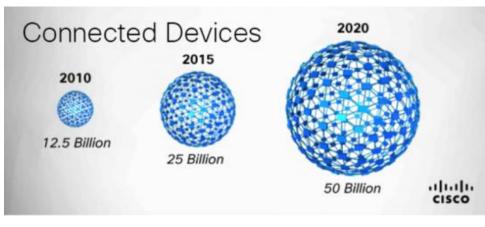

INDUSTRIE 4.0 OPTIMIZATION OF VALUE-ADDING

Prof. Dr.-Ing. Thomas Bauernhansl September 27th, 2016

University of Stuttgart Institute of Industrial Manufactu

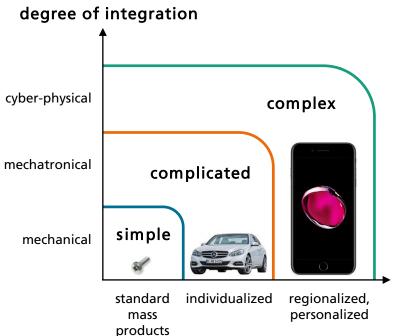


The Digital World of Today and Tomorrow Internet of Everything

Access-Economy – Holistic global integration as base for new business ecosystems

- More than 3 billion people used the internet in 2015.
- 25 billion things were connected in 2015 via internet. In 2020 the number is expected to rise up to 50 billion.
- Internet services are uncounted.
 Example: Apple Apple store: > 1 million apps were downloaded more than 75 billion times
- New economic activities arise:
 - Shared economy
 - Prosumer

Industrie 4.0


source: The Internet of Things, MIT Technology Review, statista, cisco

University of Stuttgart

Change of Product Architecture The ability to manage complexity effectively becomes a key competitive advantage

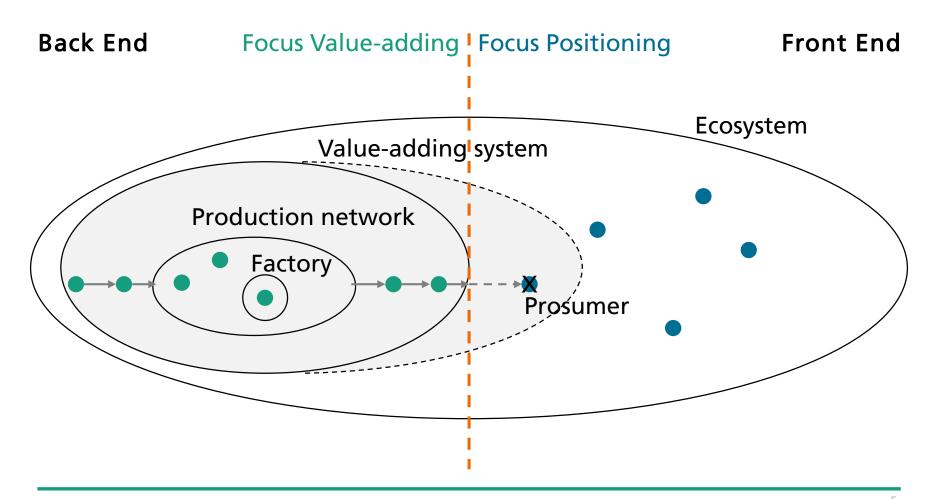
- Minimal complexity, maximum personalization and economies of scale
- Customer is part of the personalization process and pays for it
- Innovation focus: ecosystem, user-friendliness, minimum viable product, context sensitiveness
- Success factor: openness

degree of personalization

sources: Wildemann, H.: Wachstumsorientiertes Kundenbeziehungsmanagement statt König-Kunde-Prinzip; Seemann, T.: Einfach produktiver werden – complexity im Unternehmen senken; Bildquellen: apple.de

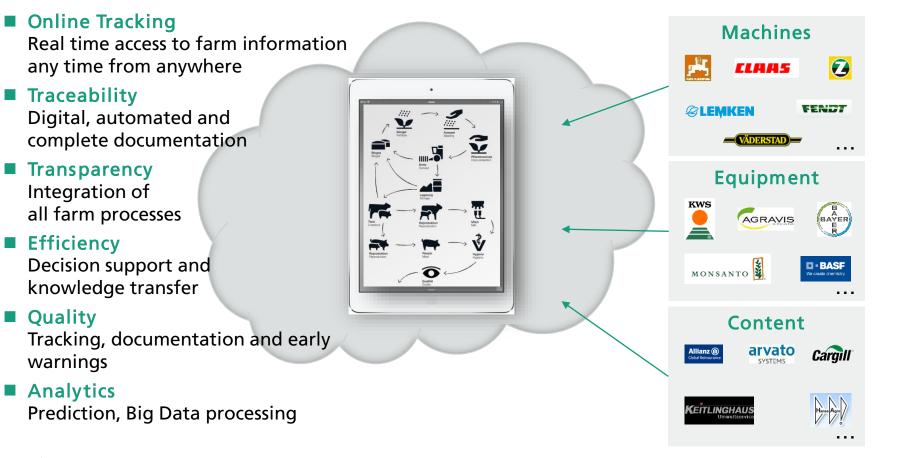
University of Stuttgart Institute of Industrial Manufacturing

and Management IFF


Vertical Integration Core elements of the Fourth Industrial Revolution

Infrastructure	(physical, digital)
Cyber-physical System	
Product Life Cycle (valuable :	= personalized + sustainable)
Intera	ction
Physical Systems (act, sense, communication)	Human Beings (decide, create, communicate)
Reflec	ction
Digital Shadow (Real tin	ne model of everything)
Transa	ction
Software Service (Machine skills, A	apps for humans, Platform services)
Interope	eration
Cloud based Platforms (p	rivate, community, public)
Prescri	ption
Analytics (Big Data	/machine learning)
Commur	nication
Internet of Everything (hur	man beings, services, things)

Horizontal Integration From B2B and B2C to Business to User (B2U)


University of Stuttgart Institute of Industrial Manufacturing

Business Ecosystems

»Farmnet 365« – an agricultural machinery initiative

source: farmnet

University of Stuttgart

The Base: Processing Power and Connectivity Moore and Metcalfe are right and define the scope and value of an enterprise

Connectivity Metcalfe: »The benefit of a communication system increases with the square of the number of participants.«

Performance

Moore: »Computer performance doubles every 18 months.«

sources of pictures: wikipedia.de, ibm.com, abcnews.com

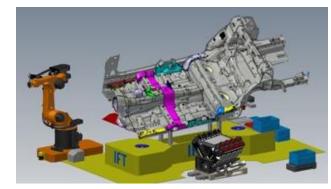
University of Stuttgart Institute of Industrial Manufactu

10 Design Rules for Optimization of Value-Adding

10 Guidelines for the Value-Adding System of the Future How Industrie 4.0 will change automotive production

- Guideline 1: Merge production- and logistic system into one value-adding system Production and logistics systems act as integrated entity for reaching the enterprise goals.
- Guideline 2: Dissolve line and tact depending on product variety and work flow complexity Granularity of structures and processes is adapted to the complexity of the product programs and frame conditions.
- Guideline 3: Set-up processes and structures mobile and scalable Value-adding structures can be re-designed dynamically and economically when needed.
- Guideline 4: Design intelligent systems Self-regulated subsystems contribute with their self-healing abilities to an entire robust system.
- Guideline 5: Make support processes value-adding All support process (i.e. logistics) are either transformed into adding-value support processes or eliminated.
- Guideline 6: Replace material flow with information flow Information is used effectively to reduce waste and stock and to support a downstream customization.
- Guideline 7: Shift process complexity to where it can be handled most efficiently The value-adding systems' boundaries are flexible, integrating customers and supplier as value-add partners in the value-adding system.
- Guideline 8: Represent system elements and processes continuously in a digital shadow Accurate prediction and evaluation of upcoming events is made possible.
- Guideline 9: Optimize production based on data science In complex systems correlation is more important than causality.
- Guideline 10: Focus the human role on design and optimization Humans use their skills to enhance the value-adding and thus optimize the total system.

University of Stuttgart


Guideline 1: Merge Production and Logistic System into one Value-adding System

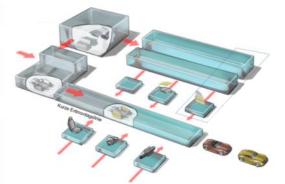
Production and logistics systems act as integrated entity for reaching the enterprise goals.

Fixed production today

- decoupled optimization of production and logistics
- competing target systems
- optimization of production results in higher complexity and higher costs in the logistics
- Separated production and logistics functions to ensure transparency

Changeable production tomorrow

- global optimum instead of individual optimization
- Transparency by self-descriptive systems
- No separation of productive and logistics areas
- Changeable productive and logistics structures


Guideline 2: Dissolve Line and Cycle-time depending on Product Variety and Work Flow Complexity

Granularity of structures and processes is adapted to the complexity of the product programs and frame conditions.

Fixed production today

- fixed chain of singular plant technology
- strict organizational split of section, lines and line sections
- fixed line balance
- fixed just in time sequence
- high efforts in control
- Iow possibility to adapt during product life cycle
- changes interrupt the whole production

Changeable production tomorrow

- universal process modules
- interconnection of modules adapted to the situation
- system-inherent routing flexibility
- self-similar systems-of-systems architectures
- dynamic reconfiguration subsystems
- no separation of body, paintwork, interior assembly
- no dissection of the overall organization

University of Stuttgart Institute of Industrial Manufacturing

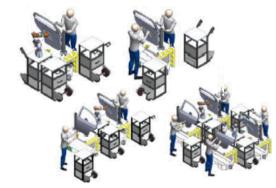
and Management IFF

All Objects in a Factory will be Mobile to a Large Extend Example: swarm intelligence for logistics

source: Fraunhofer IML, Prof. Dr. Michael ten Hompel

University of Stuttgart

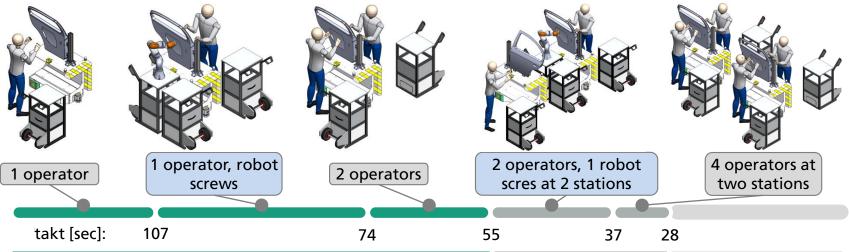
Guideline 3: Set-up Processes and Structures Mobile and Scalable

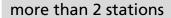

Value-adding structures can be re-designed dynamically and economically when needed.

Fixed production today

- fixed allocation of products to resources and to production tasks
- fixed layout
- safety fences between humans and machines
- fixed and investment-intensive automation
- resources dedicated to one specific operation

Changeable production tomorrow


- individual coordination of sequence and operation
- scalable automation
- human-robot-cooperation
- scaling and flow-orientation layout-adaption to daily production schedule
- system adaption according to availability of resources


University of Stuttgart Institute of Industrial Manufacturing and Management IFF

Output-oriented Configuration of Process Modules Example: Assembly of a door module with HRC in ARENA2036

1 station

University of Stuttgart

Institute of Industrial Manufacturing and Management IFF

Guideline 4: Design Intelligent Systems

Self-regulated subsystems contribute with their self-healing abilities to an entire robust system.

Fixed production today

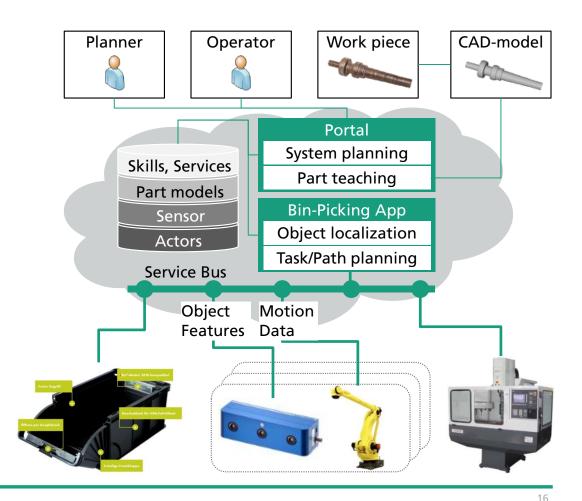
- centralized planning, controlling and optimization
- incorrect master data
- selective operating data recording
- manual commissioning, programming and optimization
- uncertain planning data
- planning based on experience

Changeable production tomorrow

- intelligence shifted to decentralized entities
- plug-and-produce of system-elements into systems of higher complexity
- self-description of CPS: always up-to-date information base
- cloud-based self-control
- changeable functional range of system elements
- virtual commissioning
- automated, self-optimizing operation planning

University of Stuttgart

and Management IFF


Institute of Industrial Manufacturing

Cyber-physical Production Systems Example: Bin-picking as a cloud services

Advantage

- externalization of skills, services, maintenance
- lean robot workcell (»Lean Client«)
- centralized collection of data
 - optimization by statistical learning
- best practice solutions accessible
- displayed at HMI 2015

University of Stuttgart

Guideline 5: Make Support Processes Value-adding

All support process (i.e. logistics) are either transformed into value-adding support processes or eliminated.

Fixed production today

- fix installation of massive material flow systems
- complex supply chain network
- long-lasting planning horizon (forecast)
- high safety stock level
- material staging area is the bottleneck
- low time-share of value-add activities in total throughput time

Changeable production tomorrow

- innovative parallelization of assembly and logistics
- flexibility enabled by flexible material staging
- no material areas in production
- commissioning on tour
- assembly on AGV
- »best-fit« to avoid adjusting processes

University of Stuttgart Institute of Industrial Manufacturing

and Management IFF

Robots will be Mobile, Flexible and Safe Example: SEW Eurodrive – freely navigating DTS (carries the robot for bin picking)

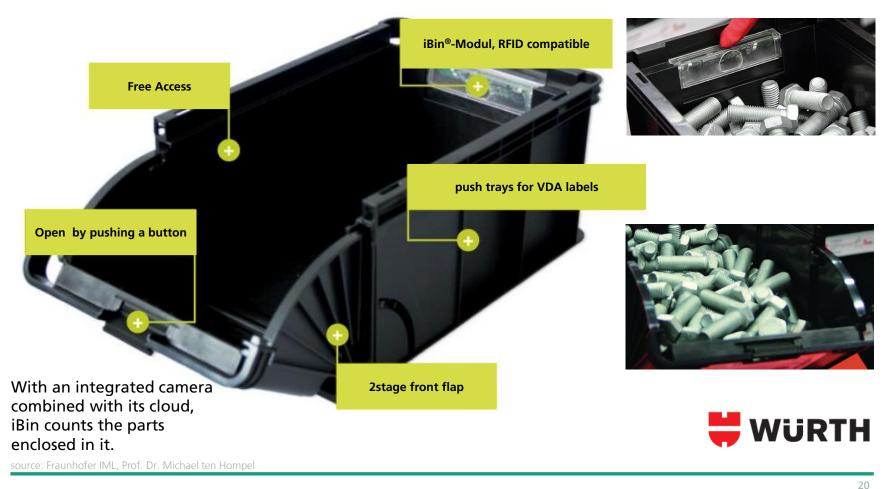
University of Stuttgart

Guideline 6: Replace Material Flow with Information Flow

Information is used effectively to reduce waste and stock and to support a downstream customization.

- information is inflexibly linked to material flow
- lagged information flows
- information Overflow
- high level of buffer inventories to cope with insufficiencies

Changeable production tomorrow


- real-time information access
- information flow adapted to actual needs
- intelligent integration of information
- simulation based on real time data
- product differentiation through software variants

University of Stuttgart Institute of Industrial Manufacturing and Management IFF

All Objects in a Factory will be Smart iBin – Intelligent bins order their filling autonomously

University of Stuttgart

Guideline 7: Shift Process Complexity to Where it can be Handled Most Efficiently

The value-adding systems' boundaries are flexible, integrating customers and supplier as value-add partners in the value-adding system.

Fixed production today

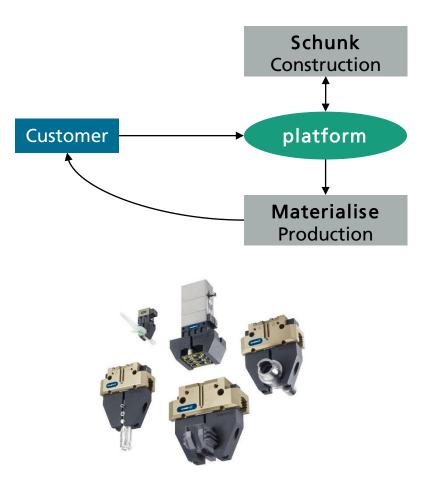
- pre-defined products with plenty variants
- complexity of business processes and production must mainly be handled by OEM
- market risks and coordination efforts at introduction of new product designs
- system integration limited to core partners, due to cost and efforts
- many interfaces, partly standardized
- big networks of many small JIS-plants

Changeable production tomorrow

- active complexity management
- ad hoc configuration of value chains (MaaS)
- complexity of individualization managed by the customer as »Pro-Sumer«
- Open Source, Open Innovation and Co-Creation
- integration of additive manufacturing
- Everything as a service
- Just in Realtime (JIR) delivery

and Management IFF

University of Stuttgart Institute of Industrial Manufacturing



Business Model Innovation Example Schunk eGRIP

Since 2015 suitable grippers can be ordered at Schunk, based on the CAD-Files of the parts that are transported.

- Reduction of order time and guarantee of high benefit for customers through integration of customers in the development process
- Communication via online-platform
- The partner company Materialise takes over the 3D print

Open Source Communities as Enabler Example: ROS for Industrial Robotics

Why Open Source?

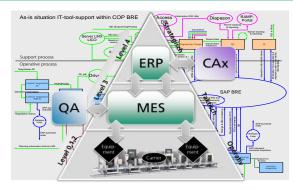
- more than two million free open source software packages (FOSS) available
- robotics research available as bundled software components brings technology push
- increase of critical mass, quality, transferability etc.
- supports business models, especially for SME
- »rapid prototyping« of technologies
- cost advantage 33 % compared to new development¹

source: 1N. Blümlein: Function-based System Engineering for Service Robot Prototypes (Diss Uni Stuttgart, 2013); 22014 Black Duck Software, Inc

University of Stuttgart

and Management IFF

Institute of Industrial Manufacturing


Fraunhofer

IPA

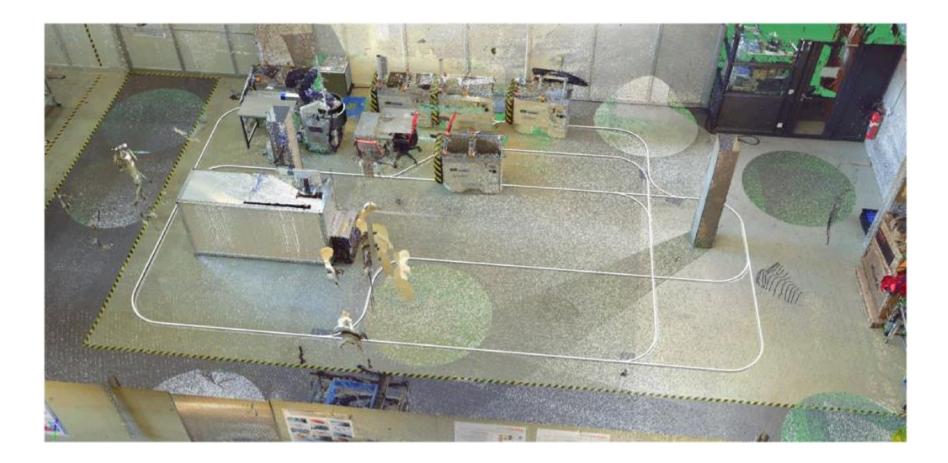
Guideline 8: Represent System Elements and Processes Continuously in a Digital Shadow

Accurate prediction and evaluation of upcoming events is made possible.

Fixed production today

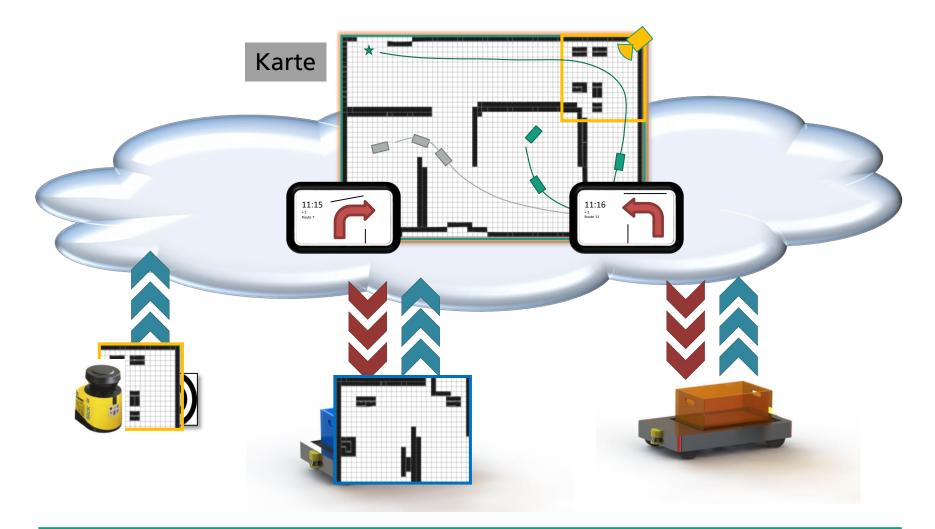
- unidirectional information flow from planning to »physical« operation level
- production planning and control as sequential processes
- inconsistent and incorrect data
- simulation with historic data
- high effort of planning in different planning phases

Changeable production tomorrow


- real-time system model for value adding
- automated maintaining of master and dynamic data
- Iocalization, supervision and forecast based on live data
- production planning based on real situation
- transparency on current state makes prediction of future easier

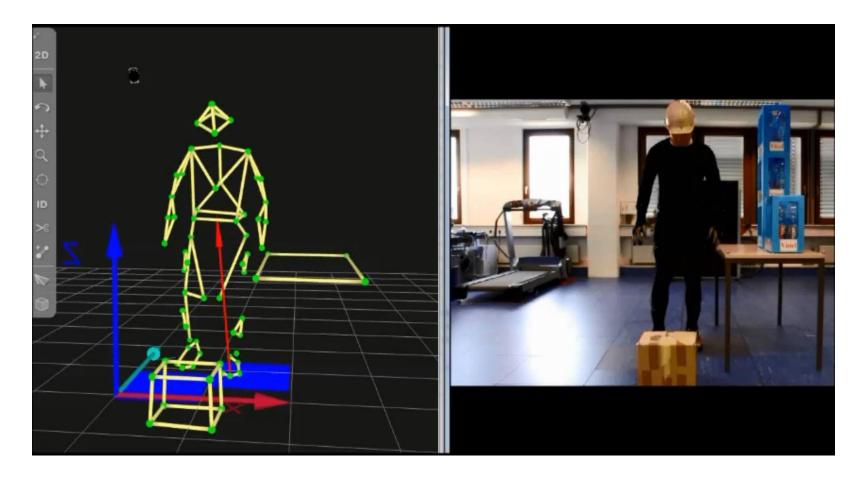
University of Stuttgart Institute of Industrial Manufacturing and Management IFF

All Entities of a Factory have a Digital Shadow Example: material-flow-simulation inside a 3D-point cloud of ARENA2036



University of Stuttgart

All Entities of a Factory have a Digital Shadow Example Cloud Navigation



University of Stuttgart Institute of Industrial Manufacturing

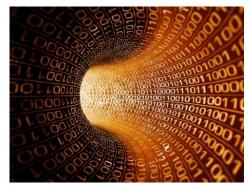
and Management IFF

Fraunhofer

All Entities of a Factory have a Digital Shadow Example: Motion Capturing for feed-back of real processes into planning models

University of Stuttgart

Guideline 9: Optimize Production, Based on Data Science


In complex systems correlation is more important than causality.

Fixed production today

- lean optimization (Six Sigma) of complicated systems
- search for root cause (Causality)
- problem solving by experts
- main question: WHY?

Changeable production tomorrow

- utilization of structured and un-structured data
- analytics with Big Data algorithms
- automated pattern recognition
- search for recipes (Correlation)
- main question: WHAT?

Automated Detection of Dependencies

Between processes and deriving optimization potential


Through

- "minimally invasive" process monitoring via camera without elaborate system integration
- feature-based configuration and recognition of conditions in the videos via adaptive evaluation algorithms

Benefits

- near real-time process analysis with direct assignment of the cause for loss
- detection and quantitative evaluation of potential for process optimization
- permanent transparency through forwarding errors and machine condition to operators and planers

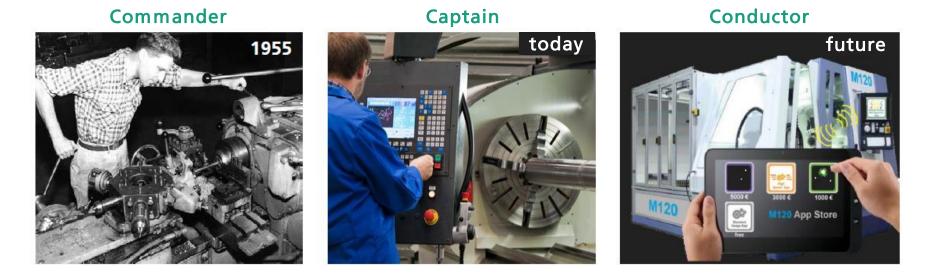
Guideline 10: Focus the Human Role on Design and **Optimization**

Humans use their skills to enhance the value-adding and thus optimize the total system.

Fixed production today

- separation of engineering and operations
- working tact is forced by automated production system
- poor design and optimization autonomy of operators
- routine operations dominating human work

Changeable production tomorrow



- Reverse Taylor: merge engineering and operation
- automation of repetitive and standard work
- human intervenes when deviations occur
- design tasks and coordination are dominating human work

Change in Relationship between Human and Work Environment

- Tasks of production workers and knowledge workers are merging (Revers Taylor)
- Routine tasks and simple technical and general work are taken over by machines
- New forms of cooperation and communication
- Increase of scope for decision making and dispositive tasks
- New qualification demands: digital competence in all areas

source: Fraunhofer IAO

Business potential of Integrated Industry (Industrie 4.0) Specialists expect an increase in overall performance between 30 to 50 % in value creation

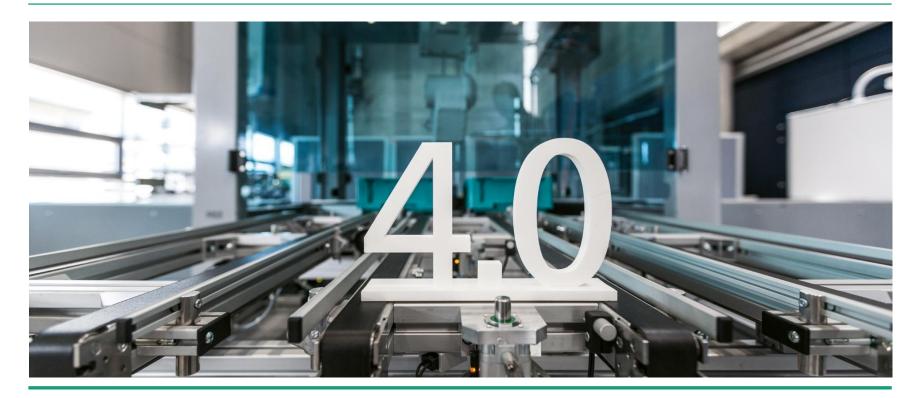
Estimation of potential benefits

Costs	Effects	Potential
Stock costs	Reduction of safety stocksAvoiding Bullwhip and Burbidge effects	-30 to -40 %
Manufacturing costs	 Improving of OEE Process control loops Improvement of vertical and horizontal staff flexibility Use of Smart Wearables 	-10 to -30 %
ogistic costs	 Higher level of automation (milk run, picking etc.) Smart Wearables 	-10 to -30 %
omplexity costs	 Wider span of supervision Reduced trouble shooting Prosumer model Everything as a Service (XaaS) 	-60 to -70 %
Quality costs	Near-realtime quality control loops	-10 to -20 %
Maintenance costs	 Optimization of stock levels State-oriented maintenance (process data, measurement data) Dynamic priorization 	-20 to -30 %

source: IPA/Bauernhansl, Bosch

University of Stuttgart

Institute of Industrial Manufacturing and Management IFF


Pilot project at Bosch: Restructuring

"When the wind of change is blowing, some people build walls, while others build windmills."

(Chinese proverb)

INDUSTRIE 4.0 OPTIMIZATION OF VALUE-ADDING

Prof. Dr.-Ing. Thomas Bauernhansl September 27th, 2016

University of Stuttgart

