one data association hypothesis, assigning for each track the closest mea-
surement. As shown in Figure 3.2 (a), in multi-target tracking scenarios, the NN
algorithm is not optimal since it might assign a single measurement to multi-
ple tracks despite the presence of other measurements. There exists an iterative
version of the NN algorithm which prohibits multiple selections. It sequentially
choses track-measurement pairs with the closest distance and excludes them from
further consideration. This algorithm is suboptimal too, since it minimizes the
track-to-measurement distances sequentially and thus may miss the global min-
imum as shown in Figure 3.2 (b). This problem can be solved by the Global
Nearest Neighbor algorithm (GNN) which seeks for the globally optimal solution
with respect to track-to-measurement distances (Figure 3.2 (c)).

3.2 Probabilistic Data Association (PDA)

Nearest Neighbor algorithms make a hard decision by minimizing distances be-
tween the predicted and real measurements. This decision might be optimal with
respect to the distances in the current frame, however it may be still suboptimal
with respect to the whole measurement sequence. Especially in applications where
missing detections or obtaining clutter-based detections is possible, the Global
Nearest Neighbor algorithm may lead to severe tracking errors. This problem was
studied thoroughly in the radar tracking literature and led to development of sta-
tistical methods based on the idea of the probabilistic data association.

The main idea of such methods is weighting of different association hypotheses
according to their probabilities thus minimizing the association error. Similarly
to NN and GNN, PDA-based methods consider at each point in time only cur-
rently incoming measurements, i.e., they are single scan algorithms. However,
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(a) Association by means
of the simple Nearest
Neighbor algorithm

(b) Association by means
of the iterative NN al-
gorithm

(c) Association by means
of the Global Nearest
Neighbor algorithm

Figure 3.2: Illustration of Nearest Neighbor data association.

when updating a track, instead of choosing a single measurement with highest
association probability they evaluate multiple association hypotheses and use all
neighboring measurements weighting them according to the probabilities of the
corresponding hypotheses (All-Neighbours Data Association). Due to this soft
decision approach, PDA-based methods suffer less from data association errors
and are thus better suitable for applications with clutter-based and missing detec-
tions. Although PDA-based methods work with multiple association hypotheses
they are also referred to as single hypotheses tracking algorithms since the hy-
potheses are combined to a single hypothesis prior to innovation. The remainder
of this section addresses basics of the Probabilistic Data Association algorithm
(PDA) proposed by Bar-Shalom et. al. [BST75, BS78].

The PDA considers each track separately. Let the considered track be denoted by
x with Xk ∼ N (x̂k,PXkXk

) as in (2.2). Under Gaussian distribution assumption,
the a-priori probability density of the predicted measurement position is given by

fZx
k

= f(zxk |Zx
1:(k−1)) = N (zk; ẑxk ,P

x
ZkZk

) ,

with

ẑxk = Hx̂−k and Px
ZkZk

= HPX−
k X−

k
HT + R .

For preventing associations with too far lying and thus too improbable measure-
ments a selection region referred to as the gating region or validation gate Γx

k is
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defined around ẑk with volume V x
k . Associations are only performed with mea-

surements falling inside the gating region. The probability of the correct measure-
ment zk to lie inside the gating region is given by

Pxk
G = P (zk ∈ Γx

k) =

∫
V x
k

fZx
k

dzk . (3.1)

The a-priori probability density function that accounts for gating is thus defined
as:

p(zxk |Z1:(k−1)) :=

{
1
PG
fZx

k
for zxk ∈ Γx

k

0 for zxk /∈ Γx
k

.

Often, validation gates are defined as hyper-ellipsoidal regions around ẑxk such that
Pxk
G = PG is a constant. This is done by choosing

Γx
k(γ) = {z : (z− ẑxk)T (Px

ZkZk
)−1(z− ẑxk) ≤ γ} (3.2)

with a constant parameter γ. As the measurements are normally distributed, it
holds that

(Z− ẑxk)T (Px
ZkZk

)−1(Z− ẑxk) ∼ χ2
nz

⇒ PG = P (zk ∈ Γx
k(γ)) = χ2

nz
(γ) ,

with nz being the dimension of the measurement z. Defining a constant PG leads
to certain γ, which can be obtained from the quantile tables of the nz-dimensional
chi-square distribution (γ = χ2

nz,PG
). This allows for determination of Γx

k =
Γx
k(γ) as well as V x

k = V x
k (γ) which is given as

V x
k (γ) = cnzγ

nz
2

∣∣∣Px
ZkZk

∣∣∣ 1
2

,

where cnz is the volume of the nz-dimensional unity sphere (c1 = 2, c2 = π, c3 =
4
3π, c4 = 1

2π
2, · · · ).

The set of mx
k measurements falling into the gating region of a track x at time

step k is denoted by Zx
k : Zx

k = {zk,1, . . . , zk,mx
k
} ∈ Γx

k . For better readability,
the superscript x in mx

k will be omitted in the following. For each measurement
zk,j ∈ Zx

k a hypothesis is formed, where this measurement is assumed being
correct while all other mk − 1 measurements in the gate are assumed to be caused
by clutter. This hypothesis is denoted as θx→zj

k with j ∈ {1 . . .mk}. θx→z0

k

denotes the hypothesis of none of the mk measurements in gate being correct, i.e.,
that all of them stem from clutter or are false alarms.
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In the innovation step of the Bayesian state estimator, estimates produced by each
hypothesis are weighted with the weighting factors βx→zj

k (with j ∈ {0 . . .mk})
that are defined as

β
x→zj
k = P (θ

x→zj
k |Zx

1:k)

with Zx
1:k = {Zx

1 , . . . ,Zx
k } and

∑mk
j=0 β

x→zj
k = 1 . The weighting factors are

calculated using Bayes’ theorem:

β
x→zj
k = P (θ

x→zj
k |Zx

1:k) = P (θ
x→zj
k |Zx

k ,mk,Zx
1:(k−1))

=
1

ck
p(Zx

k |θ
x→zj
k ,mk,Zx

1:(k−1))P (θ
x→zj
k |mk,Zx

1:(k−1))

with ck being the normalization factor. Assuming a Gaussian measurement distri-
bution, the likelihood of the true measurement zk,j (j 6= 0) is given by

p(zk,j |θ
x→zj
k ,mk,Zx

1:(k−1)) = 1
PG
fZx

k
= 1

PG
N (zk,j ; ẑ

x
k ,P

x
ZkZk

)

= 1
PG
N (zk,j − ẑxk ; 0,Px

ZkZk
) = 1

PG
N (z̃xk,j ; 0,Px

ZkZk
)

= 1
PG
· |2π ·Px

ZkZk
|− 1

2 · e−
1
2 (z̃x

k,j)
T (Px

ZkZk
)−1z̃x

k,j

with innovation z̃xk,j = zk,j − ẑxk .

Clutter measurements are assumed to be independent from the correct measure-
ment. Their position is assumed to be independent and identically distributed over
the whole gating region with uniform distribution on Γx

k . Under these assumptions,

p(zk,i|θ
x→zj
k ,mk,Zx

1:(k−1)) =
1

Vk
j 6= i .

The likelihood of the entire measurement set Zx
k falling into the gating region of

the track x at time step k given that either all of them are false alarms (θx→z0

k )
or the measurement j is the correct measurement and all other measurements are
false alarms (θx→zj

k , j = 1...mk) is given by

p(Zx
k |θ

x→z0

k ,mk,Zx
1:(k−1)) =

mk∏
i=1

p(zk,i|θx→z0

k ,mk,Zx
1:(k−1)) =

1

V mkk

,

p(Zx
k |θ

x→zj
k ,mk,Zx

1:(k−1)) =

mk∏
i=1

p(zk,i|θ
x→zj
k ,mk,Zx

1:(k−1))

=
1

V mk−1
k

1
PG
N (z̃k,j ; 0,Px

ZkZk
) , j = 1, · · · ,mk .
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The probability mass function of the hypothesis θx→zj
k conditioned on mk and

Zx
1:(k−1) is given by

P (θ
x→zj
k |mk,Zx

1:(k−1)) = P (θ
x→zj
k |mk)

=
P (mk|θ

x→zj
k )P (θ

x→zj
k )∑mk

j=0 P (mk|θ
x→zj
k )P (θ

x→zj
k )

, (3.3)

where P (θ
x→zj
k ) (with j = 1...mk) denotes the a-priori probability that the mea-

surement zj originated from track x, P (θx→z0

k ) denotes the a-priori probabil-
ity that none of the measurements in the gate has been evoked by track x and
P (mk|θx→z0

k ) and P (mk|θ
x→zj
k ) denote the probabilities for receiving mk mea-

surements given that either none or one of them stems from track x.

P (θx→z0

k ) is obviously given by

P (θx→z0

k ) = 1− PDPG , (3.4)

where PD is the probability that the track evokes a measurement (detection proba-
bility), and PG is the probability of the measurement to fall into the gating region
as defined in (3.1).

Under the assumption that each of the mk measurements in the gate has equal
probability of being evoked by track x, the a-priori association probability
P (θ

x→zj
k ) for j = 1...mk is given by

P (θ
x→zj
k ) =

1

mk
PDPG ∀j = 1, ...,mk .

The probability of the number of measurements being mk given one of the associ-
ation hypotheses θx→z0

k or θx→zj
k is equivalent to the probability of the number of

false measurements being mk or mk − 1 correspondingly:

P (mk|θx→z0

k ) =µF (mk) ,

P (mk|θ
x→zj
k ) =µF (mk − 1) (3.5)

with µF (m) being the probability mass function for the number of clutter-based
measurements. µF (m) can be modeled in different ways. The number of the
clutter-based measurements can be assumed either to have Poisson distribution
(parametric model) or to be equally distributed over the set {0, · · · , N − 1} with
N being the maximal number of clutter-based measurements (non-parametric
model).
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Parametric model: Poisson distribution

µF (m) = e−m̂k
m̂m
k

m!
= e−λVk

(λVk)m

m!
, m ∈ N0 ,

with λ being the mean clutter density and m̂k := λVk being the expected
number of clutter measurements in the gating region. If λ is a-priori not
known, m̂k can be estimated by using m̂k = mk − PDPG.

Non-parametric model: Uniform distribution

µF (m) =
1

N
, m = 0, 1, . . . , N − 1 ,

where N can be chosen as a great enough arbitrary number since it will be
canceled in P (θ

x→zj
k |mk,Zx

1:(k−1)).

Using (3.4) - (3.5) in (3.3) leads to

P (θ
x→zj
k |mk,Zx

1:(k−1)) =


µF (mk)(1−PDPG)

µF (mk)(1−PDPG)+mk·µF (mk−1)
PDPG
mk

j = 0

µF (mk−1)
PDPG
mk

µF (mk)(1−PDPG)+mk·µF (mk−1)
PDPG
mk

j = 1, ...,mk

and thus to

P (θ
x→zj
k |mk,Zx

1:(k−1)) =


(1−PDPG)λVk

PDPGmk+(1−PDPG)λVk
j = 0

PDPG
PDPGmk+(1−PDPG)λVk

j = 1, . . . ,mk

for the parametric model and to

P (θ
x→zj
k |mk,Zx

1:(k−1)) =


(1− PDPG) j = 0

1
mk
PDPG j = 1, . . . ,mk

for the non-parametric model.

This leads to the following weighting factors βx→zjk :

β
x→zj
k =


b

b+
∑mk
i=1 ei

j = 0

ej
b+

∑mk
i=1 ei

j = 1, . . . ,mk
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with

ej = e−
1
2 (z̃x

k,j)
T (Px

ZkZk
)−1z̃x

k,j

and

b = λ|2πPx
ZkZk

|
1
2

(1−PDPG)
PD

=


(

2π
γ

)nz
2

λVkcnz
(1−PDPG)

PD
, parametric model

(
2π
γ

)nz
2

mkcnz
(1−PDPG)

PD
, non-parametric model.

For each hypothesis, the corresponding state estimate is given by

x̂
zj
k = E[Xk|θ

x→zj
k ,Zx

1:k] =

{
x̂−k j = 0

x̂−k + Kk(zk,j − ẑxk) j = 1, . . . ,mk .

When considering all hypotheses, this leads to the following composite state esti-
mate for the track x:

x̂k =E[Xk|Zx
1:k] =

mk∑
j=0

E[Xk|θ
x→zj
k ,Zx

1:k] · P (θ
x→zj
k |Zx

1:k)

=

mk∑
j=0

x̂
zj
k β

x→zj
k =

mk∑
j=0

β
x→zj
k x̂−k + Kk

mk∑
j=1

β
x→zj
k (zk,j − ẑxk)

=x̂−k + Kk

mk∑
j=1

β
x→zj
k z̃xk,j (3.6)

with composite innovation z̃xk,Comp :=
∑mk
j=1 β

x→zj
k z̃xk,j .

Although the equation (3.6) seems to be linear, this is not the case as the weighting
factors βx→zj

k depend on z̃xk,j .

The covariance matrix PXkXk
is calculated according to

PXkXk
= βx→z0

k PX−
k X−

k
+ (1− βx→z0

k )PcXkXk
+ P̃k

with

PcXkXk
= (I−KkHk)PX−

k X−
k

and

P̃k = Kk

(mk∑
j=1

β
x→zj
k z̃xk,j(z̃

x
k,j)

T − z̃xk,Comp(z̃xk,Comp)T
)
KT
k .



16 Michael Grinberg

Hereby, the predicted covariance matrix PXkXk
is weighted with the factor

βx→z0

k , which is related to the case of none of the obtained measurement being
correct. PcXkXk

is the covariance matrix calculated under the assumption that the
innovation is performed with the correct measurement, i.e., without association er-
ror. It is weighted with the factor (1− βx→z0

k ). Since it is not known which of the
mk measurements is the correct one, the state covariance is increased by means of
the matrix P̃k which incorporates the measurement association errors.

3.3 Joint Probabilistic Data Association (JPDA)

In the PDA, each track is considered separately. This justifies the assumption that
either all or all but one measurements falling into the gating region of a track are
due to clutter. In the presence of multiple closely spaced targets this assumption
may be invalid since true measurements of one target may fall into the gating re-
gion of another target causing permanent non-random interference. This issue is
accounted for in the extension of the PDA called Joint Probabilistic Data Asso-
ciation (JPDA) proposed by Bar Shalom et al. [FBSS83]. Instead of consider-
ing each track separately, JPDA considers association configurations, the so-called
joint events. A joint event Θk(T ) is defined as an conjunction of associations
θ
xtj→zj

k between measurements zj and possible causes xtj that can be given by
either an existing track (tj 6= 0) or clutter (tj = 0):

Θk(T ) =

mk⋂
j=1

θ
xtj→zj

k , T = (t1, ..., tmk), tj ∈ {0, . . . , nk} ,

with nk being number of currently tracked targets. T are ordered sets of mk (pos-
sibly repeating) track numbers including 0, which represents the clutter source.

For reduction of complexity, tracks are partitioned into independent clusters and
joint events are built for each cluster separately. A cluster is defined as a set of
tracks which share no measurements with tracks that do not belong to the cluster.

For easier clutter handling, clutter measurements are considered to be identically
distributed over the whole cluster volume V independently of the gating regions
of the tracks. This implies that each measurement should be able to be associated
with each track in the cluster and hence PG = 1. However, this would also imply
usage of too far lying measurements for update of a track. In order to avoid this, a
binary validation matrix Ωk is defined:

Ωk = [ωji]k, j = 1, · · · ,mk; i = 0, 1, · · · , nk
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with

ωji =

{
0 if zj /∈ Γxi(γ)

1 if zj ∈ Γxi(γ) ,

and gating regions Γxi(γ) as defined in (3.2). The first column (i = 0) of Ωk
stands for association with no track, i.e., indicates that a measurement j stems
from clutter. As mentioned above, this can be applicable to each measurement in
cluster, hence ∀j : ωj0 = 1.

Each joint event Θk(T ) can be represented through a binary matrix Ω̂(Θk(T ))
with

Ω̂(Θk(T )) = [ω̂ji(Θk(T ))], j = 1, · · · ,mk; i = 0, 1, · · · , nk

and

ω̂ji(Θk(T )) =

{
1 if θ

xi→zj
k ⊂ Θk(T )

0 else .

In JPDA, a joint event Θk(T ) is considered to be “feasible” under following con-
ditions:

• A measurement may have only one origin:

nk∑
i=0

ω̂ji(Θk(T )) = 1, j = 1, · · · ,mk

• A track may evoke at most one measurement:

mk∑
j=1

ω̂ji(Θk(T )) ≤ 1, i = 1, · · · , nk .

A matrix Ω̂ defining a feasible event Θk(T ) can be built from the validation matrix
Ωk by picking out elements in a way such that each row and each column contains
at most one “1”. The only exception is made for the first column which may
contain multiple non-zero entries since more than one measurement may be due to
clutter. The set of all feasible joint events in the following is denoted by Ξk with∑

{Θk(T )∈Ξk}

P (Θk(T )) = 1 .
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For better readability, in the following three auxiliary entities ϑi(Θk(T )),
τj(Θk(T )) and φ(Θk(T )) are defined for a joint event Θk(T ):

ϑi(Θk(T )) :=

mk∑
j=1

ω̂ji(Θk(T )), i = 1, · · · , nk

τj(Θk(T )) :=

nk∑
i=1

ω̂ji(Θk(T )), j = 1, · · · ,mk

φ(Θk(T )) :=

mk∑
j=1

(1− τj(Θk(t)))

ϑi(Θk(T )) indicates whether in Θk(T ) the ith track has been assigned a measure-
ment. τj(Θk(T )) indicates whether the jth measurement has been assigned to a
track. Finally, φ(Θk(T )) specifies the number of the clutter based measurements
in Θk(T ).

The weighting factors βxi→zj
k (i = 1, · · · , nk; j = 0, · · · ,mk) can be calcu-

lated as follows:

β
xi→zj
k := P (θ

xi→zj
k |Z1:k) =

∑
Θk(T )∈Ξk

P (Θk(T )|Z1:k) ω̂ji(Θk(T )) .

The a-posteriori probability of a joint event Θk(T ) conditioned on all received
measurements including the current measurement set can be calculated using the
Bayes’ rule:

P (Θk(T )|Z1:k) = P (Θk(T )|Zk,mk,Z1:(k−1)) (3.7)

= 1
ck
p(Zk|Θk(T ),mk,Z1:(k−1))P (Θk(T )|mk,Z1:(k−1))

with ck being the normalization constant.

Similar to the calculations in the PDA, the likelihood of a measurement zk,j given
that it stems from a track xtj with tj 6= 0 or from clutter (tj = 0) is given by

p(zk,j |θ
xtj→zj

k ,Z1:(k−1)) =

{
N (zk,j ; ẑ

xtj
k ,P

xtj
ZkZk

) for tj 6= 0 ,
1
V for tj = 0 .

Under the previously mentioned independence assumption of the clutter-based
measurements and the true measurements, this leads to the following expression
for the likelihood of the current measurement set Zk conditioned on a joint event
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Θk(T ) and number of measurements being mk:

p(Zk|Θk(T ),mk,Z1:(k−1)) =

mk∏
j=1

p(zk,j |θ
xtj→zj

k ,Z1:(k−1))

=
1

V φ(Θk(T ))

mk∏
j=1

(
N (zk,j ; ẑ

xtj
k ,P

xtj
ZkZk

)
)τj(Θk(T ))

where φ(Θk(T )) is the number of the clutter-based measurements in the joint event
Θk(T ) and τj(Θk(T )) serves for picking out the likelihoods of the measurements,
that in Θk(T ) have been declared as being non-clutter.

The a-priori probability P (Θk(T )|mk,Z1:(k−1)) of a joint event Θk(T ) ∈ Ξk
in (3.7), conditioned on the number of received measurements is equivalent to the
probability of assigning the tracks according to ϑi(Θk(T )) and getting additionally
φ(Θk(T )) clutter-based measurements:

P (Θk(T )|mk,Z1:(k−1))

= P
(
Θk(T ), ϑ(Θk(T ))1, . . . , ϑnk(Θk(T )), φ(Θk(T ))|Z1:(k−1)

)
= P

(
Θk(T ) |ϑ(Θk(T ))1, . . . , ϑnk(Θk(T )), φ(Θk(T ))

)
· P
(
ϑ1(Θk(T )), . . . , ϑnk(Θk(T )), φ(Θk(T ))|Z1:(k−1)

)
.

An expression for the computation of the first factor follows from combinatorics
with an assumption that each of the joint events Θk(T ) has equal a-priori probabil-
ity. It is given as a reciprocal of the number of all events that assign measurements
to the tracks as defined by ϑi(Θk(T )) for i = 1, . . . , nk and have φ(Θk(T )) clutter
measurements:

P (Θk(T )|ϑ1(Θk(T )), ..., ϑnk(Θk(T )), φ(Θk(T ))) =

(
mk!

φ(Θk(T ))!

)−1

=
φ(Θk(T ))!

mk!

The second factor is given by

P (ϑ1(Θk(T )), . . . , ϑnk(Θk(T )), φ(Θk(T ))|Z1:(k−1))

=

nk∏
i=1

(
(Pxi
D )

ϑi(Θk(T )) · (1− Pxi
D )

1−ϑi(Θk(T ))
)
· µF (φ(Θk(T )))

with Pxi
D being the probability for the track xi to be detected and µF (φ(Θk(T )))

being the probability mass function for the number of clutter-based measurements
that can be modeled as described in Section 3.2 (see page 13).
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This leads to

P (Θk(T )|Z1:k) = φ(Θk(T ))!
ckmk!

µF (φ(Θk(T )))

V φ(Θk(T ))

mk∏
j=1

(
N (zk,j ; ẑ

xtj
k ,P

xtj
ZkZk

)
)τj(Θk(T ))

·
nk∏
i=1

(
(Pxi
D )

ϑi(Θk(T ))
(1− Pxi

D )
1−ϑi(Θk(T ))

)
and hence to

P (Θk(T )|Z1:k) = λφ(Θk(T )) e−λV

ck ·mk!

mk∏
j=1

(
N (zk,j ; ẑ

xtj
k ,P

xtj
ZkZk

)
)τj(Θk(T ))

·
nk∏
i=1

(
(Pxi
D )

ϑi(Θk(T ))
(1− Pxi

D )
1−ϑi(Θk(T ))

)
for the parametric model of clutter distribution and to

P (Θk(T )|Z1:k) =
1

c̃k

φ(Θk(T ))!

V φ(Θk(T ))

mk∏
j=1

(
N (zk,j ; ẑ

xtj
k ,P

xtj
ZkZk

)
)τj(Θk(T ))

·
nk∏
i=1

(
(Pxi
D )

ϑi(Θk(T ))
(1− Pxi

D )
1−ϑi(Θk(T ))

)
for the nonparametric model of clutter distribution.

4 Conclusion and Outlook

This report has presented basics of the state-of-the-art methods for tracking of mul-
tiple objects in cluttered environments. An overview and a detailed description of
the basic state-of-the-art approaches for data association and dynamic state estima-
tion has been given. However, all described data association approaches consider
existence of the tracked targets as given. Track initiation and maintenance has to
be done outside of scope of the tracking algorithms.

In practice, target existence is often subject to uncertainties due to great amount of
clutter and missing detections. An elegant way of modeling those uncertainties has
been proposed by Mušicki et al. The Integrated Probabilistic Data Association
(IPDA) and Joint Integrated Probabilistic Data Association (JIPDA) algorithms
proposed in [MES94, ME02] are extensions of the PDA and JPDA algorithms
respectively. Additionally to the expressions for data association probabilities they
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provide expressions for computation of the track existence probabilities that are
directly accounted for (integrated) when computing the association probabilities.

Track existence is modeled as a Markov process with the constant state transition
probabilities between the states “track exists” and “track does not exist”. Observ-
ability aspect can be also accounted for by using three states (“track exists and is
observable”, “track exists but is not observable” and “track does not exist”).

Estimation of the track existence probability offers a solid basis for track initiations
and terminations and allows for better handling of clutter and missing detections.
However, in some applications such as vision-based object tracking, corrupted
measurements due to split, merged and incomplete detections bear an additional
source for problems. Here, the above-mentioned approaches have to be extended
in order to be able to cope with the introduced effects. Low-level information
which can be obtained by robust re-identification and tracking of dedicated feature
points in the image offers great potential for solving such problems. An approach
which utilizes such information and allows for handling of incomplete, split and
merged detections has been proposed in [GOB09]. It is called Feature-Based Prob-
abilistic Data Association and Tracking Algorithm (FBPDA).
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