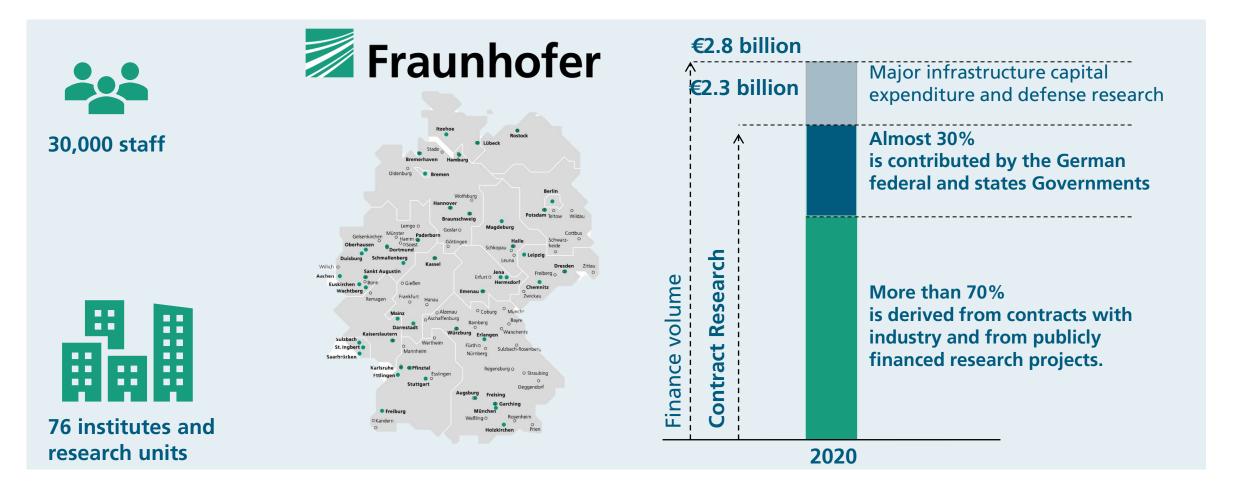
Environmental Improvement Potential of Flexible Polyurethane Foam for Aviation Applications

- A Case Example Analysis

Conference Session on ecoDESIGN and Sustainable Productivity Barcelona 18/10/2022-21/10/2022


> Peter Brantsch, Ana Salles, Ronny Hanich-Spahn, Carl-Christoph Höhne, Thomas Reichert Fraunhofer-Gesellschaft

The Fraunhofer-Gesellschaft at a Glance

Fraunhofer Institute for Chemical Technology ICT

- Established in 1959
- 580 employees
- Total site area 210.000 m²
 → Laboratories, offices, etc. >27.000 m²
- Core Competences
 - Explosives technology, safety and security
 - Polymer Engineering
 - Chemical processes
 - Energy and drive systems

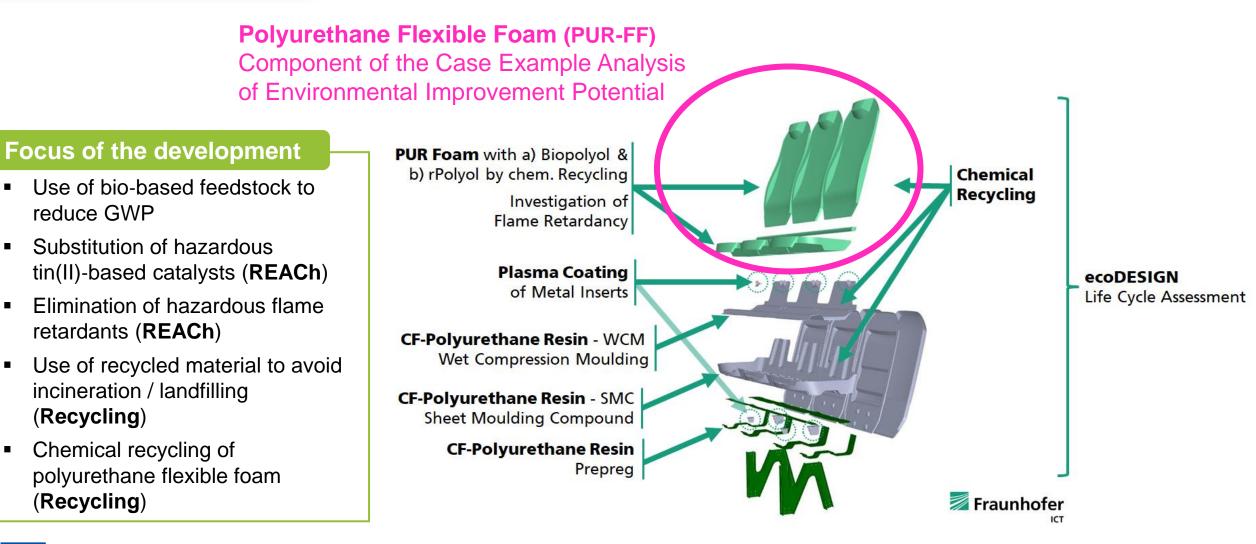
AIR C-2 - Eco-Design FOR AIRFRAME Objectives and WBS

Objectives C-1

Air C Management and Link to the transversal activity (TA) by support to CCM Delegate, to VEES/EDAS mapping, setting up of LCI data collection teams, synthesis reports and management of the outputs to ECO TA

Objectives C-2

to make available to the aerospace industry and its supply chain a set of new technologies reducing the environmental footprint of the aircraft production from the global life cycle point of view

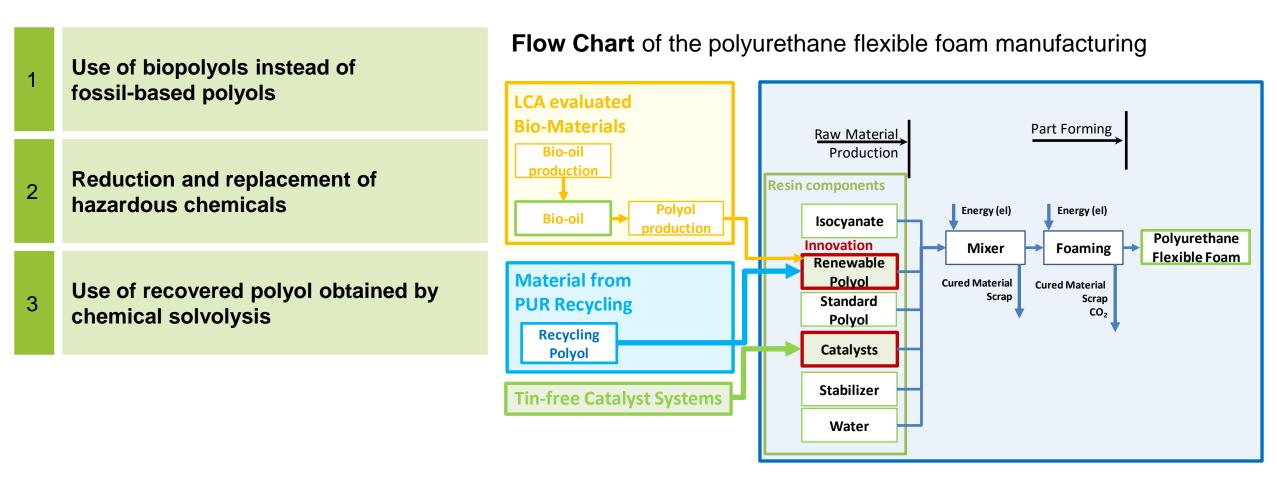

	C - Eco-Design			
	FHG			
WP C-1	WP C-2			
Eco-Design Management and ECO TA Link	Eco-Design for Airframe			
FHG, AIB, DAV, CASA	DAV, FHG, AIB, ecoTECH			
	WP C-2.0	WP C-2.2		
	ecoTECH management	Life Cycle Assessment		
	IAI, ALTRAN (ecoTECH)	FHG, DAV		
	WP C-2.1	WP C-2.3		
	Technology Development	Demonstration		
	DAV, FHG, AIB, ecoTECH	FHG, ecoTECH		
	WP C-2.1.1	WP C-2.3.1		
	Materials and Surface Treatments	Development of a composite aircraft wheel		
	FhG, DAv, ecoTECH	FHG		
	WP C-2.1.2	WP C-2.3.2		
	Manufacturing process	Hybrid Aircraft Seating Structure		
	AIB, FHG, DAV, ecoTECH	FHG		
	WP C-2.1.3	WP C-2.3.3		
	Maintenance and Repair	TP Fuselage Panel Demonstrator		
	AIB, FHG, DAV, ecoTECH	ecoTECH		
	WP C-2.1.4	WP C-2.3.4		
	End of Life	TS Fuselage Panel Demonstrator		
	FhG, DAv, ecoTECH	ecoTECH		
	WP C-2.1.5	WP C-2.3.5		
	LCA data collection	Metallic Fuselage Panel Demonstrator		
	FHG, AIB, DAV, ecoTECH	ecoTECH		
		WP C-2.3.6		
		Biomaterial a/c Interior Demonstrator ecoTECH		

2022 - 2023	
WP C-2.3	
Demonstration	
FHG, ecoTECH, AIB	
WP C-2.3.2	FSD AIR01
Hybrid Aircraft Seating	Cabin Interior
Structure	– Seat Bank
FHG	- Jeal Dank
WP C-2.3.3	FSD AIR02
TP Fuselage Panel	
Demonstrator	Thermoplastic
WP C-2.3.4	Fuselage / Wing
TS Wing Panel	
Demonstrator	FSD AIR03
ecoTECH	Thermoset Wing
WP C-2.3.5	
Metallic Fuselage Panel	FSD AIR04
Demonstrator	Metallic Fuselage
ecoTECH	
WP C-2.3.6 Biomaterial a/c Interior	FSD AIR01
	Cabin Interior
Demonstrator ecoTECH	 Drawer box and
WP C-2.3.7	Handrail
Generic Coating	
Demonstration	
AIB	4

Polyurethane based Hybrid Seating Structure Clean Sky 2 - AIRFRAME ITD (WP C-2)

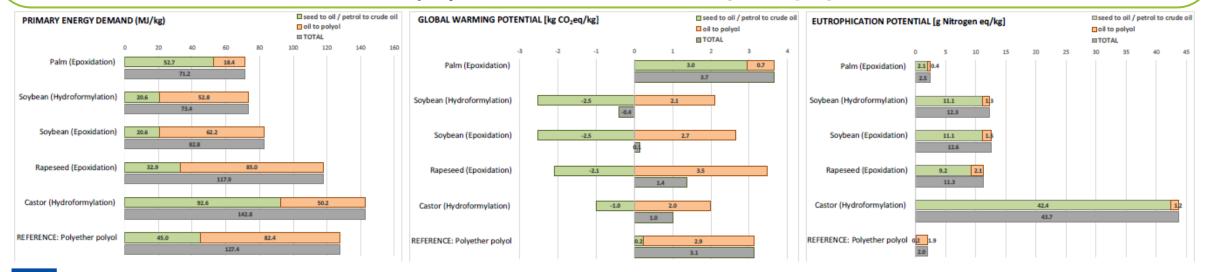
Goals

Perfomance of an eco-screening for the innovative polyurethane flexible foam for aircraft seating cushions based on three perspectives/analysis:


- Different biopolyols instead of fossil-based polyols
- Replacement of hazardous chemicals like heavy metal catalysts and flame retardants
- Use of recovered polyol obtained by chemical solvolysis of flexible polyurethane foam

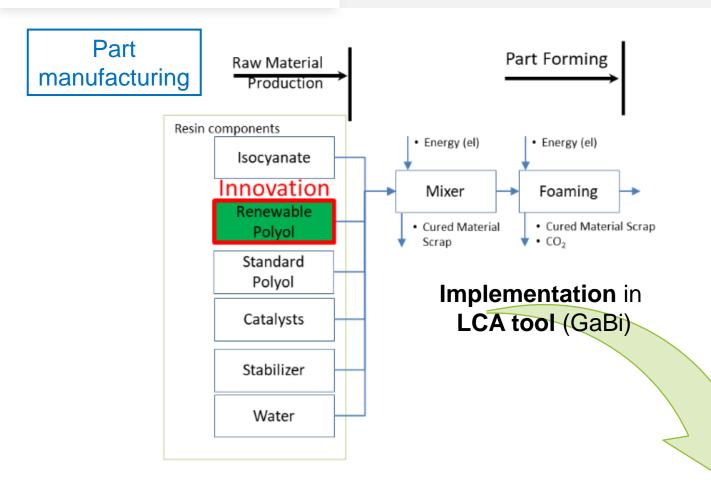
ec

System boundaries analyzed

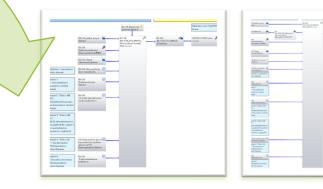


Use of biopolyols instead of fossil-based polyols - Analysis of the Environmental Burdens of Polyols -

Results


- Primary Energy Demand: Palm and soybean polyols show the lowest impact due to high production yield (conversion of raw material into oil) and low energy consumption during the whole production of the polyol.
- Global Warming Potential: Soybean, rapeseed, and castor polyols show lowest impact mainly due to the consideration
 of the carbon cycle during land use change and sowing. Negative GWP values are caused by CO₂ uptake by the crop
 during cultivation. The high impact of palm oil is a consequence of deforestation, especially by rainforest burning.
- Eutrophication Potential: Palm polyol shows lowest impact due to low consumption of fertilizer during cultivation.
 Control Contrelation Control Control Control Control Control Control Cont

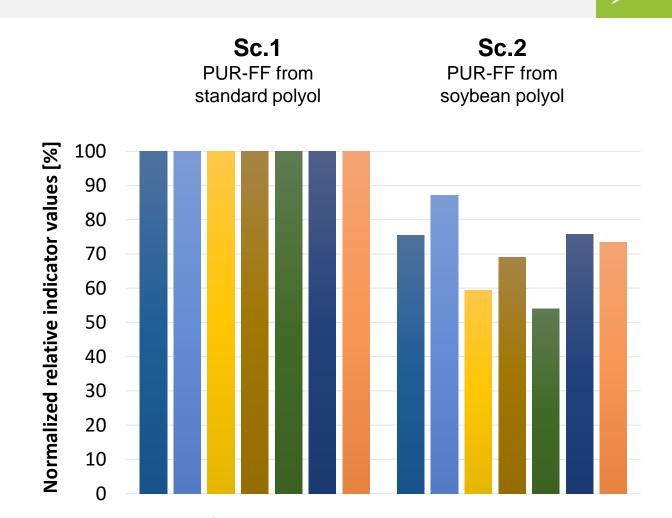
CO/ DESIGN


Use of biopolyols instead of fossil-based polyols - Analysis of the Environmental Burdens of PUR-FF -

Scenarios for Analysis

Parameter	Variation	
1. Material	 Fossil based polyol Soybean based polyol 	
2. Manufacturing	1. PUR foaming	

#	Scenario name
Sc.01	Polyurethane Flexible Foam made from
	standard polyol (non-renewable) [1.1 + 2.1]
Sc.02	Polyurethane Flexible Foam made from
	soybean-based polyol [1.2 + 2.1]


CO/ DESIGN

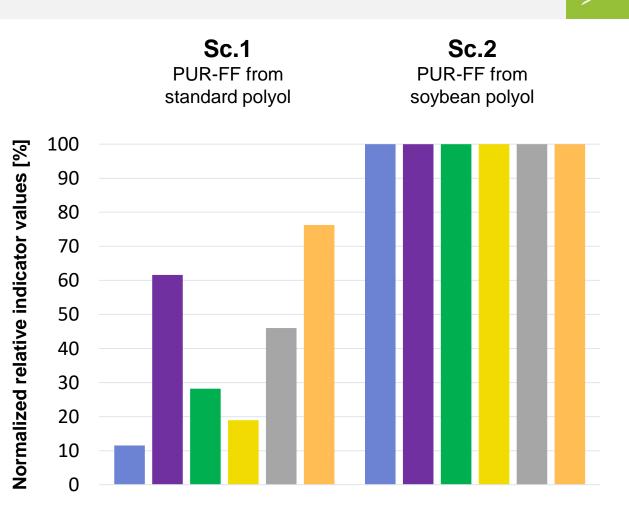
Use of biopolyols instead of fossil-based polyols - Analysis of the Environmental <u>Benefits</u> of PUR-FF -

- CML2001 Aug. 2016, Global Warming Potential (GWP 100 years) [kg CO2 eq.]
- PED Primary Energy Demand [MJ] (Indicator of energy resources)
- CML2001 Aug. 2016, Terrestric Ecotoxicity Potential (TETP inf.) [kg DCB eq.]
- USEtox 2.12, Human toxicity, cancer (recommended and interim) [CTUh]
- USEtox 2.12, Human toxicity, non-canc. (recommended and interim) [CTUh]
- DALY EI99, EA, Human health, Respiratory (organic)

CML2001 - Aug. 2016, Abiotic Depletion (ADP elements) [kg Sb eq.]

 Main benefits are mainly driven by less energy consumption during the bio-polyol production

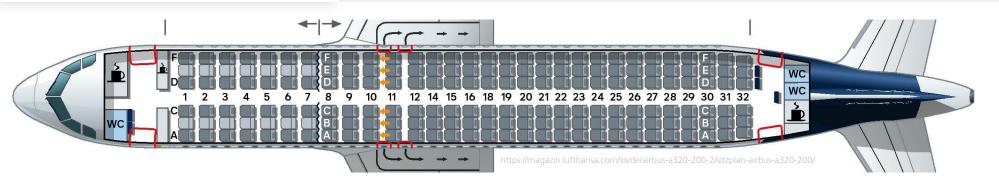
eca



Use of biopolyols instead of fossil-based polyols - Analysis of the Environmental <u>Burdens</u> of PUR-FF -

CC DESIGN

Water pollution [m3]


- CML2001 Aug. 2016, Freshwater Aquatic Ecotoxicity Pot. (FAETP inf.) [kg DCB eq.]
- LANCA v2.5, Biotic Production Loss Potential (Occupation) [kg]
- LANCA v2.5, Physicochemical Filtration Reduction Potential (Occupation) [mol*a]
- CML2001 Aug. 2016, Eutrophication Potential (EP) [kg Phosphate eq.]
- CML2001 Aug. 2016, Ozone Layer Depletion Potential (ODP, steady state) [kg R11 eq.]

 Main drivers of environmental burdens are the land use change for the bio-material plantation and water consumption during its cultivation

Reduction and replacement of hazardous chemicals - Impact of Hazardous Materials on Aircraft Fleet Level -

Assumption for A320:

- 6 kg PUR Foam per Seating Structure
- approximately 60 Seating Structures per a/c
- 6x exchange of all Seating Structures per a/c life time
- \rightarrow 2 t PUR Foam per a/c over life time

Global: **35,076 t PUR-FF** per A220/320 fleet

	A300/A310	A220/A320	A330/A340/A350	A380	Total
Total orders	816	16239	3103	251	20409
Total deliveries	816	10139	2333	248	13536
Aircraft in fleet	287	9562	2089	243	12181

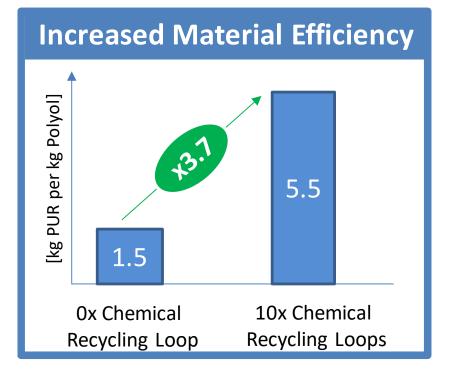
https://www.airbus.com/aircraft/market/orders-deliveries.html (August 2021)

Hazardous Materials

Tin(II) Catalyst Typically 0.1 % tin(II) catalyst in an a/c PUR foam formulation: Assumed to be **neglectable** in a typically LCA study!

35 t Tin(II) Catalyst Savings

Flame Retardant


Typically 5-10 % Flame Retardant in an a/c PUR foam formulation:

1,750-3,500 t Flame Retardant Savings

Use of recycled polyol obtained by chemical solvolysis - Importance of Recycling for Bio-based Materials -

Recycling in the context of bio-based polyols:

- Recycling technologies (e.g. chemical recycling) for PUR-FF enables the recovery of polyols
- Recovery of polyols increases the yield of PUR-FF over the entire life-time in respect to the cultivated seeds

Thought experiment:

(1) 1 kg bio-based / fossil-based polyol leads to 1.5 kg PUR-FF

(2) If PUR-FF is recycled 10 times (polyol recovery: 95%; recovered polyol usage: 75% of PUR-FF polyol fraction)
 → 1 kg of polyol leads to 5.5 kg PUR-FF

➔ Particular importance to minimize environmental impact as land use change, eutrophication, etc. due to oil seed plantation

Eco-screening performed for the innovative polyurethane flexible foam for aircraft seating cushions

Analysis of three perspectives:

- Use of biopolyols instead of fossil-based polyols ecoDESIGN Candidate for bio-based polyurethane flexible foam: Soybean polyol
- Reduction and replacement of hazardous chemicals like heavy metal catalysts and flame retardants **1,750-3,500 t** flame retardant savings
- Use of recovered polyol obtained by chemical solvolysis of polyurethane flexible foam Chemical recycling technology increases material efficiency by 3.7 times

Conclusions

- For ecoDESIGN of an aircraft, several impacts on the environment must be considered not only in the use phase - but also during the production stage and the end-of-life stage of an aircraft.
- Within this eco-screening, we achieved a deep ecological understanding with the differentiation of the three case examples on PUR-FF for aircraft seating cushions

eco

eco design

Thank you for your Attention!

Further Information and Acknowledgement

Acknowledgement

- This project has received funding from the Clean Sky 2 Joint Undertaking (JU) under grant agreement No 807083, 807091, 945549, and 945521. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Clean Sky 2 JU members other than the Union.
 Disclaimer
- The results, opinions, conclusions, etc. presented in this work are those of the author(s) only and do not necessarily represent the position of the JU; the JU is not responsible for any use made of the information contained herein.

