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ABSTRACT

Capturing vital signs, specifically heart rate and oxygen saturation, is essential in care situations. Clinical pulse oximetry
solutions work contact-based by clips or otherwise fixed sensor units which have sometimes undesired impact on the
patient. A typical example would be pre-term infants in neonatal care which require permanent monitoring and have a
very fragile skin. This requires a regular change of the sensor unit location by the staff to avoid skin damage. To improve
patient comfort and to reduce care effort, a feasibility study with a camera-based passive optical method for contactless
pulse oximetry from a distance is performed. In contrast to most existing research on contactless pulse oximetry, a task-
optimized multi-spectral sensor unit instead of a standard RGB-camera is proposed. This first allows to avoid the widely
used green spectral range for distant heart rate measurement, which is unsuitable for pulse oximetry due to nearly equal
spectral extinction coefficients of saturated oxy-hemoglobin and non-saturated hemoglobin. Second, it also better addresses
the challenge of the worse signal-to-noise ratio than in the contact-based or active measurement, e.g., caused by background
illumination. Signal noise from background illumination is addressed in several ways. The key part is an automated
reference measurement of background illumination by automated patient localization in the acquired images by extraction
of skin and background regions with a CNN-based detector. Due to the custom spectral ranges, the detector is trained and
optimized for this specific setup. Altogether, allowing a contactless measurement, the studied concept promises to improve
the care of patients where skin contact has negative effects.
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1. INTRODUCTION

There exist care situations where contact-based capturing of vital signs is undesired, impacting the patient or causing addi-
tional effort. Here, we focus on heart rate and oxygen saturation (SpO,) measurement by pulse oximetry. Typical examples
are neonatal care units where pre-term infants have a very fragile skin but need permanent monitoring. Currently, sensors
are switched e.g. from one leg to the other every few hours by the nursing staff to avoid skin damage. Besides neonatal
care, further situations include emergency medicine, such as burn victims. To reduce the staff effort and to improve patient
comfort, we study a contactless method to determine heart rate and oxygen saturation by pulse oximetry. For replacing the
contact-based pulse oximetry with a passive contactless solution working from a distance, several challenges have to be
addressed. While the basic measurement principle remains, the signal-to-noise ratio is expected to be significantly worse.
First, environment illumination is the major part of the captured signal in the camera, whereas the measurement signal
is only a small fraction. Second, patient motion has to be handled because the camera is not moving with the patient in
comparison to, e.g., contact-based finger clips. Third, contact-based pulse-oximetry works with active illumination which
is impractical and disturbing if used for a distant setup, thus the ambient illumination in the room has to suffice. All these
challenges are addressed by according image and signal processing methods.

The proposed sensor unit consists of three separate monochrome cameras, each mounted with an according optical
filter to distinguish the spectral absorption of saturated (HbO2) and unsaturated hemoglobin (Hb). The combination of
three spectral ranges is optimized with regard to the signal-to-noise ratio. The finally selected configuration is depicted
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Figure 1. Schematic drawing of selected spectral ranges to distinguish Hb and HbO,. Ranges of finally selected spectral filters are
shown with colored boxes. Further studied filter options are indicated by gray bars.

in figure 1. Besides using the common 650 and 900 nm range, one additional blue wavelength range around 475 nm is
used. The contribution of this work is a multi-spectral camera-based system for contactless and passive pulse oximetry to
measure the heart rate and oxygen saturation. Two key aspects are considered:

o Fitting tailor-made optical filters increases the signal-to-noise ratio compared to regular RGB-cameras which are
widely applied for this task. This avoids the overlapping and non-sharp RGB spectral ranges which are not designed
to match the task. The proposed three channel setup increases measurement stability in comparison to the common
two channel option.

e Signal and image processing strategies are proposed to measure the desired vital signs in the distant pulse oximetry
setup. This includes an automated skin and background region extraction based on CNNs.

2. RELATED WORK

As contactless measurement of vital signs is a desirable goal, research addresses this continuously and steadily tries to
relax the required conditions. A currently widespread application is the heart rate measurement with inexpensive cameras,
such as smartphones. Usually, the face regions is detected and used for pulse detection. Methods to extract the heart rate
from the intensity signal include FFT, ICA, or auto-regressive models!?. Further vital signs in the focus of contactless
measurement include respiration and oxygen saturation® .

Estimating oxygen saturation based on optical pulse measurement is usually referred to as pulse oximetry. In pulse
oximetry, the oxygen saturation (SpO,) measurement is based on different spectral extinction coefficients between sat-
urated oxy-hemoglobin (HbO3) and non-saturated hemoglobin (Hb). For measuring the oxygen saturation, at least two
wavelengths with different extinction coefficients are required. Common contact-based solutions use 660nm and 950nm
LED light sources because of their cheap availability. Absorption at the respective spectral range is measured by alternate
switching of the LEDs and a simple intensity sensor. Thus, the spectral ranges are selected on illumination side.

Existing contactless approaches can be separated in two main categories: active and passive illumination. Active
approaches define a setup with an illumination source*, either in a transmissive™° or a reflective setup’-® . The transmissive
setup usually generates a better signal to noise ratio but requires a more complex physical measurement setup because
the illumination has to be on the opposite side of the inspected tissue with respect to the sensor device. In general,
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Figure 2. Proposed concept with three spectral cameras observing the tissue and several signal processing steps.

the active strategy means employing selected LED light sources as spectral illumination and combining it with a distant
monochrome camera as sensor device. Recently, passive approaches were proposed where the environment illumination
serves as light source to determine the oxygen saturation. This allows a more flexible setup, as only the sensor device

remains in the system. However, the spectral ranges have to be selected on sensor side. As sensor device, either a regular
RGB camera®? ' or a dual camera setup with tailor-made spectral filters'!!? is applied.

We follow the passive option as it offers a simplified installation. Because the RGB spectral ranges are non-optimal
we suggest replacing it with a task-optimized multi-spectral sensor unit. This avoids the most obvious shortcoming of
the RGB setup which is the green spectral range. The spectral extinction coefficients of saturated oxy-hemoglobin and
non-saturated hemoglobin are nearly equal there making it unsuitable for pulse oximetry. In contrast to other approaches

working with tailor-made spectral filters, the proposed system consists of three instead of two spectral ranges to increase
measurement stability.

3. MULTI-SPECTRAL CONTACTLESS CONCEPT

The whole proposed concept is illustrated in figure 2. This section focuses on the basic principle and the hardware design.
The signal processing will be discussed in the following sections.

The designed concept has two key aspects: passive and contactless measurement. This avoids the complexity of any
active illumination source which would restrict the geometric setup. The sensor device consists of three monochrome
CMOS cameras with quantum efficiency fading out just above 1000 nm. Each camera is equipped with a spectral filter
(usually a bandpass) to focus on certain spectral ranges. The cameras have a spatial resolution of 1280 x 1024 pixels and
the capturing distance between the sensor device and the inspected tissue is about 60cm. As oxygen saturation measurement
works best on extremities, measurement on the hand and forearm is performed in the feasibility study.

While our studied sensor unit consists of three separate monochrome cameras, each mounted with an according optical
filter, a production system can easily combine the filters directly with the sensor chip, making it no more complex than
a single RGB-camera. The combination of the three spectral ranges is optimized with regard to the signal-to-noise ratio

The focus has to be on spectral areas where the extinction coefficients of HbO- and Hb are as different as possible and the
influence by surrounding disturbances is minimized.

Ambient effects are handled in several ways. First, following the completely passive approach, we synchronize the
camera frame rate with the grid power frequency to reduce potential aliasing effects with the artificial background illumi-
nation. The selected frame rate is 10 fps which aligns with the European power grid frequency of 50 Hz. To further reduce
effects from varying background illumination, patient location is determined by skin regions detection with a pose-tolerant



Table 1. Studied spectral filters with achieved sensor SNR 1in the test setup.
filter SNR in dB

365+10 nm 20.4
436£10 nm 81.2
475425 nm 81.6
650+£50 nm 81.8
750£50 nm 70.6
800 nm longpass 74.1
950£50 nm 30.5

none 81.8

CNN-based skin and body part segmentation which is adapted to the custom spectral ranges of the proposed system. Then,
subtracting a reference measurement from non-skin background regions within the same image maintains only the inten-
sity modulations caused by the patients pulse in the signal. Each of the three spectral signals (channel) is then bandpass
filtered with regard to the expected pulse frequency range. Heart rate measurement is performed by autocorrelation within
one channel which is proven more stable than a heartbeat peak detection or a frequency domain analysis for the present
signal-to-noise ratio. The oxygen saturation is measured by the ratio of ratios method on the preprocessed signals. The
three independent channels allow two independent oxygen saturation measurements. Their combination then increases the
measurement stability. This is an improvement to a regular RGB-camera where only the red and blue channel are suitable
for pulse oximetry resulting in only a single measurement.

Candidates for spectral filters are selected based on the difference between HbO4 and Hb extinction as well as off-the-
shelf availability of high-quality bandpass filters. Table 1 lists all reasonable filter choices. Note that the captured spectrum
for the 800 nm longpass filter is limited by the sensitivity of the camera sensor to slightly above 1000 nm, thus making it to
behave similar to a 9004100 nm bandpass. Filters are selected based on the resulting signal to noise ratio of the captured
images:
mean(G + H)

std(G — H)

Where G and H denote consecutively captured images with fixed camera settings of an appropriate fixed probe scene. As
expected, table 1 indicates that narrow filters and filters at the spectral edges of the sensor sensitivity result in the worst
signal to noise ratios. Consequently, the 475£25 nm and 650450 nm filters are a clear choice for the first two filters due to
filter width and SNR. As third filter, the 800 nm longpass is preferred over the 436 nm bandpass because of the relation of
the HbO4 and Hb curves in the range as indicated in figure 1. The 650 nm bandpass already includes a wide spectral range
where Hb extinction is significantly higher than HbO; extinction. Thus, a second range with this order is less important
because oximetry requires ranges with opposite extinction coefficients. The 475 nm range is narrower and less distinctive
than the 650 nm one, thus we consider it more important to have an additional range having the same extinction coefficient
order as the 475 nm range, which results in choosing the 800 nm one.

SNR = )]

4. SKIN SEGMENTATION

Figure 3 shows an exemplary image as recorded in the feasibility study. It results from a calibrated merge of the three
camera views. Besides the desired target, which in this case is the person’s hand, additional cluttered background is
included in the image. To ignore impacts of the background on the measurements, vital signs should only be extracted
from the target tissue region. A semantic segmentation of the image content serves this purpose. We rely on a state-of-the-
art CNN-based approach to solve this task. Pre-trained networks are inapplicable because of the custom spectral ranges
of the proposed sensor device. Consequently, a segmentation dataset consisting of 155 images focusing on hands and
forearms is recorded. A fixed random set of 8 images is used for validation, the remaining ones are used for training. Refer
to figure 3 for annotated examples.

For segmentation, an FCN-8s'3 is employed. To benefit as much as possible from the RGB pretrained VGG16 net-
work'# which serves as base for FCN-8s, the three recorded spectral images are assigned as adequate as possible to the
RGB input channels of the network. The selected assignment is: 650 nm — R, 800 nm — G, 475 nm > B.



/\(’ 4 .‘

Figure 3. Examples of the recorded skin segmentation dataset including their annotated segmentation.
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Figure 4. 10 s time series for the preprocessed Fy7s signal.

The trained segmentation network generates a foreground/background map for each frame which is used to determine
the measurement signal only from the tissue parts of the image. To stabilize segmentation jitter, the foreground is morpho-
logically closed and a moving average strategy is applied to the segmentation mask for temporal stability between frames.
The signal is extracted with the stabilized segmentation by averaging all foreground pixel values per channel resulting in
three raw signals fz, i € {475,650,800}. In addition, the raw background signals b;, defined as mean of all background
pixels, are also collected. These will be used in the next section to compensate for background effects, such as remaining
frequency artifacts from artificial light.

5. PULSE OXIMETRY

Pulse oximetry signal processing follows a standard approach consisting of three base parts. After a signal preprocessing,
the heart beat rate and the oxygen saturation are extracted from the signals in a separate part.

Preprocessing. Each foreground and background signal is preprocessed by according low- and high-pass filtering, result-
ing in clean signals f; and b;. Lower and higher cutoff-frequencies are 0.5 and 4 Hz respectively which is suitable for heart
beat rates between 30 and 240 bpm. Then the difference d; = f; — b; of the filtered foreground and background signals
serves for further analysis. Figure 4 includes an example for the preprocessed signal dy7s.

Heart beat rate. Due to being the signal with the least noise affection, the pulse is determined from f475. We use a moving
5 second window to determine the heart beat rate. This time frame allows for stable estimation as well as reasonably fast
adaptation to heart beat rate changes. Updates are made every second. For each window, a Fourier analysis is performed and
the heart beat rate is determined by the stable maximum in the Fourier spectrum Fj75 after a non-maximum suppression.
If a stable prior heart beat is available, preference for maximums near the previous rate is given by a weak Gaussian
windowing of the spectrum. As signal stabilization options, background signal subtraction on signal and spectrum level
are considered, where d475 and D75 = Fy75 — Byrs serve as base for heart rate estimation.

Oxygen saturation. Following the ratio of ratios method'? , the oxygen saturation is obtained by

dge/di
dg,c/d;jc

SpO,=A-B @)

A and B denote calibration parameters, d° is the changing and d¢° the constant signal part. The signal parts d; and d; have
to originate from two appropriate different spectral ranges. In case of the proposed sensor device, two SpO, measurements



Figure 5. Qualitative segmentation results on the test data.

can be made based on the three channels: dgsy serves as base signal and is combined once with each of the other two
spectral signals according to equation (2). The time window in this case is 20 s.

6. EXPERIMENTS

The test recordings are performed with the proposed system as described in section 3. The reference measurements for
heart beat rate and SpO,, are performed with a commercial finger tip pulse oximeter which is connected to the measurement
computer for synchronized data acquisition. The setup was designed with regard to a typical monitoring scenario where a
person’s vital parameters should be observed over a longer period of time.

6.1 Skin Segmentation

The FCN-8s model is trained for 66,000 iterations on the recorded training dataset. The selected network input image
resolution is 480 x 495 pixels. This results from half the resolution after calibrating the cameras’ views to each other.
Segmentation accuracy is measured by the Jaccard-index (intersection over union, IoU) which denotes how well predicted
and actual segmentation overlap. We achieve a IoU of 0.967 on the test samples. Consequently, hardly any errors can be
found in the resulting segmentation masks as shown in figure 5. Shadows are segmented robustly as background, only the
small gaps between fingers lead to minor artifacts in some cases. Note that minor irregularities are irrelevant due to signal
extraction by averaging. Thus, minor artifacts are dominated in the resulting signal by the much bigger amount of correctly
segmented image area which then dominates the extracted signal.

6.2 Heart Beat Rate

We compare several ways to incorporate the background signal in the signal processing. The baseline consists of analyzing
simply the foreground signal f475. The second option analyzes the difference d475 between foreground and background
signal. The last option addresses the issue in the frequency domain by subtracting the background spectrum B,75 from
the foreground spectrum Fj75. To show the benefit of the proposed foreground skin segmentation, it is compared with a
static foreground extraction method, which simply assumes that pixels near the image border belong to the background
and a rectangular region in the image to the foreground. Due to the simple camera setup in the experiments, this crude
assumption is roughly true and a valid baseline approach. Nevertheless, there is a significant part of background within
the foreground region. In more complex setups where the baseline assumption is offended, the difference between the
baseline and the dynamic segmentation is expected to grow. Table 2 lists the observed mean absolute difference (MAD)
between the finger clip oximeter and the proposed method. It indicates a clear advantage of the segmentation compared
with the baseline. Furthermore, background signal subtraction is beneficial in both cases. However, we suspect the spectral
subtraction being less effective in the segmentation setup to be caused by no background being included in the segmented
foreground region. Thus, the clear spectral disturbances of the background are already excluded and further effects cannot
be covered as well with spectral subtraction.



Table 2. Difference of heart beat rate estimation in comparison to contact-based finger clip pulse oximeter.
method MAD
baseline segmentation

only foreground fy75 2.8 1.5
signal background subtraction d475 2.0 1.3
spectral background subtraction D475 1.7 4.5
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Figure 6. 250 s of finger clip SpO, versus both contactlessly measured values which are based on 475 nm and 800 nm signal. Both use
650 nm signal as second signal. Averaging both measurements shows benefits regarding stability.

6.3 Oxygen Saturation

First, parameters A and B are calibrated individually for both SpO, measurements. Then, the SpO, value is estimated and
shown for an example sequence in figure 6. Comparison with the signal from the contact-based finger clip sensor show
two aspects:

e The contactlessly measured SpO, signals reflect the increases and decreases in the reference SpO,, value.

e There appears to be a measurement delay compared with the reference signal. We suspect more extensive filtering
to be the reason, which is required in the proposed approach due to the worse signal quality compared with the
contact-based concept.

7. CONCLUSION AND DISCUSSION

The proposed contactless pulse oximetry concept with heart rate and oxygen saturation measurement promises improve-
ments in care situations where skin contact might cause problems. This includes pre-term infants in neonatal care as well
as burn victims or highly infectious patients. The challenges of contactless measurement are addressed by a specifically
designed multispectral sensor unit where the combination of three spectral ranges is optimized with regard to the signal-to-
noise ratio. While our current sensor unit consists of three separate monochrome cameras, each mounted with an according
optical filter, a production system can easily combine the filters directly with the sensor chip, making it no more complex
than a single RGB-camera.

Furthermore, according image processing strategies including a CNN-based foreground segmentation for precise mea-
surement and background signal estimation are incorporated. Segmentation as well as background signal subtraction are
proven to increase the accuracy of the measurements.

8. ACKNOWLEDGMENT

This study was supported by the German Ministry of Education and Research (BMBF) as part of the TRICORDER program
under grant no. 13N13725.



REFERENCES

[1] Kwon, S., Kim, H., and Park, K. S., “Validation of heart rate extraction using video imaging on a built-in camera
system of a smartphone,” in [I[EEE Conference on Engineering in Medicine and Biology Society], 2174-2177, IEEE
(2012).

[2] Haque, M. A., Nasrollahi, K., and Moeslund, T. B., “Estimation of Heartbeat Peak Locations and Heartbeat Rate
from Facial Video,” in [Scandinavian Conference on Image Analysis], 269-281, Springer (2017).

[3] Aarts, L. A., Jeanne, V., Cleary, J. P., Lieber, C., Nelson, J. S., Oetomo, S. B., and Verkruysse, W., “Non-contact
heart rate monitoring utilizing camera photoplethysmography in the neonatal intensive care unitA pilot study,” Early
human development 89(12), 943-948 (2013).

[4] Lugara, P, “Current approaches to non-invasive optical oxymetry,” Clinical hemorheology and microcircula-
tion 21(3), 307-310 (1999).

[5] Fantini, S., Franceschini, M.-A., Maier, J. S., Walker, S. A., Barbieri, B. B., and Gratton, E., “Frequency-domain
multichannel optical detector for noninvasive tissue spectroscopy and oximetry,” Optical Engineering 34(1), 3242
(1995).

[6] Humphreys, K., Ward, T., and Markham, C., “A CMOS camera-based pulse oximetry imaging system,” in [[EEE
Conference on Engineering in Medicine and Biology Society], (2005).

[7] Wieringa, F., Mastik, F., and Van der Steen, A., “Contactless multiple wavelength photoplethysmographic imaging:
a first step toward SpO2 camera technology,” Annals of biomedical engineering 33(8), 1034—1041 (2005).

[8] Humphreys, K., Ward, T., and Markham, C., “Noncontact simultaneous dual wavelength photoplethysmography: a
further step toward noncontact pulse oximetry,” Review of scientific instruments 78(4), 044304 (2007).

[9] Villarroel, M., Guazzi, A., Jorge, J., Davis, S., Watkinson, P., Green, G., Shenvi, A., McCormick, K., and Tarassenko,
L., “Continuous non-contact vital sign monitoring in neonatal intensive care unit,” Healthcare Technology Let-
ters 1(3), 87-91 (2014).

[10] Tarassenko, L., Villarroel, M., Guazzi, A., Jorge, J., Clifton, D., and Pugh, C., “Non-contact video-based vital sign
monitoring using ambient light and auto-regressive models,” Physiological measurement 35(5), 807 (2014).

[11] Kong, L., Zhao, Y., Dong, L., Jian, Y., Jin, X,, Li, B., Feng, Y., Liu, M., Liu, X., and Wu, H., “Non-contact detection
of oxygen saturation based on visible light imaging device using ambient light,” Optics express 21(15), 17464-17471
(2013).

[12] Verkruysse, W., Bartula, M., Bresch, E., Rocque, M., Meftah, M., and Kirenko, 1., “Calibration of contactless pulse
oximetry,” Anesthesia and analgesia 124(1), 136 (2017).

[13] Long, J., Shelhamer, E., and Darrell, T., “Fully Convolutional Models for Semantic Segmentation,” in [/[EEE Confer-
ence on Computer Vision and Pattern Recognition], (2015).

[14] Simonyan, K. and Zisserman, A., “Very deep convolutional networks for large-scale image recognition,” in [Interna-
tional Conference on Learning Representations], (2015).



