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Introduction
Hydrothermal carbonization – How to put the value in?
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Hydrochar
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Why is HTC of biogas digestate promising? 1/3
Gross electricity production from renewable sources in Germany in 2013.
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In 2013 the renewable electricity in Germany reached 549 PJ (25,4 % of 
gross production). Nearly 100 PJ were produced by biogas plants.

Ref: BMWi - AGEE-Stat – 2/2014.



Why is HTC of biogas digestate promising? 3/3
The concept – A Biogas-HTC-Biorefinery.
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Source: AVA-CO2

(2015).



Process Design Assessment (PDA) 1/3
Flow chart model of the up-scaled batch process.

Source: AVA-CO2 (2015).
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Process Design Assessment (PDA) 2/3
Mass balancing for HTC of biogas digestate (mass yield prediction by
severity parameter)

Input: C | T | t

Severity and yield models:
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Output: Ys | Yl | Yg | O/C | H/C | HHV

Y = a + b x ln(ROH)



Process Design Assessment (PDA) 3/3
Mass and energy balancing by thermodynamic modelling

energy balance (TJ/a)
(enthalpy and chemical energy flows)

mass balance (Mg/a)
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Process parameter: pH 7 | T = 245°C | t = 120 min



Levelized costs of energy output 1/5
CAPEX estimation approach

CAPEX

(M€)

I. Fixed-capital investment (FCI) 6.45   
A. Direct costs (DC) 4.52   

1. Onsite costs (ONSC) 4.13   
2. Offsite costs (OFSC) 0.39   

B. Indirect costs (IC) 1.94   
1. Engineering and supervision 0.32   
2. Construction costs 0.65   
3. Contingencies 0.97   

II. Other outlays 1.18   

Total capital investment (TCI) 7.63   

Ref: calculated after Reza et al. (2014).

Plant capacity
[MWHHV]

TCI
[M€]

Specific 
investment

[€ kW-1]

21.62 13.33 789   
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Ref: Wirth et al. (2011).
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Levelized costs of energy output 2/5
General assumptions, OPEX & FINEX (base case)

OPEX (= OTXI + FC + OMC)
I. Raw materials and operating supplies

A. Raw materials Amount Price (€ unit-1)

Digestate (separated) 49,422 t/a 5.00   
Digestate 39,044 t/a -

B. Operating supplies Amount Price (€ unit-1)

Citric acid 716 t/a 800.00   

Water 27,925 t/a 1.00   
Natural Gas 40,103 GJ/a 11.11   
Electricity 1,399 GJ/a 33.33   
Others 1 unit  40,000 

II. Staff Amount Price (€ unit-1)
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Engineer 1,760 h/a 45.00   
Technician 8,760 h/a 30.00   

III. Operation and maintenance Factor ONSC Factor 
Maintenance high wear components 70% 10%
Maintenance low wear components 30% 2%

IV. Administration Factor TCI
Insurance 0.5%
Accounting and annual balance sheet                 1 unit 10,000 €
Contingencies 0.5%

FINEX (TCR + ROI + ITX)
Depreciation (TCR) EPL 15 years

Return on investment (ROI) ieff 10%

Taxes (ITX) Tax rate 25%

General inflation rate (ri) 2.0%

Financial inflation rate (ri,fin) 0.0%

Ref: Bejan et al. (1996).

TRR = TCR + ROI + ITX + OTXI + FC + OMC



Levelized costs of energy output 3/5
Modelling the process with different temperature levels

Levelized costs Van-Krevelen diagram
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Levelized costs of energy output 4/5
Comparision with the literature
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Levelized costs of energy output 5/5
Sensitivity analysis – Base Case
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Conclusions

(1)Combination of biogas and HTC plants is very

promising. 

(2)The prediction models for mass yields and

hydrochar properties published are powerful tools
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hydrochar properties published are powerful tools

for process optimization. 

(3)Depreciation (CAPEX | TCI) is the most sensitive 

cost factor in our model and can change results 

(TRR cl,e) by +/- 25 %. 
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