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Abstract  
Visual analysis of trajectory data became a common approach during the past years. Considering 

advances in pedestrian tracking technology, Bluetooth tracking data received recent attention. In this 

paper we present a fast, model-based approach for computationally enabled visual exploration of 

location dependencies in Bluetooth tracking data sets. Existing approaches are not suitable for visual 

dependency analysis as the size and complexity of trajectory data constrain ad-hoc and advance 

computations. Also recent developments in the area of trajectory data warehouses cannot be applied 

because the spatial correlations are lost during trajectory aggregation. Our approach builds a compact 

Spatial Bayesian Network model, which represents the dependency structures of the data. The user 

queries are answered using this intermediate model instead of the complete data set. Visualization is 

connected by Open Geographic Consortium compliant protocols and uses 3D Dirichlet-Voronoi 

tessellation. This paper presents the approach and applies it on a soccer match dataset. 

1 Introduction 
Major airports, arenas and stadiums are designed to attract thousands or billions of visitors each year. 

Whereas one trend is to build larger infrastructures (airports, stadiums) another trend is the growing 

visitor number at events. In the last years, this hazardous development led to devastating disasters (e.g. 

Loveparade 2010). Thus, visitor monitoring in complex facilities became an important subject. But 

understanding the movement behavior, identification of attractors and distractors, determination of 

waiting times, as well as localization of congestions and bottle-necks gives also insights on visitor 

preferences and motivations at a particular site or event. Knowing such detailed information on indoor 

pedestrian behavior gives also a location based performance indicator for different locations inside the 

building. Various locations and attractions can be ranked by their popularity, safety or frequency. 

Recently evolved Bluetooth tracking [6] became the state-of-the-art method for combined indoor 

outdoor monitoring of pedestrian movement [4, 10, 12, 14, 22, 23].  

Visual exploration of the collected partial trajectories gives indispensable insights of an event [9, 14]. 

For determination of visitor preferences or identification of potential hazards it is also necessary to 

discover the dependencies, correlations and patterns among the movements. Therefore, this work 

tackles the computationally enabled visual exploration of a massive Bluetooth tracking dataset for 

inner dependencies which result by the non random movement of the people. Existing approaches e.g. 

direct database access or usage of a trajectory data warehouse (TDW) [13, 20] are unfeasible as the 



first one requires powerful database hosts and the second pre-aggregates the data which prevents 

further analysis. Our proposed method contains two stages. We represent the massive movement data 

by an easy to handle descriptive model, namely a Spatial Bayesian Network (SBN) [16]. This 

probabilistic model denotes the conditional probabilities among visits to discrete locations and thus 

holds all required information in a compact format for further querying. In step 2 we utilize the 

previously trained SBN for visual analysis and depict the probability distributions on three-

dimensional thematic maps. The latter is integrated in Google Earth using web services and Open 

Geographic Consortium (OGC) compliant data formats. 

The remainder of the paper proceeds as follows. The upcoming section 2 gives an overview on related 

Bluetooth tracking work and introduces trajectory dependency models. We give a brief summary of 

Spatial Bayesian Networks in section 3. Our approach is applied in section 4 where we conduct 

experiments on a soccer match data set. We conclude in the final section 5. 

2 Related Work 
Analysis of movement data recorded by established tracking technologies (e.g. Global Positioning 

System GPS) has become research focus during the last years. Visual analysis became a natural 

approach due to the spatio-temporal nature of the movement data. Also Bluetooth tracking data, as one 

characteristic type of spatio-temporal movement records, has received notable attention from the area 

of visual analytics recently [22, 4]. In this paper we consider the visualization of dependencies within 

cell based (Bluetooth tracking) data. A number of different research areas have contributed to the 

analysis of geographic data. Next to geostatistics and geographic information systems and science, 

database technology and data mining play a major role in the development of analysis methods for 

large spatial and spatio-temporal data sets. While spatial database technology and spatial data mining 

have become well-established parts in their respective research areas, a number of gaps in covering the 

task space by appropriate computational methods have been identified [3]. 

Recently, two approaches for aggregation and analysis of large sets of trajectory data have been 

published. Both approaches rely on a database-side aggregation of the data prior to data analysis and 

use the Visual Analytics Toolkit (VAT) for visualization. The Visual Analytics Toolkit [2] is a 

software system for interactive visual analysis of spatially and temporally referenced data in context. 

The first approach by Andrienko and Andrienko [1] relies on the user to perform aggregation using 

standard database functions. VAT provides a direct database access, and the user can load tables with 

previously aggregated data. Only if the data set is small enough to fit into random access memory, so-

called dynamic aggregators can be applied directly within the VAT. The second approach by Leonardi 

et al. [13] performs aggregation using a Trajectory Data Warehouse TDW. TDW [17, 20] have 

recently been developed and are first steps into OLAP (Online Analytical Processing) analysis of 

trajectory data. The TDW stores aggregated data at a given level of resolution. VAT interacts with the 

TDW to allow for visually aided OLAP, e.g. roll-up and drill-down operations for graphically selected 

areas.  

However, these two approaches are not suitable for complex visual dependency analysis. First, the 

exponential number of location subsets prohibits advance computation and ad-hoc calculation of 

dependencies may take too long for large data sets. Second, TDW naturally do not keep the identity of 

trajectories during aggregation, which makes inference of location dependencies impossible. In 

contrast to the above approaches, the process in [15] is not based on aggregated data but on a 

generative probabilistic model of the data. The model is a compact representation of the latent 

correlations within the trajectory dataset. The visual user interface, integrated into a Geographic 

Information System, interacts only with the model and is thus independent of the size of the 



underlying trajectory database. However, this approach is tailored to one specific analysis task as it 

extracts patterns early within the analysis process. In contrast, approaches 1 and 2 are flexible with 

respect to possible analysis questions, because the selection and control of analyses resides with the 

user in the upper most level. We inspire our method by [15]. Thus, we scale it up to a third dimension, 

construct three-dimensional polygons and connect all the software components by Open Geogrphic 

Consortium (OGC) compliant protocols. The next section describes Spatial Bayesian Networks which 

is a dependency model among spatial objects and is utilized by our approach for compact 

representation of inner trajectory correlations. Thus, it builds the core of our approach. 

3 Spatial Bayesian Networks 
Visual Analysis of visitor behavior is a natural and promising approach to understand visitor 

preferences and reveal patterns among the movements. Existing querying techniques have drawbacks 

in handling the massive three-dimensional movement recordings (see section 2). In this section we 

present a model-based approach which overcomes the limitations of existing methods by construction 

of an intermediate probabilistic model which preserves major location dependencies within the 

tracking data.  

Location dependencies describe the co-occurrence of geographic locations within a trajectory. They 

occur naturally as personal movement is purpose-driven and not a random walk. These co-occurrences 

can be expressed as conditional probability to visit an arbitrary location given that another (set of) 

location(s) is visited within the same movement as well. More formally, given a finite universal set L 

of discrete geographic locations, a set L
+
 L containing locations that are visited with certainty and a 

set L
-
  L \ L

+
 containing locations that are not visited with certainty within a trajectory, we can 

specify the location dependency of an arbitrary location lL by the probability P(l | L
+
;¬L

-
). The sets 

L
+
 and L

-
 are also called positive and negative evidence, respectively. Bayesian Networks are a 

common approach to model such dependencies. It combines random variables X = X1, X2 … Xn by a 

directed acyclic graph which denotes dependencies as well as conditional independencies. Thus, we 

assign to every location l in L exactly one boolean random variable Xi of X which is TRUE, iff a 

particular trajectory passes by and FALSE otherwise. At each vertex (i.e. each random variable Xi) a 

common probability table denotes the dependency of this random variable Xi from its parents (which 

are the random variables that are connected to Xi by directed edges) P(Xi=xi|parents(Xi)). The joint 

probability distribution for all random variables X is then given by the following equation: 

 

 

 
 

The task to extract and preserve such dependencies from a dataset into a Bayesian Network is twofold 

(1) search for the Bayesian Network Structure and (2) assigning the common probability tables to each 

random variable. This task is called Bayesian Network Learning. Many algorithms tackle this task, in 

this work we base our analysis on the Scalable Sparse Bayesian Network Learning algorithm (SSBNL) 

[16] as this was especially designed to meet the demands of spatial data mining. SSBNL combines the 

advantages of the Sparse Candidate Learning [7] and the Screen Based Network Search [8]. It bounds 

the number of possible ancestors in the network by pre-sampling a given sparseness in the database, 

and bounds the edge set to most significant dependencies by processing only frequent item sets similar 

to [8]. This is done in a two-step algorithm: First, the algorithm pre-samples within each route a set of 

maximal k distinct locations. The sampling is uniformly distributed among the trajectory; i.e. every 

discrete location contained in the trajectory is drawn with the same probability. Afterwards, frequent 



variable sets become sampled on this pre-sampled data with threshold t and maximal length ml. The 

result is a bounded number of location-subsets adjustable in their size. For each of these sets a local 

Bayesian Network is determined in a second step that fits the original data best and the involved edges 

become collected on a stack. Next, this stack is sorted according to the score of the local networks. In 

a third step, edges are drawn from the ordered stack to construct a global Bayesian Network. 

Constraints for this selection are that every chosen edge must not create any cycle in the network but 

increase the score of the final network. Afterwards, a final database scan of the original trajectory 

dataset is required to re-compute the common probability tables for each vertex in the global Bayesian 

Network. The whole Scalable Sparse Bayesian Network Learning (SSBNL) algorithm uses pre-

sampling to transform an arbitrary dataset to a processable one with adjustable size and density. 

Although being an approximation algorithm, the guaranteed output is one of its main advantages. It 

gives a reasonable approximation for positive correlations [15], because the most significant 

dependencies persist the pre-selection of variables. However, in order to answer queries correctly in 

our visual trajectory analysis, the model needs also the ability to represent negative correlations. 

Otherwise we are unable to express exclusive or (XOR) relations among locations in a trajectory, e.g. 

“If a visitor passes location A it is unlikely to pass location B within the same movement”. Including 

edges to a Bayesian Network is always possible, if it does not create directed cycles in the network 

structure. Thus we sample multiple pairs of variables. In case both variables of a pair correlate 

negative and an edge would be valid and increases the network score, we insert an edge into the 

network (see lines 18 to 27 in Algorithm 1).  

 

 
Algorithm 1: Scalable Sparse Bayesian Network Learning Algorithm (SSBNL) 



 

 

This pair wise approach is reasonable as shown in [18]. The complete network learning Algorithm is 

summarized in algorithm 1. After the dependencies among the locations are extracted utilizing Spatial 

Bayesian Networks, a graphical user interface is required to inspect the correlations of different 

locations within the underlying trajectory set. Our approach is to embed this as three-dimensional 

layer into Google Earth by Open Geographic Consortium (OGC) compliant Keyhole Markup 

Language (KML) interfaces. Our extension for Google Earth consists of two parts: a web service for 

KML creation and update, and a mediator script to trigger Bayesian network calculations. Each user 

query needs to execute Bayesian inference on the Spatial Bayesian Network according to the given 

evidence. In order to keep this part independent of the currently used GIS, we create a separate 

mediator script written in the language R [22]. Thus, we may easily use other geographic information 

systems or access the learned Spatial Bayesian Network from different applications written in R script 

as well. An advantage of the scripting language R is its large collection of statistical analysis packages 

and references. In our case we use the Bayesian Network data structure defined in the deal package 

[5]. The data exchange between the user interface and mediator script is implemented using files. The 

control flow and synchronization of the execution is solved calling a shell execution command at each 

computation request sent by the web service. This means, any computation cycle starts a single R 

process that reads the evidence from a file and stores the inference results in a different file. The web 

service uses this file and creates its output accordingly. In order to prevent long import times of the 

Spatial Bayesian Network every time a new R process is created, we store the complete R workspace 

with all objects (including the Bayesian Network) as the default workspace. The workspace is read 

very fast at startup and written after execution automatically. Combining all parts, our fast query tool 

based on Bayesian Networks consists of a layered structure. The architecture offers several 

possibilities for the independent exchange of components, which is important for future development 

and reusability. The spatial dependency model may be accessed by other tools and the Spatial 

Bayesian Network may also be replaced by a more accurate one or even a complete different 

dependency model. 

The method for analysis of inner-trajectory dependencies, presented in the previous section, enables us 

to study relations among multiple locations in movement data sets performed in the next section.  

4 Experiments 
In this section, we conduct tests of our approach on a dataset collected through privacy preserving 

Bluetooth tracking technology [14]. For data collection a mesh of 15 sensors has been deployed 

among a soccer stadium (Stade des Cosières, Nîmes at France) during a soccer
1
 match on 05.08.2011. 

The collected dataset will be published after acceptance of this work. The three-dimensional sensor 

placement is depicted in Figure 1. All Bluetooth enabled devices (e.g. smartphones or intercoms) 

passing one of the sensors (more precisely its footprint) trigger the creation of a datalog entry 

consisting of the timestamp, the sensor identifier (which denotes the position), the radio signal strength 

and a hashed identifier for this particular device [19]. Whenever a device passes multiple sensors, it 

becomes re-detected and transition times as well as movement patterns can be reconstructed. We 

recorded 47,589 data points from 553 different devices at 15 distinct locations. The average number of 

distinct visited sensor locations is 4.37, the median number is 2. The recorded movements have an 

average duration of 3 hours and 25 minutes. In total, about 14 percent of the visitors, 553 of 3898
1
 

(this official visitor number does not contain the people which worked there), have been recorded 

during the period of the match, thus we expect the dataset to be representative.  

Our analysis is inspired by the two step workflow presented in [22]. Whereas the field study phase was 

performed during (1) survey design and (2) data collection we conduct the second knowledge 

discovery phase within the (3) data preparation (4) data mining. In contrast to the existing workflow, 

                                                           
1
 http://www.foot-national.com/match-foot-nimesvannes-32912.html, last accessed 29.02.2012 



the last step, visualization, becomes a loop, where visualization stimulates user interaction which itself 

triggers the re-computation of the data mining model.  

We applied the improved SSBNL algorithm (see Algorithm 1) to the data set using the following 

parameterization. As the data set is comparably small in its number of variables (usage of 15 sensors 

implies 15 random variables) for this algorithm, a first pre-sampling step within the trajectories was 

not necessary. We computed frequent location sets with maximal parity of 4 and a frequency threshold 

of 5. The Bayesian Network scoring metric we applied was BDeu [11]. In the end we drew 1000 edge 

candidates and add negative correlations to the network. The whole Bayesian Network learning took 

about 1 minute on a standard desktop computer (CPU Intel i7 2GHz, RAM 8GB).  

 

Figure 1: 3D Sensorplacement at Stade des Costières, Nîmes (France) blue circles 

mark the sensor positions, the number denote their senor identifiers 

For visualization of the three-dimensional dependencies, we created a Voronoi Dirichlet tessellation of 

a three-dimensional building model. Both the model and the tessellation geometries were created in 

Google SketchUp utilizing Ruby scripts for the latter. Materials to the resulting geometries (color and 

opacity) are assigned according to the probability distribution computed by the Spatial Bayesian 

Network. Figure 2 depicts the results of the Spatial Bayesian Network for four different queries. Red 

colors indicate a high visit probability; blue colors indicate a low probability. The yellow arrows in the 

picture mark the points of evidence. The picture A (in the upper-left corner) depicts the probability 

distribution given the evidence that the sensor at the ground floor (sensor 34 for comparison in figure 

1) has been visited. It is remarkable that the probability on this side of the stadium is high and low in 

most of the other parts. The places in the other tribunes (at the bottom of the pictures) that possess a 

relative high probability as well are the VIP rooms and thus visited by the catering staff and prominent 

visitors from all tribunes after the match ended. In the next step we examine the impact of the staff and 

prominent guests by change of evidence to a restricted entry within the Spatial Bayesian Network. 

Results are depicted in picture B. All paths that have been used by the catering crew and safety 

deputies are inked in red which denotes a high probability of movement. The shops possess a 

relatively high probability. They were located in the uppermost floor of the two towers in the left side 

of the picture and also in the VIP lounges. As the Bluetooth sensors became subject to vandalism, 

safety deputies helped us during data collection. Thus it can be seen to the right that they visited 



sensor location three (top of the upper left tower, compare figure 1) in order to check its presence. In 

the bottom of figure 2 we combine multiple points of evidence within the query. To the left (picture C) 

is a visualization of the combined probability of the visitors at the entry to the major tribune and to the 

VIP entry. The visitors selected by this query distribute among the major tribune and within the VIP 

rooms. By further of addition of sensor location three the places considered so far reach their highest 

conditional probability. Most likely this untypical movement pattern depicted in picture D was our 

movement for maintenance of the sensors. The tribune to the left shows a very low probability as it 

could not be traversed. The tribune on the right was open for traversing before the match began. Thus, 

our analysis reflects these circumstances and helps to understand movement behavior.  

  

  
  

Figure 2: Query results - yellow arrows mark location(s) of evidence; blue color 

indicates low probability and red indicates high probability of passing by 

 

5 Conclusion 
This work tackled the task to explore and analyze Bluetooth tracking data visually. The question is of 

high interest as Bluetooth tracking is nowadays used for various pedestrian monitoring applications. 

The challenge related to this task is the three-dimensionality of the movement data. Thus, we 

constructed a three-dimensional model of the building where our experiments where conducted. 

Furthermore, we created three-dimensional geometries of Dirichlet-Voronoi tessellations based on the 

positions of the sensors. The visualization was integrated in Google Earth using OGC compliant 

interfaces and a web service. This allows easy integration into other software modules.  

Another challenge, the dependency analysis of the recorded movement data, was addressed utilizing 

Spatial Bayesian Networks as an intermediate data structure which holds just the required data instead 

of complete trajectories. Once the model is built, querying is fast and flexible and overcomes the 

drawbacks of existing methods that rely on random memory access or aggregation (TDW). The 

proposed methods were integrated and tested in an event monitoring use case. Recorded data was 

analyzed in order to identify and reconstruct pedestrian movement. Analysis of the inner-trajectory 

correlations revealed in-traversable tribunes as well as visitor preferences. Future work needs to focus 

A B 

C D 



on the application of the revealed data in location based services. The application in handhelds or 

smartphones (e.g. for pedestrian navigation or location recommendation systems) is promising. 

Further work needs to focus on the temporal perspective and identification of similar mobility [4]. 
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