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Progress has been made in developing manufacturing technologies which enable the fabrication of artificial
vascular networks for tissue cultivation. However, those networks are rudimentary designed with respect to their
geometry. This restricts long-term biological functionality of vascular cells which depends on geometry-related
fluid mechanical stimuli and the avoidance of vessel occlusion. In the present work, a bioinspired geometry
optimization for branchings in artificial vascular networks has been conducted. The analysis could be simplified
by exploiting self-similarity properties of the system. Design rules in the form of two geometrical parameters,
i.e., the branching angle and the radius ratio of the daughter branches, are derived using the wall shear stress as
command variable. The numerical values of these parameters are within the range of experimental observations.
Those design rules are not only beneficial for tissue engineering applications. Moreover, they can be used as
indicators for diagnoses of vascular diseases or for the layout of vascular grafts.
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I. INTRODUCTION19

An inadequate hemodynamic wall shear stress (WSS)20

has been identified as the key factor for atherosclerosis21

initiation in the past decades [1]. The homogeneity of the22

WSS distribution is particularly disturbed in curvatures and23

bifurcations. The blood flow patterns which accompany24

strongly inhomogeneous stress distributions were discovered25

to cause atherosclerosis [2]. The primary goal of the present26

study is to correlate geometrical properties of vascular bifur-27

cations with the associated WSS distributions. Presuming that28

homogeneous hemodynamic stimulations exist within healthy29

natural vascular structures, numerically optimized geometries30

with regard to the shear stress distribution should resemble31

physiological geometries of vascular branchings. In terms of32

tissue engineering and the manufacturing of endothelialized33

artificial vascular networks, design rules can be derived from34

such optimized geometries in order to ensure physiological35

stimulation and to prevent clogging.36

A. Role of endothelium37

In natural vascular systems endothelium plays an important38

role in the supply of the surrounding tissue. The endothelium39

is the inner cell layer of every blood vessel and controls the40

exchange of oxygen, nutrients, and metabolic waste products41

between the blood and the tissue. It also supports the wound42

healing by the formation of clots [3]. In addition, endothelium43

participates in angiogenesis which is the natural mechanism of44

blood flow regulation by sprouting of new vessels from existing45

ones. The angiogenesis is stimulated by vascular endothelial46

growth factor (VEGF) proteins which are produced by cells47

if their oxygen supply decreases [4]. Because of the limited48

oxygen diffusion range of 20 to 100 μm in tissue the vascular49

network is continuously reorganizing itself in order to supply50

all surrounding tissue cells properly [5]. The prosperity of51
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endothelial cells depends on mechanical stimulation caused by 52

flow induced WSS. Essential biochemical reactions and gene 53

expressions of the endothelium occur in response to a WSS 54

of about 1 to 5 Pa [6,7]. In healthy vascular vessels the shear 55

stress perceived by the endothelium is considered to lie within 56

this range. Low WSS (<1 Pa) coincides with prolonged flow 57

residence times which can cause plaque deposition leading 58

to flow restrictions and diseases such as atherosclerosis [2]. 59

The endothelial response to WSS larger than 1.5 Pa induces 60

a gene expression which protects against mechanisms leading 61

into atherosclerosis [2]. It also hinders platelet adhesion by 62

secretion of prostacyclin and nitric oxide [8]. Thus the lowest 63

occurring WSS in a blood vessel should exceed 1 Pa or 64

preferably even 1.5 Pa. Figure 1 shows a simplified vascular 65

branching where the contour lines denote the shear stress. 66

While the WSS along the right branch is rather homogeneous 67

and above 1.5 Pa, the left branch shows a distinct region of 68

low WSS. The latter region bears a risk to become pathological 69

which can be explained by the above mentioned shear stress 70

requirements. In summary, the occurrence of atherosclerosis 71

can be considered as a consequence of an inappropriate 72

vascular geometry leading to regions of low WSS. 73

B. Optimal vascular networks 74

An early approach to derive geometric properties of a 75

vascular network from fundamental principles is based on the 76

minimization of the sum of the energy required for pumping 77

blood through the network and the energy required for the 78

metabolic supply of the blood volume. This optimization yields 79

Murray’s law, a formula for the relation between the radius R0 80

of the parent vessel and the radii R1,2 of the daughter vessels 81

at branching points [9]: 82

R3
0 = R3

1 + R3
2 . (1)

Murray’s law was successfully applied to describe the layout 83

of natural vascular systems with several branching levels [10]. 84

Kassab et al. showed that Murray’s law in combination with 85

a constant pressure gradient model yields a constant WSS 86
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FIG. 1. Shear stress distribution in Pa in a schematic vascular
bifurcation.

throughout the system [11]. Kamiya et al. developed a more87

detailed formulation for an optimal vascular tree structure than88

Murray by taking into account the hydrodynamic resistance89

of the system as well as pressure boundary conditions at90

chosen inlet and outlet positions [12]. In combination with91

a volume minimization routine, optimal positions of the92

branching points were obtained. Several recent studies applied93

these optimization approaches to large vascular structures. In94

Ref. [13] three-dimensional vascular trees were simulated. In95

Ref. [14] a routine was developed to build vascular structures96

within concave volumes such as the free wall of the left97

ventricle of the heart. The growth of blood vessels caused98

by the demand of oxygen is considered in Ref. [15]. This99

study contains an iterative scheme for vascular structure100

development based on a user defined demand map. All of the101

mentioned studies have in common that they assume a network102

consisting of straight tubes between the branching points. The103

actual geometries of vascular branchings are neglected and,104

hence, no details on the flow field and the related stimulation105

of the endothelium due to the WSS can be provided. As106

pathological flow conditions at bifurcations (e.g., low WSS and107

long residence times) can dramatically reduce the functionality108

of a vascular system, it is sensible to ask whether optimal109

branching geometries with respect to endothelium stimulation110

and occlusion avoidance exist. One objective of the current111

study is to answer this question.112

C. Experimentally observed branching geometries113

Kassab et al. analyzed the morphometry of the coronary114

arterial and venous trees of four pig hearts [16,17]. The115

purpose of this study is to assign vessel orders based on the116

diameter. The authors argue that the diameter distribution is117

important for the hemodynamic properties within the vascular118

structure. The idea of this work was to characterize the full119

vascular tree of a low number of structures in great detail120

rather than many structures marginally. Those morphometric121

measurements are performed with a silicone elastomer casting122

method. A database of diameter and length information of123

the full vascular tree is determined. Within their study they124

provide a connectivity matrix which resembles the vascular125

tree and categorize each vessel with an order number. Thus, for126

every bifurcation, the vessel order of the parent branch and its127

daughter branches is characterized by their spatial dimensions. 128

The authors found that 98% of the arterial branchings are 129

bifurcations and only 2% are trifurcations. The number of 130

vessels assigned to each vessel order is summarized in the 131

obtained vascular tree. It should be noted that for the flow 132

pattern within a bifurcation the branching angle is a key 133

parameter besides the vessel diameters. 134

Cassot et al. created a database in which nearly 10 000 135

bifurcations of cortical vascular trees were analyzed [18]. Their 136

data provides a statistical basis for two quantities of interest 137

of the two daughter vessels of a bifurcation, i.e., the ratio of 138

their cross-sectional areas and the branching angle between 139

them. Concerning Eq. (1) the study confirms an exponent 140

of approximately 3 for larger vessels while an exponent 141

tending towards 4 is found for smaller vessels. Based on 142

these results the authors argue “that such a law (and perhaps 143

the optimal design principle that underpins it) is ultimately 144

unable to account for the true complexity found within the 145

architecture of microvascular branching”. Taking into account 146

all bifurcations, the area ratio was found to be 0.686 ± 0.213 147

and the branching angle 103.8◦ ± 27.4◦. These values will be 148

compared with the results obtained in the present study. 149

D. Tissue engineering and artificial vascular vessels 150

Currently, the lack of donor organs limits the potential 151

of transplantation medicine. In vitro grown tissue could be 152

a solution for this shortage. According to Ref. [19], the key 153

challenge in tissue engineering is the existence of perfusable 154

vascular networks in order to supply the cultivated cells on 155

a sustained basis with oxygen and nutrients. Cells rapidly 156

develop necrotic cores if their supply is insufficient. Thus the 157

development of artificial vascular systems with physiological 158

functionality would be a breakthrough for in vitro cell 159

cultivation. Recent publications demonstrate the possibility 160

of angiogenesis in artificial vascular systems [20,21]. En- 161

dothelium layers could be settled in artificial structures built 162

of biocompatible materials. These results are milestones in 163

the fabrication of transportation systems for nutrients and 164

metabolic by-products. However, the long-term functionality 165

of artificial vascular systems remains unproven. The design 166

rules for vascular branchings obtained in the current study 167

could be an important building block for such artificial supply 168

networks. 169

The paper is organized as follows. The next section 170

illustrates the geometry of the branching model, the compu- 171

tational fluid dynamics methods which are applied, and the 172

analyses which are conducted. The obtained results are then 173

demonstrated and discussed in comparison to experimental 174

findings. Finally, concluding remarks and an outlook are given. 175

II. METHODS 176

A. Model geometry 177

The present study takes into account a single bifurcation 178

under physiological flow conditions. Figure 2 provides a brief 179

schematic overview of all parameters of the observed system. 180

These are the fluid’s velocity �u, density ρ, and viscosity η, the 181

radius of the parent vessel R0, the radii of the daughter vessels 182

R1,2, and the branching angle α. 183
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FIG. 2. Parameters and model description.

Blood vessels are self-similar at different length scales [22].184

Thus, within a certain range of vessel diameters, vascular185

branchings of different size show comparable flow profiles.186

Similarities in flow patterns are, on one hand, limited for187

small vessels by the ratio between the lumen diameter and the188

diameter of the red blood cells and, on the other hand, for big189

vessels by high Reynolds numbers due to the laminar-turbulent190

transition. Those limiting conditions are found in capillaries191

and the aorta, respectively. For the course of this study we192

reduce the geometry of each bifurcation into its asymmetry193

ratio and its branching angle α. The asymmetry ratio is defined194

as195

R+ = R1

R2
, (2)

where R1 is the radius of the smaller and R2 of the larger196

daughter vessel (compare Fig. 2). According to the findings197

of Cassot et al. [18] there exists no single exponent of 3 for198

the relation of the branch radii, i.e., Eq. (1). The exponent199

is rather found to depend on the vessel size and the type of200

bifurcation. Even though the exponent might not be exactly201

3 for every observed bifurcation, Murray’s law is assumed to202

provide a reasonable average. This assumption is based on the203

findings of a series of studies which confirm this exponent204

[23–25]. Thus, for the models analyzed here, an exponent of205

3 has been used in Eq. (1). The radii of the daughter branches206

for asymmetry ratios R+ in the range from 0.25 to 1.0 are207

shown in Fig. 3. Note that the radius of the smaller branch208

increases stronger with R+ than the radius of the larger branch209

decreases. At a ratio R+ = 1.0 both daughter branch radii are210

equal by definition. Figure 4 shows the fluid domain used for211

the numerical simulations of the flow in the bifurcation. Based212

on the method proposed in Ref. [18], the branching angle is213

defined as follows: the daughter branches are considered to214

lead into straight extensions indicated by the dashed lines in215

Fig. 4. Within each daughter branch two circles touching the216

vessel walls are placed. The center of one of these circles217

lies within the simulated fluid domain and the center of the218

other circle out of the domain. The vectors connecting the219

center points of the circles in both branches span the branching220

angle α.221

FIG. 3. Branch radii as a function of the asymmetry ratio.

B. Computational fluid dynamics (CFD) approach 222

A numerical model is built in two dimensions which takes 223

into account the blood flow and the elastic response of the 224

vessel wall. Deformations of the fluid domain are calculated 225

with an arbitrary Lagrangian Eulerian (ALE) scheme [26]. 226

This scheme treats the fluid domain by conserving mass 227

and momentum in the way presented in Eqs. (3) and (4), 228

∇ · �u = 0, (3)

ρ

(
∂ �u
∂t

+ �u · ∇�u
)

= −∇p + η��u. (4)

The symbols �u, t , ρ, p, and η are the velocity, time, density, 229

pressure, and viscosity, respectively. The equations model an 230

incompressible fluid which is considered in the present work. 231

On the right-hand side of the Navier-Stokes equation (4) the 232

divergence of the stress tensor is expressed as the sum of the 233

pressure gradient and the Laplacian of the velocity multiplied 234

by the viscosity. The Laplacian of the velocity is related to the 235

divergence of the strain rate tensor D via ��u = 2∇ · D. 236

FIG. 4. Sketch of the fluid domain including the definition of the
branching angle. The symbols are defined in the text.
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The momentum equation for the structural problem of the237

solid domain (vessel walls),238

ρ
∂2 �x
∂t2

= ∇ · σ , (5)

evolves the displacement �x according to the Cauchy stress239

tensor σ . We distinguish between a stiff and an elastic240

approach. For stiff walls, the displacement is zero and the241

complete problem reduces to the fluid dynamics equations (3)242

and (4). For elastic walls, linear elasticity is applied by Hooke’s243

law, σ = C ε, where C denotes the elasticity tensor and ε is244

the linearized strain tensor,245

ε = 1

2
(∇�x + (∇�x)T ). (6)

Hooke’s law can be simplified for isotropic material behavior246

as follows:247

σ = Y

1 + ν
ε + Yν

(1 + ν)(1 − 2ν)
(∇ · �x)I, (7)

where Y, ν, and I denote Young’s modulus, Poisson’s ratio,248

and the unit tensor, respectively. Young’s modulus is set to249

1.2 MPa and Poisson’s ratio to 0.3. A no slip condition is250

applied at the interface of the fluid and solid domain. The251

coupling between both domains is realized by the equivalence252

of mechanical stresses and displacements.253

The Navier-Stokes equations are solved for a single phase254

fluid with complex rheological properties in order to model255

blood. The interactions of red blood cells lead to a shear256

thinning behavior of the viscosity with increasing shear rate γ̇257

[27,28], which is applied in the present model in the form of258

the Carreau-Yasuda formulation [29]:259

η(γ̇ ) = η∞ + (η0 − η∞)[1 + (λγ̇ )a]
n−1
a , (8)

with the parameters η0 = 0.16 Pa s, η∞ = 0.0035 Pa s,260

λ = 8.2 s, a = 0.64, and n = 0.2128 determined experimen-261

tally [30]. The blood density is set to ρ = 1000 kg/m3. At262

the vessel walls a no slip boundary condition is applied. The263

flow resistance depends on the actual bifurcation geometry.264

The resistances of different bifurcations will be compared by265

applying a pressure boundary condition and leaving the mass266

flux variable.267

The parent vessel has a radius of R0 = 500 μm which268

represents vessels ranging from arterioles to small arteries.269

A physiological, time dependent pressure for small arterial270

vessels is applied at the inlet of the fluid domain, i.e., position271

A in Fig. 4. The outlet condition is implemented as proposed272

in Ref. [31]. This approach consists of a solution for the outlet273

area, pressure, and volume flux, which avoids nonphysiologi-274

cal wave reflections. The outlet boundary condition is solved275

on a one-dimensional domain extending from each daughter276

branch. Therefore, the outlet is marked at position E in Fig. 4277

in a reasonable distance from the two-dimensional simulation278

domain.279

The Reynolds number Re of the studied system is defined280

as281

Re = 2R0ūρ

η∞
, (9)

with the time averaged characteristic velocity ū evaluated at 282

the center of the vessel at the bifurcation entrance, i.e., at 283

position C in Fig. 4, where the radius of the parent vessel 284

starts to increase. The chosen model parameters and boundary 285

conditions yield a Reynolds number of around 60 which is 286

in agreement with the physiological observations of small 287

arteries [32]. All numerical simulations within the present 288

study were conducted using the finite element method solver 289

Elmer. Further model and implementation details can be found 290

in Ref. [33]. 291

C. Wall shear stress analysis 292

We consider the WSS as the key parameter for the 293

optimization of vascular branchings due to its physiological 294

relevance for endothelium stimulation. Figure 1 shows the 295

shear stress distribution in an asymmetric bifurcation. In this 296

case, the WSS lies largely in the range between 1.5 and 2 Pa. 297

At the corner of the bifurcation the WSS is somewhat elevated 298

(>2 Pa), but still within the healthy range [6,7]. However, at 299

the position of greatest curvature of the smaller branch, the 300

WSS drops below 1 Pa which is a pathological situation. A 301

low WSS value (i.e., <1 Pa) which often occurs in regions 302

of stasis or stall is related to an increased plaque formation 303

[34]. The WSS minimum occurring at the smaller branch 304

curvature is identified as the major optimization parameter 305

within this study. Its dependence on the bifurcation geometry is 306

analyzed. The approximate location of lowest WSS is indicated 307

schematically for geometries with varied asymmetry ratios R+
308

and branching angles α in Fig. 5 by the arrows. Note that 309

the location is dependent on the combination of those two 310

geometry parameters. 311

A characteristic point in time t0 is chosen for the WSS 312

comparison between different geometries. t0 is the time when 313

the overall shear stress in the system is maximal. This may 314

occur at slightly different absolute times depending on the 315

actual geometry. Figure 4 illustrates the spatial positions where 316

the analysis takes place at t0. Position C denotes the bifurcation 317

inlet where the parent branch flux is discussed. Since the vessel 318

widening and contraction during a flow pulse influence the 319

flux, the maximum vessel wall displacement �L is evaluated. 320

FIG. 5. Locations of minimum WSS for different bifurcation
geometries.
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FIG. 6. Bifurcations with velocity and shear stress contour lines for different asymmetry ratios R+ and branching angles α.

The maximum displacement occurs around position B. Around321

position D the minimal WSS occurs as indicated by the322

arrows in Fig. 5. The aim of this study is the identification of323

combinations of R+ and α yielding a WSS distribution which324

lies completely in the range of nonpathological values. In order325

to do so, the minimal WSS is observed for different geometries326

under comparable flow conditions. The bifurcation geometry327

which yields the largest minimal WSS in comparison with the328

other geometries is considered to be optimal with respect to329

the avoidance of pathological flow conditions.330

III. RESULTS331

A. Wall shear stress332

Figure 6 shows how the distributions of the velocity333

magnitude and the WSS are affected by the bifurcation334

geometry. Figure 5 highlights the pathological locations where335

the minimal WSS according to the analysis described in336

Sec. II C occurs. All bifurcation geometries which are studied337

are depicted as circles in Fig. 7 as a function of the asymmetry338

ratio R+ and branching angle α. A Kriging metamodel [35] is339

utilized to approximate the WSS as a continuous function of340

the two geometry parameters. The present approach combines341

a local Kriging predictor with a global polynomial least square342

fit. The contour lines in Fig. 7 represent combinations of R+
343

and α which yield equal minimal WSS values. The result344

of the metamodel appears to be roughly symmetric with345

respect to the observed range of branching angles α with a346

line of symmetry at about 90◦. However, with respect to the347

range of asymmetry ratios R+ the WSS result is noticeably348

divided into two subdomains. Within asymmetry ratios below349

R+ = 0.5 the WSS increases with increasing R+ but hardly 350

any dependency on the branching angle is observed. Above 351

R+ = 0.5 a distinct WSS maximum can be observed for 352

R+ = 0.769 and α = 90.7◦. The metamodel predicts a value of 353

1.78 Pa for the WSS maximum. Since the maximum is obtained 354

by a Kriging approach, its value is verified by an additional 355

sample point which has not been used previously to calibrate 356

the metamodel. The verification simulation yields 1.65 Pa 357

which confirms the optimum with reasonable precision. It 358

can be summarized that an optimal bifurcation geometry is 359

identified with respect to the WSS analysis. 360

B. Mass flux 361

Although the optimal branching geometry has been iden- 362

tified, the reason for its shape is not yet clear. Therefore, the 363

mass fluxes are studied in detail for the different branching 364

FIG. 7. Lowest WSS in Pa at t0 (see text) as a function of the
bifurcation geometry. Branching angle is expressed in degrees.
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FIG. 8. Combined delivery ratios through the daughter branches
for different bifurcation geometries.

angles and asymmetry ratios. We introduce the delivery ratio365

φi as a quotient of the actual flux through the daughter branch366

Qi and a reference flux through the parent branch Q0,367

φi = Qi

Q0
. (10)

The reference flux Q0 is taken at time t0 for the bifurcation368

with the properties R+ = 0.75 and α = 80◦. Figure 8 shows369

the total delivery φ1 + φ2 through the daughter branches.370

Below R+ = 0.5 the total delivery shows no pronounced371

dependency on R+. However, around R+ = 0.75 a maximal372

total delivery ratio is observed for both displayed branching373

angles of 80◦ and 115◦. Thus the perfusing flux through374

the bifurcation is significantly higher compared to other375

asymmetry ratios. In addition, the flux through the bifurcation376

with α = 80◦ is significantly higher than for the case of 115◦.377

The mass flux correlates directly with the WSS findings for378

both geometry properties. The resulting WSS depicted in Fig. 7379

is a consequence of the variable perfusion. Of course, the flux380

itself is a function of the local flow resistance for a given381

bifurcation geometry.382

In the following, both delivery ratios φ1 and φ2 are studied383

separately for the tested branching angles and asymmetry384

ratios. In each section, the flux through the daughter branches,385

the vessel wall displacement, and the perfusing flux without386

influence of the wall displacement are analyzed.387

1. Branching angle388

Figure 9 shows the delivery ratios of both daughter branches389

for the range of different branching angles. Below a branching390

angle of about 60◦ the flux is rather independent of the391

branching angle. For larger angles the flux increases. After392

reaching its maximum at around 90◦ the flux decreases again.393

A similar behavior is observed for the WSS in Fig. 7.394

Figure 10 shows the vessel wall displacement within the395

parent branch for the observed range of branching angles. The396

displacement is monotonically increasing with the branching397

angle. For branching angles above 80◦ the displacement398

appears to saturate.399

Figure 11 displays the results of an analysis similar to Fig. 9400

but for a bifurcation with a rigid vessel wall and, thus, �L = 0.401

Both delivery ratios are monotonically decreasing with the402

branching angle. The highest overall flux in a rigid bifurcation403

can be achieved for small branching angles, i.e., <60◦. A rather404

FIG. 9. Delivery ratios through the daughter branches as func-
tions of the branching angle. The asymmetry ratio is constant
at R+ = 0.75.

weak dependency of the delivery ratio on the branching angle 405

is observed in this range. A comparison of Fig. 9 and Fig. 11 406

with the WSS results in Fig. 7 hints that the optimal WSS at 407

around 90◦ is related to the elasticity of the vessel wall. 408

2. Asymmetry ratio 409

Figure 12 shows the perfusion through both daughter 410

branches for the range of studied asymmetry ratios. The WSS 411

for a branch angle of 40◦ is below 1 Pa according to Fig. 7. 412

In the case of α = 40◦ the flux through branch 1 increases 413

while it decreases through branch 2 with increasing asymmetry 414

ratio. This behavior resembles the branch radii variation as 415

shown in Fig. 3. For a branching angle of 115◦ a different 416

dependency on the asymmetry ratio is found. In this case, 417

the flux through branch 2 has no pronounced dependency on 418

R+ for R+ � 0.75, while the flux through branch 1 increases 419

with R+ comparable to the case of α = 40◦. As shown in 420

Fig. 8, the sum φ1 + φ2 is constant for R+ � 0.5, while it 421

has a distinct maximum at R+ ≈ 0.75 due to the high flux 422

through branch 1. For a branching angle of 80◦ the maximum 423

flux through both of the daughter branches is obtained for 424

R+ ≈ 0.75. The combination α = 80◦ and R+ = 0.75 yields 425

the maximum flux sum φ1 + φ2 (see also Fig. 8) as well as 426

the highest WSS of all tested geometries (see Fig. 7). For all 427

branching angles, the flux through branch 2 decreases with the 428

asymmetry ratio for R+ > 0.75. For symmetric bifurcations, 429

i.e., R+ = 1, the delivery ratios do not depend on the branching 430

FIG. 10. Displacement of the parent branch as function of the
branching angle. The asymmetry ratio is constant at R+ = 0.75.
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FIG. 11. Delivery ratios through the daughter branches without
widening of the parent branch. The abscissa denotes the branching
angle. The asymmetry ratio is constant at R+ = 0.75.

angle. Furthermore, the sum φ1 + φ2 is similar for R+ � 0.5431

and R+ = 1 (see Fig. 8).432

Figure 13 depicts the displacement of a bifurcation with a433

branching angle of 115◦ for the studied range of asymmetry434

ratios. The displacement is maximal for R+ ≈ 0.75 which435

also yields the largest flux sum (see Fig. 8). An asymmetry436

ratio larger than 0.75 leads to a decreasing displacement of the437

parent branch. The overall lowest displacement is found for a438

symmetric bifurcation.439

In Fig. 14 the fluxes through the daughter branches are440

shown for a rigid vessel wall, i.e., �L = 0. The highest flux441

sum is found for symmetric bifurcation, i.e., R+ = 1.0. The442

asymmetry ratio of about 0.75 yields the lowest mass flux sum443

in this case, while it yielded the highest flux sum in the case of444

elastic vessel walls (see Fig. 8). Thus the maximization of the445

flux with respect to the branching angle and asymmetry ratio446

is apparently dependent on the vessel elasticity.447

IV. DISCUSSION448

Figures 11 and 14 show that the bifurcation geometry which449

yields the optimal WSS for a rigid vessel differs from the450

geometry obtained for an elastic vessel (see Fig. 7). For a451

rigid vessel, the optimum is a symmetrical geometry with452

the smallest possible branching angle. Thus the elasticity has453

a major influence on the optimal design. In the course of454

this discussion it will be pointed out that this influence of455

elasticity also applies for natural vascular branchings. Due456

to the elastic deformation and the following restoring force457

FIG. 12. Delivery ratios through the daughter branches as func-
tions of the asymmetry ratio.

FIG. 13. Displacement of the parent branch as function of the
asymmetry ratio. The branching angle is constant at α = 115◦.

caused by the vessel wall, the fluid pressure at the bifurcation 458

inlet, i.e., position C in Fig. 4, is higher in comparison to a rigid 459

wall. Therefore, the pressure drop throughout the bifurcation 460

is higher as well. As a consequence, the perfusion through the 461

bifurcation is increased. The counteracting mechanism is the 462

flow resistance within individual branches which reduces the 463

perfusion. 464

In the following, the influences of branching angle and 465

asymmetry ratio are discussed in detail. 466

A. Branching angle 467

The surprising observation is that a distinct optimum of 468

WSS (or total flux) exists with respect to the branching angle. 469

A bifurcation forms an additional resistance for the fluid 470

flowing through the straight parent branch. Increasing the 471

branching angle also increases the resistance experienced by 472

the blood flow. Due to the curved branches the flow momentum 473

is redirected and viscous effects increase the resistance 474

throughout the daughter branches. The fluid is impounded in 475

front of the bifurcation, which leads to a local pressure rise due 476

to the deceleration. For an elastic vessel, the wall displacement 477

�L increases with the pressure rise until it saturates for high 478

branching angles (see Fig. 10). Since the elastic wall eventually 479

restores its initial shape and, thereby, accelerates the fluid, the 480

increase in flux for angles below 90◦ can be explained by the 481

pressure drop over the bifurcation. However, the mass flux in 482

both daughter branches decreases again for branching angles 483

FIG. 14. Delivery ratios through the daughter branches and their
sum without widening of the parent branch. The branching angle is
constant at α = 115◦.
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larger than 90◦ (see Fig. 9). This behavior is caused by the484

saturated wall displacement in combination with the increasing485

flux resistance. In summary, the optimal branching angle is a486

consequence of two counteracting mechanisms: pressure rise487

due to wall elasticity, particularly at the bifurcation entrance,488

and viscous fluid friction due to flow momentum redirection.489

In Fig. 11 it can be seen that for rigid vessel walls490

the optimal mass flux occurs for small branching angles.491

Thus the bifurcation represents simply a fluidic resistance492

which increases with increasing branching angle. Without the493

additional structural response of the elastic vessel wall the494

optimal branching angle of about α = 90◦ does not exist.495

B. Asymmetry ratio496

Due to the changes in diameter (see Fig. 3) the mass flux497

through branch 1 increases, while the mass flux through branch498

2 decreases with increasing asymmetry ratio. An optimal499

asymmetry ratio of about 0.75 is found for a wide range of500

branching angles (see Fig. 7). The vessel wall displacement501

�L is also maximal for R+ ≈ 0.75 (see Fig. 13). The reason502

for the asymmetry dependent displacement can be found by503

analyzing the data presented in Fig. 6. From left to right the504

velocity and shear field for asymmetry ratios R+ of 0.5, 0.75,505

and 1.0 are compared for branching angles of 80◦ and 115◦.506

A low asymmetry ratio means that the diameter of daughter507

branch 2 and the diameter of the parent branch are similar.508

Thus, in the present study, a small asymmetry ratio represents509

basically a curved vessel without stagnation point. The velocity510

field shows that the flow pattern smoothly resembles the511

curvature of branch 2 for R+ = 0.5. Increasing R+ to 0.75512

shifts the position of the branching tip towards the center of513

the geometry and causes the formation of a stagnation point514

for the fluid flow. Figure 14 shows the mass flux in a rigid515

geometry. It indicates that the lowest mass flux occurs for516

R+ ≈ 0.75. This is apparently the asymmetry ratio with the517

highest flow resistance.518

Returning to the case of an elastic vessel, the flow stagnation519

increases the pressure at the bifurcation entrance and, thus,520

the wall displacement �L. As a consequence, an increase in521

maximal mass flux occurs during the tightening phase of the522

vessel. Increasing R+ further towards 1.0 yields a decrease523

in wall displacement as well as a decrease of the combined524

daughter branch mass flux (see Figs. 13 and 8). Taking525

Eq. (1) into account, the total outlet area of the bifurcation,526

π (R2
1 + R2

2), increases with increasing asymmetry ratio. The527

reduced flow stagnation associated with the larger outlet area528

appears to reduce the pressure and, thus, the wall displacement529

at the bifurcation entrance for R+ > 0.75. In summary, the530

competing mechanisms of rising pressure due to enhanced531

flow stagnation and falling pressure due to enlarged outflow532

area yield a distinct optimum of the asymmetry ratio R+.533

Again, the vessel wall elasticity is a key requirement for the534

observed geometry optimum.535

C. Comparison with experimental findings536

The physiological validity of the computational fluid537

dynamic approach is not clear yet. Therefore, the results are538

compared with the findings from Cassot et al. who created539

TABLE I. Experimental findings for branching angle α taken
from Cassot et al. [18].

Vessel nature Parent vessel topological order

Group Arterioles Venules 1 2 3 4

Crebrity 57.7% 42.3% 71.3% 21.7% 6.66% 0.34%
Mean α 108◦ 99◦ 107◦ 97◦ 88◦ 82◦

Standard 28◦ 24◦ 26◦ 28◦ 29◦ 24◦

deviation

a database of bifurcation patterns in the human cerebral 540

cortex based on the analysis of 10 000 samples [18]. Table I 541

summarizes the obtained statistics of the branching angles. 542

It also gives information about the population of the vessel 543

type and the group of vessels. Cassot et al. also analyzed 544

the area asymmetry ratio A1/A2 of the daughter branches. 545

This can be compared to R+ after taking the square root. 546

They observed a mean area asymmetry ratio A1/A2 = 0.686 547

and, thus,
√

A1/A2 = 0.828. In Fig. 15 the mean values and 548

standard deviations for α found for parent vessel orders 1 549

and 4, respectively, as well as the mean value of
√

A1/A2 550

are displayed in comparison to the WSS results from the 551

present study. Only angles for vessel order 1 and 4 are 552

shown because order 2 and 3 are in between. The majority 553

of the experimentally observed geometries are located within 554

the parameter space yielding a WSS >1.5 Pa. The WSS 555

of 1.5 Pa is known for its stimulation of gene expressions 556

which protects against arteriosclerosis and platelets activation. 557

Even if taking the geometries within the standard deviations 558

of parent vessel order 1 and 4 into account, the data points 559

are still within the region of a WSS >1 Pa, which is known 560

to be the minimum for healthy conditions without increased 561

risk of thrombus formation. Thus the experimentally studied, 562

natural bifurcations confirm the numerically found bifurcation 563

geometries which are optimized with respect to the WSS 564

stimulation. The experimentally observed mean asymmetry 565

ratio of 0.828 differs by 7.7% from the numerical optimum 566

of R+ = 0.769 and the observed mean branching angle of 567

102.84◦ differs by 13.3% from the numerical optimum of 568

α = 90.7◦. 569

The spread is within the standard derivation of branching 570

angles of each parent vessel order. Thus a given branching 571

FIG. 15. Comparison of simulation results and experimentally
obtained bifurcation geometries.
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angle cannot be assigned to a unique vessel order within the572

group of arterioles. This geometrical similarity within the573

group of arteriole vessels is utilized to understand the role574

of wall elasticity and WSS on the physiological bifurcation575

pattern by using a simplified arterioles model with a low576

number of geometrical properties.577

D. Model applicability and limitations578

The present work assumes an exponent of 3 in Murray’s law,579

Eq. (1). However, Cassot et al. found a range of exponents for580

Murray’s law for different parent vessel topological orders,581

which are 3.98, 2.73, 2.75, and 2.89 for the vessel orders582

1 to 4, respectively. Therefore, the current simulation model583

geometries are especially comparable to the vessel orders 2,584

3, and 4. The mean branching angle of these vessel orders is585

93.5◦. It differs from the numerically computed optimum only586

by 3.1%. This circumstance suggests that the simulation model587

geometries are appropriate for a range of arteriole vessel types.588

However, the applicability of the simulation model might be589

extended if the exponent in Murray’s law is chosen not to be590

fixed at a value of 3.591

A key factor for the bifurcation geometry is the wall592

elasticity. The assumption of rigid walls would lead to an593

optimal geometry with low branching angles and equal radii of594

the daughter branches. The question arises whether the found595

geometry patterns are also applicable to other vessel types such596

as arteries and capillaries with different wall elasticity. Due597

to the muscles within the vessel walls, arteries are stiffer than598

arterioles. Yet, the flux is higher as well and, thus, it also widens599

the vessel. It is therefore likely that the bifurcation geometries600

of arterioles and arteries share design features, but they do not601

necessarily have the same branching angles and asymmetry602

ratios. In the case of capillaries, the wall stiffness is relatively603

high compared to the flux. The blood pressure on the wall may604

not lead to a significant vessel widening. Thus, in capillaries, it605

is not expected that the elasticity contributes to the geometry of606

the bifurcations. This should lead to low branching angles and607

rather symmetric bifurcations. An experimental study would608

be required to verify this hypothesis.609

The present study shows that details of the bifurcation ge-610

ometry of arterioles are obtained by optimizing the mechanical611

stimulation of the endothelial cells at the vessel walls due to612

the WSS. However, for the description of a complete vascular613

tree the distribution of vessel diameters and the positions of614

bifurcations are required. These quantities cannot be obtained615

by a WSS optimization. They require an optimization of the616

energy balance of the system. Thus the present observations on617

the length scale of individual bifurcations do not contradict the618

idea of optimizing the energy cost function of the vascular tree619

but rather complement it. In other words, different optimization620

principles seem to exist on different length scales.621

V. CONCLUSION622

Computational fluid structure interaction simulations with623

physiological boundary conditions were performed in order624

to study vascular bifurcations. The physiologically significant625

WSS in a bifurcation was analyzed and the homogeneity of the626

WSS was the subject of a geometrical optimization procedure.627

The geometrical details of a bifurcation were represented by 628

two dimensionless parameters, namely the radius asymmetry 629

ratio of the daughter branches and the branching angle between 630

them. A design of experiments approach was used in order to 631

keep the numerical effort as small as possible while preserving 632

its predictive power. 633

With this simulation model we were able to describe the 634

fluid dynamics and solid mechanics processes which influence 635

the geometry of an optimal bifurcation. A range of branching 636

angles and asymmetry ratios yielding physiological WSS 637

conditions were identified. The optimal geometry could be 638

validated by comparison with the experimental data of 10 000 639

natural bifurcations. 640

A. Impact on clinical diagnostics 641

Bifurcations are known as the initial point for vascular 642

diseases, such as thrombus formation and atherosclerosis, due 643

to pathological flow conditions. However, the detection of 644

growing occlusions by measuring the modified blood flux 645

requires an advanced stage of the disease. Hence state of 646

the art clinical diagnoses could be improved by an earlier 647

identification of atherosclerosis. With the findings of the 648

present study the question arises whether the detection of 649

pathological bifurcation geometries may lead to an earlier 650

diagnosis of vascular diseases. Instead of analyzing the blood 651

flow to identify occlusions, it might be reasonable to analyze 652

branching geometries in the first place since those change prior 653

to the mass flux. Pathological regions could be detected before 654

occlusions or even reductions in the blood flow are measurable. 655

B. Impact on tissue engineering 656

Artificial vascularization is one of the key challenges in 657

tissue engineering. It is possible to build artificial vascular 658

structures based on the derived optimal bifurcation geometries 659

using additive manufacturing techniques. The local bifurcation 660

design can be coupled with existing design approaches for the 661

network structure of vascular systems. In tissue engineering, 662

such vascular networks can then be used to supply cells in large 663

volumes for extended time spans. The cultivation of complex 664

cell structures and organs becomes imaginable since nowadays 665

the missing vascularization is a major bottleneck for those 666

developments. 667

VI. OUTLOOK 668

The present study addresses the shear stress distribution in 669

bifurcations and focuses on its inhomogeneity. A single phase 670

fluid model is utilized to simulate the perfusion of different 671

branching geometries. This model yields a geometrical opti- 672

mum with respect to physiological flow conditions aiming at 673

the avoidance of plaque formation. Even though the WSS has 674

been identified as a major parameter for atherosclerosis, the 675

actual mechanisms on the scale of the suspended particles are 676

not yet fully understood. Hemostasis plays an important role in 677

atherosclerotic initiation [36,37]. Mechanisms such as platelet 678

adhesion occur dependent on the experienced shear stress. 679

Thus a multiphase fluid approach could treat the question 680

in which way platelet adhesion promotes atherosclerotic 681

initiation. 682
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J. A. Lópezd, and A. D. Stroockc, Proc. Natl. Acad. Sci. USA
109, 9342 (2012).

[22] G. West, J. H. Brown, and B. J. Enquist, Science 276, 122
(1997).

[23] G. Hutchins, M. M. Miner, and J. K. Boitnott, Circ. Res. 38, 572
(1976).

[24] M. Zamir and J. Medeiros, J. Gen. Physiol. 79, 353 (1982).
[25] H. N. Mayrovitz and J. Roy, Am. J. Physiol. 245, H1031 (1983).
[26] C. Hirt, Proc. Second Intl. Conf. Numer. Meth. Fluid Dyn. 8,

350 (1971).
[27] S. Chien, S. Usami, R. J. Dellenback, and M. I. Gregersen,

Science 157, 829 (1967).
[28] S. Chien, S. Usami, R. J. Dellenback, and M. I. Gregersen,

Science 157, 827 (1967).
[29] K. Yasuda, Ph.D. thesis, Massachusetts Institute of Technology,

1979.
[30] S. Chien, Red Blood Cell 2, 1031 (1975).
[31] L. Formaggia, J. F. Gerbeau, F. Nobile, and A. Quarteroni, SIAM

J. Numer. Anal. 40, 376 (2003).
[32] R. F. Schmidt, F. Lang, and M. Heckmann, Physiologie des

Menschen (Springer, Berlin, 2010).
[33] P. Raback, M. Malinen, J. Ruokolainen, A. Pursula, and

T. Zwinger, Elmer Models Manual (CSC–IT Center for Science
Ltd., Espoo, Finnland, 2016).

[34] D. Ku, D. Giddens, C. Zarins, and S. Glagov, Arterioscler.
Thromb. Vasc. Biol. 5, 293 (1985).

[35] D. G. Krige, J. Chem. Metall. Min. Soc. S. Africa 52, 119
(1951).
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