
1

Storing, Tracking, and Querying Provenance
in Linked Data

Marcin Wylot∗†, Philippe Cudré-Mauroux‡, Manfred Hauswirth∗†, and Paul Groth¶
∗Open Distributed Systems, TU Berlin / Fraunhofer FOKUS, Berlin—Germany

†m.wylot@tu-berlin.de ‡manfred.hauswirth@tu-berlin.de
§eXascale Infolab, University of Fribourg—Switzerland, pcm@unifr.ch
¶Elsevier Labs, Amsterdam—The Netherlands, p.groth@elsevier.com

Abstract—The proliferation of heterogeneous Linked Data on the Web poses new challenges to database systems. In particular, the
capacity to store, track, and query provenance data is becoming a pivotal feature of modern triplestores. We present methods
extending a native RDF store to efficiently handle the storage, tracking, and querying of provenance in RDF data. We describe a
reliable and understandable specification of the way results were derived from the data and how particular pieces of data were
combined to answer a query. Subsequently, we present techniques to tailor queries with provenance data. We empirically evaluate the
presented methods and show that the overhead of storing and tracking provenance is acceptable. Finally, we show that tailoring a
query with provenance information can also significantly improve the performance of query execution.

Index Terms—RDF, Linked Data, triplestores, BigData, provenance

F

1 Introduction

A central use-case for Resource Description Framework
(RDF) data management systems is data integration [1].
Data is acquired from multiple sources either as RDF or
converted to RDF; schemas are mapped; record linkage
or entity resolution is performed; and, finally, integrated
data is exposed. There are a variety of systems such as
Karma [2] and the Linked Data Integration Framework [3]
that implement this integration process. The heterogeneity
of data combined with the ability to easily integrate it—
using standards such as RDF and SPARQL—mean that the
support of provenance within these systems is a key fea-
ture [3]. For example a user may want to trace which sources
were instrumental in providing results, how data sources
were combined, to validate or invalidate results, or to tailor
queries specifically based on provenance information.

Within the Web community, there have been several
efforts in developing models and syntaxes to specify and
trace provenance, which resulted in the recent W3C PROV
recommendation [4]. However, less attention has been given
to the efficient handling of such provenance data in RDF da-
tabase systems. The most common mechanism used within
RDF data management is named graph [5]. This mechanism
was recently standardized in RDF 1.1. [6]. Named graphs
associate a set of triples with an URI. Using this URI,
metadata including provenance can be associated with the
graph. While named graphs are often used for provenance,
they are also used for other purposes, for example, to track
access control information. Thus, while RDF databases, i.e.,
triplestores, support named graphs, there has only been a
relatively small number of approaches specifically focused
on provenance within the triplestore itself and much of
it has been focused on theoretical aspects of the problem

rather than efficient implementations.
Given the prevalence of provenance in Web Data—36%

of datasets contain provenance data [7]—and the use of
named graphs [8], [9], this article shows how RDF databases
can effectively track the lineage of queries and execute
queries that originate from data scoped with provenance
information (i.e., provenance-enabled queries).

In the following, we present TripleProv, a new database
system supporting the transparent and automatic derivation
of detailed provenance information for arbitrary queries
and the execution of queries with respect to provenance
data. TripleProv is based on a native RDF store [10], [11],
which we have extended with two different provenance-
aware storage models and co-location strategies to store pro-
venance data in a compact fashion. In addition, TripleProv
supports query execution strategies to derive provenance
information at two different levels of granularity and to
scope queries with provenance information.

The contribution of the work presented in this article is
the integration of our previous approaches into provenance-
enabled triplestore [12], [13]. The new version of the system
allows the user to execute provenance-enabled queries and
at the same time obtain a provenance polynomial of the
query results. Moreover, we present two new experimental
scenarios thoroughly evaluating the scalability of our
techniques. The first scenario (Section 8.3) varies the dataset
size to assess the scalability of the storage models. The
second scenario (Section 8.4) measures the performance
impact of the selectivity of a provenance query. A proof-
of-concept of this integrated solution was presented in a
demo version of the system [14]. We note that the current
version of the system does not support reasoning, which can
pose further difficulties in deriving provenance but which is
beyond the scope of this work. In the following we describe

2

the key aspects of TripleProv:
1) provenance polynomials to track the lineage of RDF

queries at two different granularity levels (Section 4);
2) a characterization of provenance-enabled queries to

tailor the query execution process with provenance
information (Section 5);

3) new provenance-aware storage models and index-
ing strategies to compactly store provenance data
(Section 6);

4) novel provenance oriented query execution strate-
gies to compute provenance polynomials and execute
provenance-enabled queries efficiently (Section 7);

5) an experimental evaluation of our system using two
different datasets and workloads (Section 8).

All the datasets and queries we used in our experiments
are publicly available for further investigations 1.

2 RelatedWork
Data provenance has been widely studied within the da-
tabase, distributed systems, and Web communities. For a
comprehensive review of the provenance literature, we refer
readers to the work of Luc Moreau [15]. Likewise, Cheney
et al. provide a detailed review of provenance within the
database community [16]. Broadly, one can categorize the
work into three areas [17]: content, management, and use.
Work in the content area has focused on representations
and models of provenance. In management, the work has
focused on collecting provenance in software ranging from
scientific databases [18] to operating systems or large scale
workflow systems as well as mechanisms for querying it.
Finally, provenance is used for a variety of applications in-
cluding debugging systems, calculating trust and checking
compliance. Here, we briefly review the work on prove-
nance with respect to the Web of Data. We also review recent
results applying theoretical database results to SPARQL.

Within the Web of Data area, one focus of work has been
on designing models (i.e., ontologies) for provenance infor-
mation [19]. The W3C Incubator Group on provenance map-
ped nine different models of provenance [20] to the Open
Provenance Model [21]. Given the overlap in the concepts
defined by these models, a W3C standardization activity
was created that has led to the development of the W3C
PROV recommendations for specyfying and interchanging
provenance [4]. This recommendation is being increasingly
adopted by both applications and data set providers - there
have been over 60 implementations of PROV [22].

In practice, provenance is attached to RDF data using
either reification [23], named graphs [24], or a singleton
property [25]. Widely used datasets such as YAGO [26] reify
their entire structure to facilitate provenance annotation.
Indeed, provenance is one reason for the inclusion of named
graphs in the current version of RDF [27]. Both named
graphs and reification cause complex query structures espe-
cially as provenance becomes increasingly fine-grained. In-
deed, formally, it may be difficult to track provenance using
named graphs under updates and RDFS reasoning [28].

To address these issues, a number of authors have adop-
ted the notion of annotated RDF [29], [30]. This approach

1. https://exascale.info/projects/tripleprov/

assigns annotations to each of the triples within a dataset
and then tracks these annotations as they propagate through
reasoning or query processing pipelines. Formally, these
annotated relations can be represented by the algebraic
structure of communicative semirings, which can take the
form of polynomials with integer coefficients [31]. These
polynomials represent how source tuples are combined
through different relational algebra operators (e.g., UNION,
JOINS). These relational approaches are now being applied
to SPARQL [32].

As Damasio et al. have noted, many of the annotated
RDF approaches do not expose how-provenance (i.e., how a
query result was constructed) [33]. The most comprehensive
implementations of these approaches were presented by
Zimmermann et al. [34] and Udrea et al. [29]. However,
they have only been applied to small datasets (around 10
million triples) and do not report provenance polynomials
for SPARQL query results. Annotated approaches have also
been used for propagating “trust values” [35]. Other recent
work [33], [36] has looked at expanding the theoretical as-
pects of applying such a semiring-based approach to capture
SPARQL. In contrast, our work focuses on the implementa-
tion aspects of using annotations to track provenance within
the query processing pipeline.

The concept of a provenance query was defined by Simon
Miles in order to only select a relevant subset of all possible
results when looking up the provenance of an entity [37]. A
number of authors have presented systems for specifically
handling such provenance queries. Biton et al. showed how
user views can be used to reduce the amount of information
returned by provenance queries in a workflow system [38].
The MTCProv [39] and the RDFProv [40] systems focus
on managing and enabling queries over provenance that
result from scientific workflows. Similarly, the ProQL appro-
ach [41] defines a query language and proposes relational
indexing techniques for speeding up provenance queries
involving path traversals. Glavic and Alonso presented
the Perm provenance system, which was able to compute,
store and query relational provenance data [42]. Provenance
is computed by using standard relational query rewriting
techniques, e.g., using lazy and eager provenance compu-
tation models. Recently, Glavic and his team have built on
this work to show the effectiveness of query rewriting for
tracking provenance in databases that support audit logs
and “time travel” [43]. Our approach is different, in that it
looks at the execution of provenance queries in conjunction
with standard queries within a graph database. Widom et
al. presented the Trio system [44] that supports the joint
management of data, uncertainty and lineage. Lineage is an
integral part of the storage model in this system, i.e., it is
associated with its corresponding record in the database.
Trio persists lineage information in a separate lineage rela-
tion where each record corresponds to a database tuple and
contains provenance-specific attributes. However, Trio is not
a database for semi-structured data, which is specifically
our target. TripleProv leverages the specific requirements
of RDF data and queries to enable efficient tracking and
querying of provenance information.

In that respect, our work is related to the work on
annotated RDF [29], [34], which developed SPARQL query
extensions for querying over annotation metadata (e.g.,

3

provenance). Halpin and Cheney have shown how to use
SPARQL Update to track provenance within a triplestore
with no modifications to the SPARQL specyfication [45].
Our focus is different, however, since we propose and em-
pirically evaluate different execution strategies for running
queries that take advantage of provenance metadata.

Our system partially builds upon dynamic query exe-
cution approaches, which have been studied in different
contexts by database researchers. Graefe and Ward [46]
focused on determining when re-optimizing a given query
that is issued repeatedly is necessary. Subsequently, Colde
and Graefe [47] proposed a new query optimization model,
which constructs dynamic plans at compile-time and de-
lays some of the query optimization until run-time. Kabra
and DeWitt [48] proposed an approach collecting statistics
during the execution of complex queries in order to dyna-
mically correct suboptimal query execution plans. Ng et al.
studied how to re-optimize suboptimal query plans on-the-
fly for very long-running queries in database systems [49].
Avnur and Hellerstein proposed Eddies [50], a query pro-
cessing mechanism that continuously reorders operators in
a query plan as it runs, and that merges the optimization
and execution phases of query processing in order to allow
each tuple to have a flexible ordering of the query operators.
More recently, Madden et al. have extended Eddies to con-
tinuously adapt query plans over streams of data [51]. Our
work is different in the sense that we dynamically examine
or drop data structures during query execution depending
on provenance information.

3 Provenance Concepts & Applications
W3C PROV defines provenance as “information about en-
tities, activities, and people involved in producing a piece
of data or thing, which can be used to form assessments
about its quality, reliability or trustworthiness” [4]. The W3C
PROV Family of Documents2 defines a model, correspon-
ding serializations and other supporting definitions to ena-
ble the interoperable interchange of provenance information
in heterogeneous environments such as the Web. In this
article, we adopt the view proposed in these specifications
and consider provenance attached to RDF data with named
graphs (graph label) [24]. Following the RDF 1.1 N-Quads
specification3 a graph label is denoted with an URI, which
can be used as a resource4 to describe provenance of the
triple to which this graph label is attached. Therefore, pro-
venance information is stored in the form of triples, where
the subject URI is the same as the graph label attached to
the original triple. In this article we adopt the terminology
from the earlier N-Quads specification [52], hence when we
describe provenance information we refer to a graph label as
a context value. Below we give an example illustrating how
provenance is attached to a triple:
Subject Predicate Object ContextValue1 .
ContextValue1 ProvPred1 ProvObj1 GraphX.
ContextValue1 ProvPred2 ProvObj GraphX.

There are many scenarios where provenance can be app-
lied. Karvounarakis et al. [41] describe a number of use cases

2. http://www.w3.org/TR/prov-overview/
3. https://www.w3.org/TR/n-quads/
4. https://www.w3.org/TR/rdf11-concepts/#resources-and-statements

where storing and querying of provenance data generated
by a database system is useful. To motivate our work we
revisit some of these examples. Provenance polynomials
express the exact way through which results of a query
were derived. As such, they can be used to calculate scores
or probabilities for particular query results (e.g., for post-
processing tasks such as results ranking or faceted search).
Likewise, one can use polynomials to compute a trust or
information quality score based on the sources used in
the result. Identifying results (i.e., particular triples) with
overlapping provenance is another use case. One could
detect whether a particular result would still be valid when
removing a source dataset. One can also use provenance
to modify query execution strategies on-the-fly, that is, to
improve the query execution process with provenance infor-
mation. For instance, one could restrict the results to certain
subsets of the sources or use provenance for access control
such that only certain sources will appear in a query result.
Finally, one may need the capacity to provide a specification
of the data he wants to use to derive an answer.

4 Provenance Polynomials
We now describe a model encoding how query results were
derived, that is, a description of the provenance of query
results. The first question we tackle is how to represent
provenance information we want to return to the user
in addition to the results themselves. Beyond listing the
various tuples involved in the query, we want to be able
to characterize the specific ways in which each source tuple
contributed to the query results. Lineage of a query (a
provenance trace) can be modeled at different granularity
levels, see below Section 4.1 for a more formal definition of
lineage.

In the article, we leverage the notion of a provenance poly-
nomial which is an algebraic structure of communicative se-
mirings representing how different pieces of data were com-
bined through different relational algebra operators [31].
In contrast to recent work in this space, which addressed
theoretical issues, we focus on the practical realization of
this model in a high performance triplestore to answer
queries. Specifically, we focus on two key requirements:

1) the capability to pinpoint, for each query result, the
exact lineage of the result;

2) the capability to trace back, for each query result, the
complete list of tuples and how they were combined to
deliver a result.

To do this we support two different provenance operators
at the physical level: pProjection, addressing the first requi-
rement and pinpointing the exact lineage of the result, and
pConstraint, tracing back the full provenance of the results.
As shown in Figure 1, TripleProv returns a provenance poly-
nomial describing the exact way the results were produced
in addition to the query results.

At the logical level, we use two operators introduced
by Green [53] to combine the provenance polynomials: (⊕)
represents unions of source tuples, and (⊗) represents joins
between source tuples.

Unions are used in two cases when generating the po-
lynomials: first, when a constraint or a projection can be
satisfied with multiple triples; meaning that there is more

4

than one triple corresponding to the particular triple pattern
of the query. The following polynomial:

l1 ⊕ l2 ⊕ l3

for instance, encodes the fact that a given result can originate
from three different lineages (l1, l2, or l3). Second, unions are
also used when multiple entities satisfy a set of constraints
or projections (like the collection provenance in Section 7.2,
Algorithm 2).

The join operator can also be used in two ways: to ex-
press the fact that entities were joined to handle a constraint
or a projection, or to handle object-subject or object-object
joins between sets of constraints. The following polynomial:

(l1 ⊕ l2) ⊗ (l3 ⊕ l4)

for example, encodes the fact that lineages l1 or l2 were
joined with lineages l3 or l4 to produce the results.

4.1 Provenance Granularity Levels
TripleProv returns RDF data provenance at different
granularity levels. Current approaches (see Section 2),
typically, return a list of named graphs from which the
answer was computed. Our system, besides generating
polynomials summarizing the complete provenance of the
results, also supports two levels of granularity. First, a
lineage li (i.e., an element appearing in a polynomial) can
represent the context value of a triple, e.g., the fourth element
in a quadruple. We call this granularity level context-level.
Alternatively, a lineage can represent a quadruple, i.e.,
a triple plus its corresponding context value. This second
type of lineage produces polynomials consisting of all the
pieces of data, i.e., quadruples that were used to answer the
query, including all intermediate results. We call this level
of granularity triple-level. For instance given a provenance
polynomial l1 ⊕ l2 ⊕ l3 TripleProv returns: at the context
level ContextValue1 ⊕ ContextValue12 ⊕ ContextValue13
and at the triple-level (Subject1Predicate1Object1)⊕
(Subject2Predicate2Object2)⊕ (Subject3Predicate3Object3).

5 Provenance-Enabled Queries
The next question is how to incorporate provenance in the
query execution process. Our goal here is to provide to
a user a way to specify which pieces of data should be
used to answer a query. For this we introduce the following
definitions:

Definition 1. A Workload Query is a query producing
results for a user. These results are referred to as workload
query results.

Definition 2. A Provenance Scope Query is a query that
defines a scope on the query results (i.e., only results
within that defined scope should be returned). Specifi-
cally, a Provenance Scope Query returns a set of context
values whose corresponding triples will be considered
during the execution of a Workload Query.

Definition 3. A Provenance-Enabled Query is a pair consis-
ting of a Workload Query and a Provenance Scope Query,
producing results for a user (as specified by the Workload

Workload
query

Provenance
scope

⋈

Results &
Provenance
Polynomial

triplestore

Workload
results

Provenance
resuls

Figure 1: Executing provenance-enabled queries: both a wor-
kload and a provenance scope query are given as inputs to a
triplestore, which produces results for both queries and then
combines them to obtain the final results and a provenance
polynomial.

Query) and originating only from data pre-selected by
the Provenance Scope Query.

As mentioned above, provenance data can be taken into
account during query execution through the use of named
graphs. However, those solutions are not optimized for
provenance, and require rewriting all workload queries with
respect to a provenance query. Our approach aims to keep
workload queries unchanged and introduce provenance-
driven optimization on the database system level.

We assume a strict separation of the workload query
and the provenance scope query from the user perspective
(as illustrated in Figure 1). That is, the user provides two
separate queries: one to query the data and a second one
to specify the provenance. Internally, the system combines
these queries to provide the correct results. Including the
provenance specification directly in to the query itself is also
possible. The execution strategies and models we develop
in the rest of this paper would work similarly in that case.
Provenance and workload results are joined to produce a
final result. A consequence of our design is that workload
queries can remain unchanged, while the whole process
of applying provenance filtering takes place during query
execution. Both provenance scope and workload queries are
delivered in the same way, preferably using the SPARQL
language or a high-level API that offers a similar functiona-
lity. The body of the provenance scope query specifies the
set of context values that identify which triples will be used
when executing the workload queries.

To further illustrate our approach, we present a few
provenance-enabled queries that are simplified versions of
use cases found in the literature. In the examples below,
context values are denoted as ?ctx.

Provenance-enabled queries can be used in various
ways. A common case is to ensure that the data used to
produce the answer comes from a set of trusted sources [54].
Given a workload query that retrieves titles of articles about
“Obama”:

SELECT ? t WHERE {

? a <type> <a r t i c l e > .
? a <tag> <Obama> .
? a < t i t l e > ? t .

}

One may want to ensure that the articles retrieved come
from sources attributed to the government:

SELECT ? c t x WHERE {
? c t x prov : wasAttributedTo <government> .

}

As per the W3C definition, provenance is not only about
the source of data but is also about the manner in which

5

the data was produced. Thus, one may want to ensure
that the articles in question were edited by somebody who
is a “SeniorEditor” and that articles where checked by a
“Manager”. Thus, we could apply the following provenance
scope query while keeping the same “Obama” workload
query:
SELECT ? c t x WHERE {

? c t x prov : wasGeneratedBy <a r t i c l e P r o d > .
<a r t i c l e P r o d > prov : wasAssociatedWith ?ed .
?ed rdf : type <SeniorEdior> .
<a r t i c l e P r o d > prov : wasAssociatedWith ?m .
?m rdf : type <Manager> .

}

A similar example to the one above, albeit for a curated
protein database, is described by Chichester et al. [55].

Another way to apply provenance-enabled queries is
for scenarios in which data is integrated from multiple
sources. For example, we may want to aggregate the che-
mical properties of a drug (e.g., its potency) provided by
one database with information whether it has regulatory
approval provided by another:
SELECT ? potency ? approval WHERE {

?drug <name> ‘ ‘ Sorafenib ’ ’ .
?drug ? l i n k ?chem .
?chem <potency> ? potency .
?drug <approvalStatus> ? approval

}

Here, we may like to select not only the particular
sources from which the workload query should be answered
but also the software or approach used in establishing the
links between those sources. For instance, we may want to
use links generated manually or those generated through
the use a of “string similarity”. Such a use-case is described
in detail by Batchelor et al. [56]. Below is an example of how
such a provenance scope query could be written:
SELECT ? c t x WHERE {
{ ? c t x prov : wasGeneratedBy ? l i n k i n g A c t i v i t y .

? l i n k i n g A c t i v i t y rdf : type <S t r i n g S i m i l a r i t y > }
UNION {

? c t x prov : wasDerivedFrom <ChemDB>}
UNION {

? c t x prov : wasDerivedFrom <DrugDB>}
}

6 Storage Models
To efficiently execute provenance-enabled queries we de-
velopped a special RDF storage model for TripleProv. We
extend the molecule-based native storage model we intro-
duced in dipLODocus[RDF] [10] and DiploCloud [11] with
new physical storage structures to store provenance.

6.1 Native Storage Model
The basic data unit in our system is an RDF molecule [57]
which is similar to a property table [58] and stores the list
or properties and objects related to a subject. A molecule
contains all data directly related to a subject. Molecule
clusters are used in two ways: to logically group sets of
relates URIs and literals (thus, pre-computing joins), and to
physically co-locate information related to a given resource.
A molecule co-locates together all data related to one sub-
ject. For a detailed description on the native storage model,
we refer the interested reader to our previous work [10], [11]
which focused on this aspect specifically.

6.2 Storage Model Variants for Provenance

To extend the physical data structures of TripleProv to
store provenance data we analyzed a number of ways to
implement this extras. A first option of storing provenance
data would be to simply annotate every object in the da-
tabase with its corresponding context value. This produces
quadruple physical data structures (SPOC, where S is the
subject of the quadruple, P its predicate, O its object, and
C its context value), as illustrated in Figure 2). The main
advantage of this variant is its ease of implementation: one
simply has to extend the data structure storing the object to
also store the context value. Its main disadvantage, however,
is memory consumption since the context value has to be
repeated for each triple.

One can try to physically co-locate the context values
and the triples differently, which results in a different me-
mory consumption profile. One extreme option would be to
regroup molecules in clusters based on their context values
(CSPO clustering). This, however, has the negative effect of
splitting our original molecules into several structures (one
new structure per new context value using a given subject),
thus breaking pre-computed joins and defeating the whole
purpose of storing RDF as molecules in the first place. The
situation would be even worse for deeper molecules, i.e.,
molecules storing data at a wider scope, or considering large
RDF subgraphs. On the other hand, such structures would
be quite appropriate to resolve vertical provenance queries,
i.e., queries that explicitly specify the lineage of triples to
consider during query execution.

The last two options for co-locating context values and
triples are SCPO and SPCO. SCPO co-locates the context va-
lues with the predicates which avoids the duplication of the
same context value inside a molecule, while at the same time
still co-locates all data about a given subject in one structure.
The last option, SPCO, co-locates the context value with the
predicates in the molecules. This physical structure is very
similar to SPOC in terms of storage requirements, since it
rarely happens that a given context value uses the same
predicates with many values. Compared to SPOC, it has the
disadvantage of considering a relatively complex structure
(PC) in the middle of the physical storage structure, i.e., as
the key of a hash-table mapping to the objects.

These different ways of co-locating data naturally result
in different memory overheads. The exact overhead, howe-
ver, is highly dependent on the dataset considered, its struc-
ture, and the homogeneity / heterogeneity of the context
values involved for the different subjects. Whenever the data
related to a given subject refers to many different context
values, the overhead caused by repeating the predicate in
the SCPO might not be compensated by the advantage of
co-location. In such cases, models like SPCO or SPOC might
be more appropriate. If, on the other hand, a large portion of
the different objects attached to the predicates relate to the
same context value, then the SCPO model might pay off. It is
evident that no single provenance storage model is overall
best—since the performance of such models is dependent
on the queries but also on the homogeneity / heterogeneity
of the considered datasets.

In case we encounter conflicting data from different
sources, we store it as it arrives in the system. Considering

6

a quadruple SPOC, the C element (context value) uniquely
identifies the provenance of the triple. During query exe-
cution, we consider all triples as valid and we execute the
query as if the triples were independent pieces of data. The
provenance polynomial provides information on all pieces
of data, conflicting or not.

For the reasons described above, we focus below on
two very different storage variants in our implementation:
SCPO, which we refer to as data grouped by context value
in the following (since the data is regrouped by context
values inside each molecule), and SPOC, which we refer to
as annotated provenance since the context value is placed like
an annotation next to the last part of the triple (object).

6.3 Provenance Index

Our system support a number of vertical and horizontal
data co-location structures. We propose one more way to co-
locate molecules, based on the context values. This gives us
the possibility to prune molecules during query execution.
Figure 3 illustrates this index, which is implemented as lists
of co-located molecule identifiers indexed by the context
values to which the triples stored in the molecules belong.
A given molecule can appear multiple times in this index.
This index is created upfront, i.e., at loading time. This index
allows us to early prone irrelevant molecules in our pre-
filtering query execution strategy (see Section 7.4).

6.4 Provenance-Driven Full Materialization

We implemented a materialized view of pre-selected data
following the provenance specification (see Figure 4). This
mechanism allows us to run our full materialization query
execution strategy (see Section 7.4) only on a portion of data
that is compliant with the provenance query since the data
was pre-selected and materialized.

6.5 Partial Materialization

Finally, we also implement a new, dedicated structure for the
partial materialization strategy. In that case, we co-locate all
molecule identifiers that are matching the provenance speci-
fication, i.e., that contain at least one context value compati-
ble with the provenance query. We explored several options
for this structure and in the end implemented it through a
hash-set, which gives us constant time performance to both
insert molecules when executing the provenance query and
to query for molecules when executing workload queries.

7 Query Processing

We now turn to the question of how to take advantage of
the provenance data stored in the molecules to produce
provenance polynomials and to tailor the query execution
process with provenance information. We have implemen-
ted specific query execution strategies in TripleProv that
allow us to compute a provenance polynomial describing
how different pieces of data were combined to produce the
results and to limit data used to produce the results to only
those matching a provenance scope query.

7.1 Query Execution Pipeline
Figure 5 depicts the query execution process. The prove-
nance scope and workload queries are provided as an input.
The query execution process can vary depending on the
exact strategy chosen, but typically it starts by executing the
provenance scope query and optionally pre-materializing or
co-locating data. The workload queries are then rewritten—
by taking into account the results of the provenance scope
query—and finally we execute them and at the same time
we collect information on the data used in the query exe-
cution to compute a provenance polynomial. The process
returns the workload query results as output, restricted
to those that are following the specification expressed in
the provenance scope query, and a provenance polynomial
describing how particular pieces of data were combined to
derive the results. We provide more detail on this execution
process below.

7.2 Generic Query Execution Algorithm
Algorithm 1 provides a simplified, generic version of the
query execution algorithm. The algorithm takes as an input
a provenance-enabled query, i.e., provenance scope and
workload queries. We start by executing the provenance
scope query, which is processed like an ordinary query
(ExecuteQuery) but always returns sets of context values as
output and itself is not restricted with provenance infor-
mation (ctxSet = []). Subsequently, the system optionally
materializes or adaptively co-locates the selected molecules
containing data related to the provenance scope query.
Afterwards we execute workload queries taking into ac-
count the context values returned from the previous step
and we keep trace of all the triples contributing to the
query evaluation. The execution starts as a standard query
execution, but includes a dynamic query rewriting step to
dynamically prune early in the query plan those molecules
that cannot produce valid results given their provenance.
We will describe different strategies to execute queries in
Section 7.4.

Algorithm 1 Generic executing algorithm for provenance-
enabled queries
Require: p: Provenance Scope Query
Require: q: workload query
1: ctxSet = ExecuteQuery(p, ctxSet=[])
2: materializedMolecules = MaterializeMolecules (ctxSet) OPTIONAL
3: collocatedMolecules = CollocateMolecules(ctxSet) OPTIONAL
4: for all workload queries do
5: (results,polynomial) = ExecuteQuery(q, ctxSet)
6: end for

Algorithm 2 gives a simplified view of how simple
star-like queries are answered in TripleProv (the algorithm
performs only subject-subject joins). Given a SPARQL query,
our system first analyzes the query to produce a physical
query plan, i.e., a tree of operators that are then called itera-
tively to retrieve molecules likely to contain data relevant to
the query (see our previous work for details [10], [11]).

During query execution, TripleProv collects all the tri-
ples that are instrumental in producing the results, i.e.,
molecules/sub-graphs matching the graph pattern of the
query. For each molecule inspected (Algorithm 3), our sy-
stem keeps tracks of all those parts of the RDF graph that

7

S1

O4

O2

O5

P4
P2

P5

ctx2

S1

O1

O2

O3

P1
P2

P3

ctx1

(a) CSPO Storage

S1

ctx1

ctx2

O1

O2

O3

O4

O2

O5

P1 P2

P3

P4

P2
P5

(b) SCPO Storage

S1

O1

O2

O3

O4

O2

O5

ctx1P1
ctx1P2

ctx1P3
ctx2P4

ctx2P2
ctx2P5

(c) SPCO Storage

S1

O1

O2

O3

O4

O2

O5

ctx1

P1
P2

P3

P4
P2

P5

ctx1

ctx1

ctx2

ctx2

ctx2

(d) SPOC Storage

Figure 2: The four different physical storage models identified for co-locating context values (ctx) with the triples (Subject Predicate
Object) inside RDF molecules.

ctx1

ctx2

ctx3

ctxN

m1 m3 m7 m11

m2 m5 m7

m3 m4 m6 m10

m

m21 m16

Figure 3: Provenance-driven indexing schema. Lists of molecu-
les containing data related to a particular context value (ctx).

S1

ctx1

O1

O2

O3

P1 P2

P3

Figure 4: The molecule after materialization, driven by a prove-
nance query returning only one context value (ctx).

have matched the evaluated query graph pattern (see our
previous work [10], [11] for details of RDF query proces-
sing). TripleProv performs two kinds of graph matching
operations: 1) It verifies if the triple in a molecule matches
any of the triple patterns from the query and if the triple
adheres to the provenance specification (checkIfTripleExists
and C ∈ ctxSet); 2) From the matching triples it retrieves
resources to compose the result set, i.e., projections (getEn-
tity). The provenance track corresponding to one molecule
is kept as “local provenance” (provenanceLocal). In case mul-
tiple molecules are used to construct the final results, the
system performs a union of all the local provenance traces
(provenance.union) and keeps the resulting trace as “global
provenance” (provenance). To illustrate these operations and
their results, below we describe the execution of two sample
queries.

7.3 Example Queries
To show how the query evaluation works, we provide a
few representative examples of workload queries: The first
example query we consider is a simple star query, i.e., a
query defining a series of triple patterns, all joined on the
variable ?a:

SELECT ? t WHERE {

? a <type> <a r t i c l e > . (<− 1 s t c o n s t r a i n t)
? a <tag> <Obama> . (<− 2nd c o n s t r a i n t)
? a < t i t l e > ? t . (<− 1 s t projec t ion)

}

To build the corresponding provenance polynomial,
TripleProv first identifies the projections and constraints
from the query (see the annotated listing above). Projections

Algorithm 2 Simplified algorithm for executing a query and
computing a provenance polynomial (ExecuteQuery).
Require: q: query
Require: ctxSet: context values; results of a provenance scope query
1: provenance← NULL : provenance polynomial for the query (q)
2: results← NULL : results of the query (q)
3: molecules← q.getPhysicalPlan
4: constraints← q.getConstraints
5: projections← q.getProjections
6: for all molecules do
7: Filter molecules based on the provenance scope query (ctxSet)

{only for the pre-filtering strategy}
8: (provenanceLocal, resultsLocal) =

inspectMolecule (constraints, projections, molecule, ctxSet)
9: if (provenanceLocal is NOT NULL

AND resultsLocal is NOT NULL) then
10: provenance.union(provenanceLocal)
11: results.union(resultsLocal)
12: end if
13: end for
14: return (results, provenance)

Algorithm 3 Algorithm for inspecting a molecule (inspect-
Molecule). The algorithm presents the way how we collect
information on data provenance to compute the provenance
polynomial.
Require: ctxSet: context values; results of a provenance scope query
Require: constraints, projections, molecule
1: provenanceLocal← NULL
2: resultsLocal← NULL
3: for all constrains do
4: if checkIfTripleExists(&provenanceLocal) then
5: provenanceLocal.join
6: else
7: return NULL
8: end if
9: end for

10: for all projections do
11: entity = getEntity(for particular projection, &provenanceLocal)
12: if entity is NOT EMPTY then
13: resultsLocal.add(entity)
14: provenanceLocal.join
15: else
16: return NULL
17: end if
18: end for

19: return (resultsLocal, provenanceLocal)

8

Provenance
Scope

Workload
Queries

Execute
Provenance

Scope

Materialize OR
Co-locate Query Results &

Provenance Polynomial

Execute
Query &
Collect

Provenance

Rewrite
Query

Figure 5: Provenance-enabled query execution pipeline.

correspond to these triple patterns that contain variables
included in the result set (from the SELECT statement).
Constraints correspond to all the remaining triple patterns
defining the query graph pattern. Each molecule is in-
spected (Algorithm 3) to determine whenever i) the various
constraints can be met i.e., the triple pattern matches any
triple from the molecule (checkIfTripleExists), ii) the piece of
data follows the provenance specification described through
the provenance scope query . Following this, for the triples
that match the triple pattern, the system retrieves resources
that will compose the result set (getEntity). Both functi-
ons (checkIfTripleExists and getEntity) keep track of all the
entities that were used to build the query answer besides
performing their standard tasks. If they encounter a triple
matching the triple pattern, they keep track of the triple in
provenanceLocal. In case a triple pattern can by satisfied with
multiple triples within one molecule both functions com-
bine the lineage internally in provenanceLocal with a union
operator ⊕. Our system keeps track of the provenance of
each result, by joining (⊗) the local provenance information
of each triple used during the query execution to identify
the result.

Finally, a provenance polynomial is issued:

[(l1 ⊕ l2 ⊕ l3) ⊗ (l4 ⊕ l5) ⊗ (l6 ⊕ l7)].

The association with the particular triple patterns from
the query is expressed with the join operator (⊗), and is as
follows:

1st constraint ?a < type >< article > l1 ⊕ l2 ⊕ l3
⊗

2nd constraint ?a < tag >< Obama > l4 ⊕ l5
⊗

1st projection ?a < title >?t l6 ⊕ l7

This particular polynomial indicates that the first constraint
has been satisfied by a lineage of l1, l2, or l3, while the
second has been satisfied by l4 or l5. It also indicates that
the first projection was processed with elements having a
lineage of l6 or l7. The union operator represents alternative
triples that match the triple pattern. The triples involved
were joined on variable ?a, which is expressed by the join
operation (⊗) in the polynomial. Such a polynomial can
contain lineage elements either at the source level or at the
triple level, and can be returned both in an aggregated or
detailed form as described in Section 4.1.

In case a query includes an OPTIONAL operator, e.g.,
OPTIONAL(?a < title >?t), our system only includes entities
that do exist in the database in the provenance polynomials.
If there is no triple that matches the OPTIONAL pattern, our
polynomials will not include any provenance information
with respect to this triple pattern, e.g., [(l1⊕ l2⊕ l3)⊗ (l4⊕ l5)]
.

The second example we examine is more complex, as

it contains two sets of constraints and projections with an
upper-level join to bind them:
s e l e c t ? l ? long ? l a t
where {

(−− f i r s t s e t)
?p name ‘ ‘ Krebs , Emil ’ ’ .
?p deathPlace ? l .

(−− s e c o n d s e t)
? c ?x ? l .
? c f e a t u r e C l a s s P .
? c inCountry DE .
? c long ? long .
? c l a t ? l a t .

}

The query execution starts similarly to the first sample
query. After resolving the first two triple patterns (Exe-
cuteQuery), the second set of patterns is processed in the
following steps: 1) replacing variable ?l of the second set
with the results derived from the first set; 2) executing
the second set of triples with the function ExecuteQuery; 3)
joining the corresponding results and lineage elements of
both sets. The system takes the two tracks of provenance
from the first and the second set of triple patterns and
combines them with the join operator (⊗).

Processing the query TripleProv automatically generates
provenance polynomials such as the following:

[(l1 ⊕ l2 ⊕ l3) ⊗ (l4 ⊕ l5)]
⊗

[(l6 ⊕ l7) ⊗ (l8) ⊗ (l9 ⊕ l10) ⊗ (l11 ⊕ l12) ⊗ (l13)]

where an upper-level join (
⊗

) is performed across the
lineage elements resulting from both sets.

7.4 Execution Strategies for Provenance-Enabled Que-
ries

We now examine the question of filtering pieces of data
used to deliver a query result. There are several possible
ways to execute provenance-enabled queries in a triplestore.
The simplest way is to execute both a workload query and
a provenance scope query independently, and to join both
result sets based on a provenance polynomial and context
values. One also has the option of pre-materializing some
of the data based on the provenance specification. Another
way to execute a provenance-enabled query is through
dynamic query rewriting. In that case, the workload query
is rewritten using the provenance scope query and then
is executed. We now introduce five different strategies for
executing provenance-enabled queries.
Post-Filtering: This is the baseline strategy that executes

both the workload and the provenance scope queries
independently. The provenance scope and workload
queries can be executed in any order or concurrently.
When both the provenance scope query and the wor-
kload query have been executed, the results from the
provenance scope query (i.e., a set of context values)
are used to filter the results of the workload query
based on their provenance polynomial afterwards (see
Algorithm 4). In this strategy we leverage the fact that
the provenance polynomial pinpoints a set of context
values to a result tuple. Moreover, the union operator
indicates that we used several alternative triples to ma-
tch a triple pattern. In consequence, if this set contains

9

the specific context value without an alternative we
eliminate the pinpointed result tuple.

Rewriting: This strategy executes the provenance scope
query first. Then, when inspecting triples in a molecule,
this strategy verifies if the context value of the triple is
in the set of context values returned by the provenance
scope query besides matching a triple pattern (see Algo-
rithm 5). This solution is efficient from the provenance
scope query execution side, though it can be suboptimal
from the workload query execution side (see Section 8).

Pre-Filtering: This strategy takes advantages of a dedicated
provenance index co-locating, for each context value,
the IDs of all molecules belonging to this context (see
Section 6.3). After the provenance scope query is execu-
ted, the provenance index can be looked up to retrieve
the lists of molecule IDs that are compatible with the
provenance specification. These lists can then be used
to filter out early the intermediate and final results of
the workload queries (see Algorithm 6). After filtering,
this strategy executes queries in a similar way as the
Rewriting strategy.

Full Materialization: This is a two-step strategy where a
provenance scope query is first executed on the entire
database, and then all molecules containing context
values that match the provenance scope query are
materialized. The workload queries are then simply
executed on the resulting materialized view, which only
contains triples that are compatible with the prove-
nance specification. This strategy will outperform all
other strategies when executing the workload queries,
since they are executed only on the relevant subset of
the data. However, materializing all potential molecules
based on the provenance scope query can be prohibi-
tively expensive, both in terms of storage space and
latency.

Partial Materialization: This strategy introduces a trade-off
between the performance of a provenance scope query
and that of workload queries. The provenance scope
query is executed first. While executing the provenance
scope query (see Algorithm 7), the system also builds a
temporary structure (e.g., a hash-table) maintaining the
IDs of all molecules belonging to the context values re-
turned by the provenance scope query. When executing
the workload query, the system can then dynamically
and efficiently look-up all molecules appearing as in-
termediate or final results, and can filter them out early
in case they do not appear in the temporary structure.
Further processing is similar to the Rewriting strategy.
This strategy can achieve performance close to the Full
Materialization strategy while avoiding to replicate the
data, at the expense of creating and maintaining the
temporary data structure.

8 Experiments

To empirically evaluate our provenance-aware storage mo-
dels and query execution strategies, we implemented them
in TripleProv. Our approaches to store, track, and query
provenance in Linked Data were already evaluated on a
few datasets and workloads in our previous work [12], [13].

Algorithm 4 Algorithm for the Post-Filtering strategy.
Require: q: workload query
Require: p: provenance scope query
1: (ctxSet) = ExecuteQuery(p)
2: (results, polynomial) = ExecuteQuery(q) {independent execution of

p and q}
3: for all results do
4: {result ∈ results}
5: if (polynomial[result].ContextValues < ctxSet) then
6: remove result
7: else
8: keep result
9: end if

10: end for

Algorithm 5 Algorithm for the Rewriting strategy.
Require: q: workload query
Require: ctxSet: context values; results of a provenance scope query
1: molecules = q.getPhysicalPlan
2: results← NULL
3: polynomial← NULL
4: for all molecules do
5: {molecule ∈ molecules}
6: for all (entities in molecule) do
7: {entity ∈ entities}
8: if (entity.ContextValues < ctxSet) then
9: next entity

10: else
11: if entity.match(q) then
12: results.add(entity)
13: calculate provenance polynomial
14: end if
15: end if
16: end for
17: end for
18: return (results, polynomial)

Algorithm 6 Algorithm for the Pre-Filtering strategy.
Require: q: workload query
Require: ctxSet: context values; results of a provenance scope query
1: molecules = q.getPhysicalPlan
2: results← NULL
3: polynomial← NULL
4: for all molecules do
5: {molecule ∈ molecules}
6: for all ctxSet do
7: {ctx ∈ ctxSet}
8: ctxMolecules = getMoleculesFromProvIdx(ctx)
9: if (molecule < ctxMolecules) then

10: next molecule
11: end if
12: end for
13: for all (entities in molecule) do
14: {entity ∈ entities}
15: if (entity.ContextValues < ctxSet) then
16: next entity
17: else
18: if entity.match(q) then
19: results.add(entity)
20: calculate provenance polynomial
21: end if
22: end if
23: end for
24: end for
25: return (results, polynomial)

10

Algorithm 7 Algorithm for the Partial Materialization stra-
tegy.
Require: q: workload query
Require: ctxSet: context values; results of a provenance scope query
Require: collocatedMolecules: collection of hash values of molecules

related to results of the provenance query (ctxSet)
1: molecules = q.getPhysicalPlan
2: results← NULL
3: polynomial← NULL
4: for all molecules do
5: {molecule ∈ molecules}
6: if (molecule < collocatedMolecules) then
7: next molecule
8: end if
9: for all (entities in molecule) do

10: {entity ∈ entities}
11: if (entity.ContextValues < ctxSet) then
12: next entity
13: else
14: if entity.match(q) then
15: results.add(entity)
16: calculate provenance polynomial
17: end if
18: end if
19: end for
20: end for
21: return (results, polynomial)

The goal of the following experiments is to empirically eva-
luate the scalability of our algorithms and data structures.
Therefore, in the fist scenario (Section 8.3) we perform the
experiments on datasets of varying size to assess the perfor-
mance of the storage models. In the second scenario (Section
8.4), we measure the performance impact of the selectivity
of a provenance query. Hence we gradually increase the
number of context values resulting from the provenance
query. To facilitate the potential comparison of results, we
use the same datasets and queries as in our previous work
on provenance-enabled query processing [13].

8.1 Experimental Environment

Hardware Platform: All experiments were run on a HP
ProLiant DL385 G7 server with an AMD Opteron Processor
6180 SE (24 cores, 2 chips, 12 cores/chip), 64GB of DDR3
RAM, running Ubuntu 12.04.3 LTS (Precise Pangolin). All
data were stored on a recent 3 TB Serial ATA disk.

Datasets: We used the Billion Triples Challenge (BTC)5

dataset for our experiments: It is a collection of RDF data
gathered from the Web. The Billion Triple Challenge data-
set was created based on datasets provided by Falcon-S,
Sindice, Swoogle, SWSE, and Watson using the MultiCra-
wler/SWSE framework. It represents a typical collection of
data gathered from multiple and heterogeneous online sour-
ces, hence storing, tracking, and querying provenance on it
precisely addresses the problem we focus on. We considered
more than 40 million quadruples (almost 10GB). To sample
the data, we first pre-selected quadruples satisfying the set
of considered workload and provenance queries. Then, we
randomly sampled additional data up to 10GB.

Following the experimental design from our previous
work [13], we included provenance specific triples so that
the workload query results are always the same, irrespective

5. http://km.aifb.kit.edu/projects/btc-2009/

if the query is tailored with provenance information or not
(vanilla version).

Workloads: For the workload, we used eight existing
queries originally proposed by Neumann and Weikum [59].
In addition, we added two queries with the UNION and OP-
TIONAL clauses. We prepared a complex provenance scope
query, which is conceptually similar to those presented in
Section 5.

Experimental Methodology: As is typical for benchmar-
king database systems, e.g., for tpc-x6 or our own OLTP-
Benchmark [60], we included a warm-up phase before mea-
suring the execution time of the queries in order to measure
query execution times in a steady-state mode. We first run
all the queries in sequence once to warm-up the system, and
then repeated the process ten times (i.e., we ran 11 query
batches for each variant we benchmark, each containing all
the queries we consider in sequence). In the following, we
report the average execution time of the last 10 runs for each
query. In addition, we avoided the artifacts of connecting
from the client to the server, of initializing the database from
files, and of printing results. Instead we measured the query
execution times inside the database system only.

8.2 Results of the Previous Experiments
In our previous papers, we presented two independent
systems focusing on different aspects of provenance within
a triplestore. Here, we briefly summarize the results of those
previous experiments:

The first paper [12] focused on storing and tracking
lineage in the query execution process. Overall, the per-
formance penalty created by tracking provenance were in
a range from a few percents to almost 350%. We observed
a significant difference between the two main provenance
storage models implemented (CG vs CA and TG vs TA).
Retrieving data from co-located structures took about 10%-
20% more time than from simply annotated graph nodes.
We also noticed considerable differences between the two
granularity levels (CG vs TG and CA vs TA). The more
detailed triple-level provenance granularity required more
time than the simpler source-level.

The second paper [13] focused on different query execu-
tion strategies for provenance-enabled queries, that is, que-
ries tailored with provenance information. We found that
because provenance is prevalent within Web Data and is
highly selective, it can be used to improve query processing
performance. By leveraging knowledge on provenance, one
can execute many types of queries roughly 30x faster than a
baseline store. This is a counterintuitive result as provenance
is often associated with additional processing overhead. The
exact optimal strategy depends on the data, on the mixture
of (provenance scope and workload) queries, and of their
frequencies. Based on our experiments, we believe that a
partial materialization strategy provides the best trade-off
for running provenance-enabled queries in general.

8.3 Storage Models and Provenance Granularity Levels

For the first experimental scenario we wanted to investigate
the scalability of our storage models. Specifically we wanted

6. http://www.tpc.org/

11

1 2 3 4 5 6 7 8 9 10

query

10-2

10-1

100

101

102

103

104

ti
m

e
 [

s]
 l
o
g

V

CG

CA

TG

TA

Figure 6: Query execution times (in seconds, logarithmic scale)
for DS5.

Table 1: Size of the datasets used in the experiments.
size (GB) # quadruples

DS1 0.5 2 944 562
DS2 2.9 12 944 562
DS3 5.3 22 944 562
DS4 7.3 32 944 556
DS5 9.3 42 944 553

to measure how the performance changes with the increa-
sing data size. We implemented two storage models (SCPO
and SPOC, see Section 6.2) in TripleProv and for each model
we considered two granularity levels for tracking prove-
nance (context and triple, see Section 4.1). This gives us four
different variants to compare against the vanilla version of
our system. Our goal was to understand the various trade-
offs of the approaches and to assess the performance penalty
caused by computing a provenance polynomial. In this
scenario we do not filter data based on provenance. Here we
only derive a provenance polynomial of a workload query.
We use the following abbreviations to refer to the different
variants of storage models and granularity levels:
V: the vanilla version of our system (i.e., the version where

provenance is neither stored nor looked up during
query execution);

CG: context-level granularity, provenance data grouped by
context values;

CA: context-level granularity, annotated provenance data;
TG: triple-level granularity, provenance data grouped by

context values;
TA: triple-level granularity, annotated provenance data.

As mentioned above the main goal of these experiments
was to compare the scalability of our methods. To achieve
this goal in this scenario we gradually increased the size of
the dataset. We started with nearly 3 million quadruples up
to 43 million quadruples (see Table 1 for details about the
datasets sizes).

8.3.1 Results
Figure 6 shows the query execution times for the biggest
dataset we used in our experiments (DS5). Figure 7 shows
the execution time for selected queries and all datasets. It
exhibits how the performance of the implemented variants
changes with the increasing data size.

Unsurprisingly, the more data we have to process the
slower queries are executed (see Figure 7). The performance
decrease varies between variants and queries. Queries with
less selective constraints or introducing significant amount
of intermediate results (like Q1, Q5, Q10) tend to be more
sensitive to the size of data. Queries which can early prune
the number of elements to inspect (e.g., Q9) exhibit lower
sensitivity in that aspect. The variants grouping elements

Table 2: Cardinality of the context values set.
% # context values

full dataset 100 6 819 826
minimal 0.003 1 854

CV1 10 681 983
CV2 20 1 363 966
CV3 30 2 045 948
CV4 40 2 727 931
CV5 50 3 409 914

by the provenance data (CG and TG) are more sensitive
to the size of data. While difference in size between the
datasets is up to almost 20 times, for the query execution
time we can observe a variety of the performance changes:
form almost no difference (query Q9, variant CA) to 100-200
times (queries Q5, Q10, variant CG).

Finally, we briefly discuss specific results appearing in
Figures 6 and 8 where the provenance-aware implemen-
tations seam to outperform the vanilla version. The reason
behind the large disparity in performance has to do with
the very short execution times (at the level of 10−3 seconds),
which cannot be measured more precisely and thus intro-
duces some noise.

8.4 Query Execution Strategies
Our goal here was to investigate the scalability of the
query execution strategies for provenance-enabled queries
(see Section 7.4). Specifically we wanted to measure how
they perform when the provenance scope query results in
different selectivities, i.e., with different numbers of context
values. To refer to the different query execution strategies
we use the abbreviations introduced in Section 7.4.

To evaluate the scalability of the provenance-aware
query execution strategies, we gradually increased the cardi-
nality of the context values set. We started with the minimal
number of elements to maintain the results of the workload
queries unchanged. Following, we added elements to the
set so that it consisted of 10% to 50% of context values from
the entire dataset. Table 2 shows detailed statistics about the
number of context values for each scenario.

8.4.1 Results
Figure 8 shows the query execution times for all queries
for the biggest context values set (CV5). Figure 9 shows the
execution time for selected queries and all measured sizes of
the context values set (see Table 2). It shows how the query
strategies are sensitive to the number of elements returned
from the provenance query.

As expected, the more advanced query execution stra-
tegies (Pre-Filtering, Full Materialization, and Patrial Ma-
terialization) are significantly more sensitive to the num-
ber of results returned by the provenance scope query.
Those strategies take advantage of the selectivity of the
provenance information (see our previous work [13] for a
detailed analysis of the provenance selectivity), so if the
results of the provenance query are not selective enough,
the strategies perform worse. Figure 9 shows that the Pre-
Filtering strategy is the most sensitive to the output of
the provenance scope query. The sensitivity varies between
queries: for queries with a higher number of intermediate
results (used for joins) and less selective constraints (e.g., Q2
and Q5), the difference can exceed two orders of magnitude.

12

V CA CG TA TG

Storage Model

10-3

10-2

10-1

100

101

102

ti
m

e
 [

s]
 l
o
g

Query: Q1

DS1

DS2

DS3

DS4

DS5

V CA CG TA TG

Storage Model

100

101

102

ti
m

e
 [

s]
 l
o
g

Query: Q5

DS1

DS2

DS3

DS4

DS5

V CA CG TA TG

Storage Model

10-4

10-3

10-2

10-1

100

101

102

ti
m

e
 [

s]
 l
o
g

Query: Q9

DS1

DS2

DS3

DS4

DS5

V CA CG TA TG

Storage Model

10-3

10-2

10-1

100

101

102

ti
m

e
 [

s]
 l
o
g

Query: Q10

DS1

DS2

DS3

DS4

DS5

Figure 7: Query execution time (in seconds, logarithmic scale) for all datasets and the implemented storage variants, for selected
queries (Q1, Q5, Q9, and Q10).

1 2 3 4 5 6 7 8 9 10

query #

10-2

10-1

100

101

102

103

104

105

ti
m

e
 [

s]
 l
o
g

Post-Filtering

Pre-Filtering

Rewriting

Full Materialization

Partial Materialization

Figure 8: Query execution times (in seconds, logarithmic scale)
for CV5.

The performance of queries that do not take advantage of
high selectivity provenance information (e.g. Q6 and Q7) is
not linked to the cardinality of the context values set.

9 Conclusions
To the best of our knowledge, we presented the first attempt
to translate theoretical insight from the database provenance
literature into a high-performance triplestore. Our techni-
ques enable not only simple tracing of lineage for query re-
sults, but also considers fine-grained multilevel provenance
and allow us to tailor the query execution with provenance
information. We introduced two storage models and five
query execution strategies for supporting provenance in
Linked Data management systems.

From our experiment we can say that the more data
we have to process the slower queries are executed and
the more selective is the provenance query the more we
gain in performance. Less selective workload queries are
more sensitive to those aspects than queries that allow to
early prune intermediate results. The more advanced query
execution strategies that take advantage of the selectivity
of the provenance information are more sensitive to the
number elements returned by the provenance query.

It is important to remember that the performance of a sy-
stem processing provenance, either by tracking or querying
such meta data, highly depends on the selectivity of the
provenance [12], [13]. On the one hand, the more selective
provenance information is the more one can gain by scoping
the query execution with provenance-enabled queries. On
the other hand, with more selective data, tracking and
storing provenance information becomes more expensive.
Therefore such systems should be evaluated with respect
to the data sampled from the targeted source to chose the
most suitable storage model and a query execution strategy.
A user of a system like TripleProv can easily restrict what
data to be used in a query by providing a SPARQL query

scoping the data provenance (Section 5). Additionally, the
user will receive detailed information about exact pieces
of data were used to produce the results (Section 4). Such
a provenance trace can be used to compute the quality of
the results or to (partially) invalidate the results in case
some parts of the data collection turn out to be incorrect.
Moreover, a provenance trace can be leveraged to partially
reevaluate the query in case new data arrives, i.e., we can
reevaluate only the part that is influenced by the new data
since we know what data exactly has been used in the query.

Building on the results of this work, we see a number
of possible avenues for future work: Investigating how
provenance can be used to improve query execution and op-
timization within a data management system is one of them.
Another possibility is to leverage provenance to improve
the reconstruction of incomplete graph data, especially in
the context of streams of Linked Data. Finally, we plan
to investigate the ability to track and query provenance
in dynamic Linked Data environments, linking provenance
management to complex event processing and reasoning.

References

[1] T. Heath and C. Bizer, Linked Data: Evolving the Web into a Global
Data Space, ser. Synthesis Lectures on the Semantic Web. Morgan
& Claypool Publishers, 2011.

[2] C. A. Knoblock, P. Szekely, J. L. Ambite, S. Gupta, A. Goel, M. Mus-
lea, K. Lerman, M. Taheriyan, and P. Mallick, “Semi-automatically
mapping structured sources into the semantic web,” in Proceedings
of the Extended Semantic Web Conference, Crete, Greece, 2012.

[3] A. Schultz, A. Matteini, R. Isele, C. Bizer, and C. Becker, “Ldif -
linked data integration framework,” in COLD, 2011.

[4] P. Groth and L. Moreau (eds.), “PROV-Overview. An Overview of
the PROV Family of Documents,” World Wide Web Consortium,
W3C Working Group Note NOTE-prov-overview-20130430, Apr.
2013.

[5] J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler, “Named graphs,
provenance and trust,” in Proceedings of the 14th International
Conference on World Wide Web, ser. WWW ’05. New York, NY,
USA: ACM, 2005, pp. 613–622.

[6] D. W. R. Cyganiak and M. L. (Ed.), “RDF 1.1 Concepts
and Abstract Syntax,” W3C Recommendation, February 2014,
http://www.w3.org/TR/rdf11-concepts/.

[7] M. Schmachtenberg, C. Bizer, and H. Paulheim, “Adoption of the
linked data best practices in different topical domains,” in The
Semantic Web, ISWC 2014, ser. Lecture Notes in Computer Science,
P. Mika, T. Tudorache, A. Bernstein, C. Welty, C. Knoblock,
D. Vrandei, P. Groth, N. Noy, K. Janowicz, and C. Goble, Eds.
Springer International Publishing, 2014, vol. 8796, pp. 245–260.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-11964-9
16

[8] G. Grimnes. (2012) BTC2012 Stats. [Online]. Available: http:
//gromgull.net/blog/2012/07/some-basic-btc2012-stats/

13

Post-
Fil

terin
g

Pre
-Fi

lte
rin

g

Rewrit
ing

Fu
ll M

ateria
liz

atio
n

Parti
al M

ateria
liz

atio
n

10-1

100

101

102

103

104

ti
m

e
 [

s]
 l
o
g

Query: Q2

min

CV1

CV2

CV3

CV4

CV5

Post-
Fil

terin
g

Pre
-Fi

lte
rin

g

Rewrit
ing

Fu
ll M

ateria
liz

atio
n

Parti
al M

ateria
liz

atio
n

100

101

102

103

104

ti
m

e
 [

s]
 l
o
g

Query: Q5

min

CV1

CV2

CV3

CV4

CV5

Post-
Fil

terin
g

Pre
-Fi

lte
rin

g

Rewrit
ing

Fu
ll M

ateria
liz

atio
n

Parti
al M

ateria
liz

atio
n

10-2

10-1

100

101

102

103

104

ti
m

e
 [

s]
 l
o
g

Query: Q6

min

CV1

CV2

CV3

CV4

CV5

Post-
Fil

terin
g

Pre
-Fi

lte
rin

g

Rewrit
ing

Fu
ll M

ateria
liz

atio
n

Parti
al M

ateria
liz

atio
n

103

104

ti
m

e
 [

s]
 l
o
g

Query: Q7

min

CV1

CV2

CV3

CV4

CV5

Figure 9: Query execution time (in seconds, logarithmic scale) for all sizes of the context values set and the query execution
strategies, for selected queries (Q2, Q5, Q6, and Q7).

[9] P. Groth and W. Beek. (2016) Measuring PROV
Provenance on the Web of Data. [Online]. Available:
https://nbviewer.jupyter.org/github/pgroth/prov-wod-analysis/
blob/master/MeasuringPROVProvenanceWebofData.ipynb

[10] M. Wylot, J. Pont, M. Wisniewski, and P. Cudré-Mauroux,
“dipLODocus[RDF]: short and long-tail RDF analytics for massive
webs of data,” in Proceedings of the 10th international conference on
The semantic web - Volume Part I, ser. ISWC’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 778–793. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2063016.2063066

[11] M. Wylot and P. Cudré-Mauroux, “DiploCloud: Efficient and Sca-
lable Management of RDF Data in the Cloud,” IEEE Transactions on
Knowledge and Data Engineering, vol. 28, no. 3, pp. 659–674, March
2016.

[12] M. Wylot, P. Cudre-Mauroux, and P. Groth, “TripleProv: Efficient
Processing of Lineage Queries in a Native RDF Store,” in Pro-
ceedings of the 23rd International Conference on World Wide Web,
ser. WWW ’14. Republic and Canton of Geneva, Switzerland:
International World Wide Web Conferences Steering Committee,
2014, pp. 455–466.

[13] M. Wylot, P. Cudré-Mauroux, and P. Groth, “Executing
Provenance-Enabled Queries over Web Data,” in Proceedings of the
24rd International Conference on World Wide Web, ser. WWW ’15.
Republic and Canton of Geneva, Switzerland: International World
Wide Web Conferences Steering Committee, 2015.

[14] ——, “A demonstration of TripleProv: tracking and querying
provenance over web data,” vol. 8, no. 12. VLDB Endowment,
2015, pp. 1992–1995.

[15] L. Moreau, “The foundations for provenance on the web,”
Foundations and Trends in Web Science, vol. 2, no. 2–3, pp. 99–241,
Nov. 2010. [Online]. Available: http://eprints.ecs.soton.ac.uk/21691/

[16] J. Cheney, L. Chiticariu, and W.-C. Tan, Provenance in databases:
Why, how, and where. Now Publishers Inc, 2009, vol. 1, no. 4.

[17] P. Groth, Y. Gil, J. Cheney, and S. Miles, “Requirements for prove-
nance on the web,” International Journal of Digital Curation, vol. 7,
no. 1, 2012.

[18] P. Cudré-Mauroux, K. Lim, R. Simakov, E. Soroush, P. Velikhov,
D. L. Wang, M. Balazinska, J. Becla, D. DeWitt, B. Heath, D. Maier,
S. Madden, J. M. Patel, M. Stonebraker, and S. Zdonik, “A Demon-
stration of SciDB: A Science-Oriented DBMS,” Proceedings of the
VLDB Endowment (PVLDB), vol. 2, no. 2, pp. 1534–1537, 2009.

[19] O. Hartig, “Provenance information in the web of data,” in Procee-
dings of the 2nd Workshop on Linked Data on the Web (LDOW2009),
2009.

[20] S. Sahoo, P. Groth, O. Hartig, S. Miles, S. Coppens, J. Myers, Y. Gil,
L. Moreau, J. Zhao, M. Panzer et al., “Provenance vocabulary
mappings,” W3C, Tech. Rep., 2010.

[21] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth,
N. Kwasnikowska, S. Miles, P. Missier, J. Myers, B. Plale,
Y. Simmhan, E. Stephan, and J. Van den Bussche, “The open
provenance model core specification (v1.1),” Future Generation
Computer Systems, vol. 27, no. 6, pp. 743–756, Jun. 2011. [Online].
Available: http://eprints.ecs.soton.ac.uk/21449/

[22] T. D. Huynh, P. Groth, and S. Zednik (eds.), “PROV Implementa-
tion Report,” World Wide Web Consortium, W3C Working Group
Note NOTE-prov-implementations-20130430, Apr. 2013.

[23] P. Hayes and B. McBride, “Rdf semantics,” W3C Recommenda-
tion, February 2004.

[24] J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler, “Named graphs, pro-

venance and trust,” in Proceedings of the 14th international conference
on World Wide Web. ACM, 2005, pp. 613–622.

[25] V. Nguyen, O. Bodenreider, and A. Sheth, “Don’t like rdf rei-
fication?: making statements about statements using singleton
property,” in Proceedings of the 23rd international conference on World
wide web. International World Wide Web Conferences Steering
Committee, 2014, pp. 759–770.

[26] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum, “Yago2:
A spatially and temporally enhanced knowledge base from wi-
kipedia,” Artificial Intelligence, vol. 194, no. 0, pp. 28 – 61, 2013,
artificial Intelligence, Wikipedia and Semi-Structured Resources.

[27] J. Zhao, C. Bizer, Y. Gil, P. Missier, and S. Sahoo, “Provenance
requirements for the next version of RDF,” in W3C Workshop RDF
Next Steps, 2010.

[28] P. Pediaditis, G. Flouris, I. Fundulaki, and V. Christophides, “On
Explicit Provenance Management in RDF/S Graphs.” in Workshop
on the Theory and Practice of Provenance, 2009.

[29] O. Udrea, D. R. Recupero, and V. Subrahmanian, “Annotated
RDF,” ACM Transactions on Computational Logic (TOCL), vol. 11,
no. 2, p. 10, 2010.

[30] G. Flouris, I. Fundulaki, P. Pediaditis, Y. Theoharis, and V. Chris-
tophides, “Coloring RDF Triples to Capture Provenance,” in Pro-
ceedings of the 8th International Semantic Web Conference, ser. ISWC
’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 196–212.

[31] T. J. Green, G. Karvounarakis, and V. Tannen, “Provenance semi-
rings,” in Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems. ACM, 2007,
pp. 31–40.

[32] Y. Theoharis, I. Fundulaki, G. Karvounarakis, and V. Christophi-
des, “On provenance of queries on semantic web data,” IEEE
Internet Computing, vol. 15, no. 1, pp. 31–39, Jan. 2011.

[33] C. V. Damásio, A. Analyti, and G. Antoniou, “Provenance for
SPARQL queries,” in Proceedings of the 11th international conference
on The Semantic Web - Volume Part I, ser. ISWC’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 625–640.

[34] A. Zimmermann, N. Lopes, A. Polleres, and U. Straccia, “A
general framework for representing, reasoning and querying with
annotated semantic web data,” Web Semant., vol. 11, pp. 72–95,
Mar. 2012.

[35] O. Hartig, “Querying Trust in RDF Data with tSPARQL,” in
Proceedings of the 6th European Semantic Web Conference on The
Semantic Web: Research and Applications, ser. ESWC 2009 Heraklion.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 5–20.

[36] F. Geerts, G. Karvounarakis, V. Christophides, and I. Fundulaki,
“Algebraic structures for capturing the provenance of SPARQL
queries,” in Proceedings of the 16th International Conference on Data-
base Theory, ser. ICDT ’13. New York, NY, USA: ACM, 2013, pp.
153–164.

[37] L. Moreau and I. Foster, “Electronically querying for the prove-
nance of entities,” in Provenance and Annotation of Data, ser. Lecture
Notes in Computer Science, L. Moreau and I. Foster, Eds. Springer
Berlin Heidelberg, 2006, vol. 4145, pp. 184–192.

[38] O. Biton, S. Cohen-Boulakia, and S. B. Davidson,
“Zoom*userviews: Querying relevant provenance in workflow
systems,” in Proceedings of the 33rd International Conference on Very
Large Data Bases, ser. VLDB ’07. VLDB Endowment, 2007, pp.
1366–1369.

[39] L. M. Gadelha, Jr., M. Wilde, M. Mattoso, and I. Foster, “MTCProv:
A Practical Provenance Query Framework for Many-task Scientific

14

Computing,” Distrib. Parallel Databases, vol. 30, no. 5-6, pp. 351–
370, Oct. 2012.

[40] A. Chebotko, S. Lu, X. Fei, and F. Fotouhi, “RDFProv: A Relati-
onal RDF Store for Querying and Managing Scientific Workflow
Provenance,” Data Knowl. Eng., vol. 69, no. 8, pp. 836–865, Aug.
2010.

[41] G. Karvounarakis, Z. G. Ives, and V. Tannen, “Querying data
provenance,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. ACM, 2010, pp. 951–962.

[42] B. Glavic and G. Alonso, “The Perm Provenance Management
System in Action,” in Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’09.
New York, NY, USA: ACM, 2009, pp. 1055–1058.

[43] B. Arab, D. Gawlick, V. Radhakrishnan, H. Guo, and B. Glavic,
“A generic provenance middleware for queries, updates, and
transactions,” in 6th USENIX Workshop on the Theory and Practice of
Provenance (TaPP 2014). Cologne: USENIX Association, Jun. 2014.
[Online]. Available: https://www.usenix.org/conference/tapp2014/
agenda/presentation/arab

[44] J. Widom, “Trio: A system for integrated management of data,
accuracy, and lineage,” Technical Report, 2004.

[45] H. Halpin and J. Cheney, “Dynamic Provenance for SPARQL
Updates,” in The Semantic Web ISWC 2014, ser. Lecture Notes
in Computer Science, P. Mika, T. Tudorache, A. Bernstein,
C. Welty, C. Knoblock, D. Vrandei, P. Groth, N. Noy,
K. Janowicz, and C. Goble, Eds. Springer International
Publishing, 2014, vol. 8796, pp. 425–440. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-11964-9 27

[46] G. Graefe and K. Ward, “Dynamic query evaluation plans,” SIG-
MOD Rec., vol. 18, no. 2, pp. 358–366, Jun. 1989.

[47] R. L. Cole and G. Graefe, “Optimization of dynamic query evalu-
ation plans,” SIGMOD Rec., vol. 23, no. 2, pp. 150–160, May 1994.

[48] N. Kabra and D. J. DeWitt, “Efficient mid-query re-optimization of
sub-optimal query execution plans,” SIGMOD Rec., vol. 27, no. 2,
pp. 106–117, Jun. 1998.

[49] K. Ng, Z. Wang, R. R. Muntz, and S. Nittel, “Dynamic query
re-optimization,” in Scientific and Statistical Database Management,
1999. Eleventh International Conference on, Aug 1999, pp. 264–273.

[50] R. Avnur and J. M. Hellerstein, “Eddies: Continuously Adaptive
Query Processing,” SIGMOD Rec., vol. 29, no. 2, pp. 261–272, May
2000.

[51] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman, “Continu-
ously adaptive continuous queries over streams,” in Proceedings of
the 2002 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’02. New York, NY, USA: ACM, 2002, pp.
49–60.

[52] R. Cyganiak, A. Harth, and A. Hogan, “N-quads: Extending n-
triples with context,” W3C Recommendation, 2008.

[53] T. J. Green, “Collaborative data sharing with mappings and pro-
venance,” Ph.D. dissertation, University of Pennsylvania, 2009,
rubinoff Dissertation Award; honorable mention for Jim Gray
Dissertation Award.

[54] luc Moreau and G. Paul, Provenance: An Introduction to PROV.
Morgan and Claypool, September 2013. [Online]. Available:
http://eprints.soton.ac.uk/356858/

[55] C. Chichester, P. Gaudet, O. Karch, P. Groth, L. Lane, A. Bairoch,
B. Mons, and A. Loizou, “Querying neXtProt nanopublications
and their value for insights on sequence variants and
tissue expression,” Web Semantics: Science, Services and Agents on
the World Wide Web, no. 0, pp. –, 2014. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1570826814000432

[56] C. R. Batchelor, C. Y. A. Brenninkmeijer, C. Chichester, M. Davies,
D. Digles, I. Dunlop, C. T. A. Evelo, A. Gaulton, C. A.
Goble, A. J. G. Gray, P. T. Groth, L. Harland, K. Karapetyan,
A. Loizou, J. P. Overington, S. Pettifer, J. Steele, R. Stevens,
V. Tkachenko, A. Waagmeester, A. J. Williams, and E. L.
Willighagen, “Scientific lenses to support multiple views
over linked chemistry data,” in ISWC 2014 - 13th International
Semantic Web Conference, Riva del Garda, Italy, October 19-23, 2014.
Proceedings, Part I, Oct. 2014, pp. 98–113. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-11964-9 7

[57] L. Ding, Y. Peng, P. P. da Silva, and D. L. McGuinness, “Tracking
RDF Graph Provenance using RDF Molecules,” in International
Semantic Web Conference, 2005.

[58] K. Wilkinson and K. Wilkinson, “Jena property table implementa-
tion,” in International Workshop on Scalable Semantic Web Knowledge
Base Systems (SSWS), 2006.

[59] T. Neumann and G. Weikum, “Scalable join processing on very
large rdf graphs,” in Proceedings of the 2009 ACM SIGMOD Interna-
tional Conference on Management of data. ACM, 2009, pp. 627–640.

[60] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudré-Mauroux, “OLTP-
Bench: An Extensible Testbed for Benchmarking Relational Data-
bases,” PVLDB, vol. 7, no. 4, pp. 277–288, 2013.

Marcin Wylot is a postdoctoral researcher at TU Berlin in the Open
Distributed Systems group. He received his PhD at the University of
Fribourg in Switzerland in 2015, with the supervision of Professor Phi-
lippe Cudré-Mauroux. He graduated the MSc in computer science at the
University of Lodz in Poland in 2010, doing part of his studies at the
University of Lyon in France. During his studies he was also gaining pro-
fessional experience working in various industrial companies. His main
research interests revolve around database systems for Semantic Web
data, provenance in Linked Data, and Big Data processing. Webpage:
http://mwylot.net

Philippe Cudré-Mauroux is a Swiss-NSF Professor and the director
of the eXascale Infolab at the University of Fribourg in Switzerland.
Previously, he was a postdoctoral associate working in the Database
Systems group at MIT. He received his Ph.D. from the Swiss Federal
Institute of Technology EPFL, where he won both the Doctorate Award
and the EPFL Press Mention in 2007. Before joining the University of
Fribourg, he worked on distributed information and media management
for HP, IBM Watson Research (NY), and Microsoft Research Asia.
He was Program Chair of the International Semantic Web Conference
in 2012 and General Chair of the International Symposium on Data-
Driven Process Discovery and Analysis in 2012 and 2013. His research
interests are in next-generation, Big Data management infrastructures
for non-relational data. Webpage: http://exascale.info/phil

Manfred Hauswirth is the managing director of Fraunhofer FOKUS and
a full professor for Open Distributed Systems at the Technical University
of Berlin, Germany. Previous career stations were EPFL and DERI. He
holds an M.Sc. (1994) and a Ph.D. (1999) in computer science from the
Technical University of Vienna. His research interests are on Internet-of-
Everything, domain-specific Big Data and analytics, linked data streams,
semantic sensor networks, sensor networks middleware, peer-to-peer
systems, service-oriented architectures and distributed systems secu-
rity. He has published over 170 peer-reviewed papers in these domains,
he has co-authored a book on distributed software architectures and
several book chapters on data management, semantics, middleware
and IoT, and is an associate editor of the IEEE Transactions on Services
Computing.

Paul Groth is Disruptive Technology Director at Elsevier Labs. He holds
a Ph.D. in Computer Science from the University of Southampton (2007)
and has done research at the University of Southern California and the
VU University Amsterdam. His research focuses on dealing with large
amounts of diverse contextualized knowledge with a particular focus on
the web and science applications. This includes research in data prove-
nance, data science, data integration and knowledge sharing. Paul was
co-chair of the W3C Provenance Working Group that created a standard
for provenance interchange. He is co-author of Provenance: an Intro-
duction to PROV; The Semantic Web Primer: 3rd Edition as well as nu-
merous academic articles. He blogs at http://thinklinks.wordpress.com.
You can find him on twitter: @pgroth.

