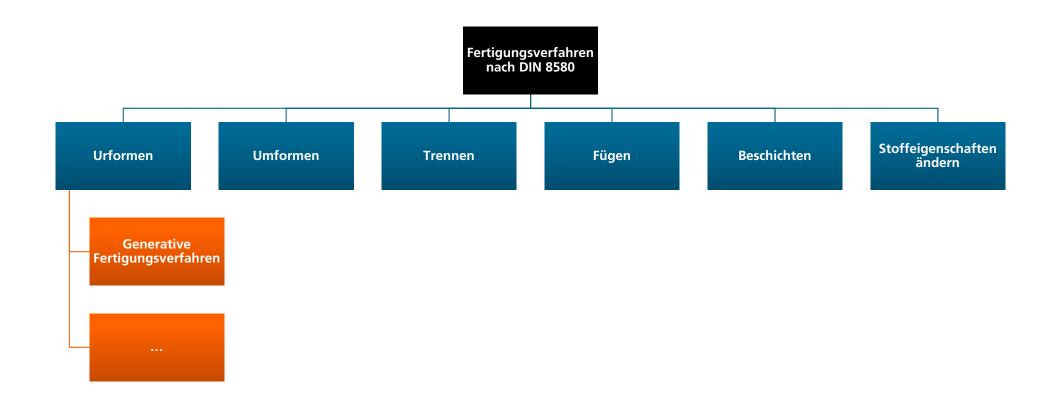
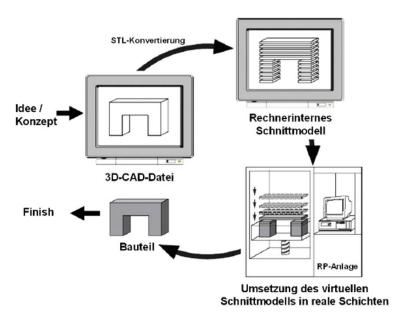
Einsatzpotenzial additiver Fertigung im Werkzeug- und Formenbau

Dipl.-Ing. (FH) Mathias Gebauer, Dipl.-Ing. (FH) Markus Oettel, Dr.-Ing. Bernhard Müller Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU

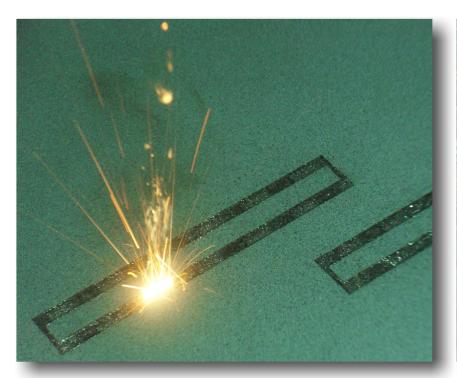
13. Netzwerkabend für Fachleute Messtechnik und Konstruktion, 20.03.2019, Leipzig


Gliederung

- Additive Fertigungsverfahren
 - Einordnung nach DIN 8580
 - Grundlagen und Begriffe
- Laserstrahlschmelzen
 - Verfahrensvorstellung
 - Prozesskette
 - Hybridbauweise
 - Werkstoffe für den Werkzeug- und Formenbau
- Funktionsintegration in Werkzeuge und Formen
 - Temperierung
 - Zellulare Strukturen
 - Sensor/ Aktorintegration
- Anwendungsbeispiele
 - Kunststoffspritzgießen
 - Druckgießen
 - Blechumformung
 - Massivumformung
- Entwicklungstrends


Additive Fertigungsverfahren

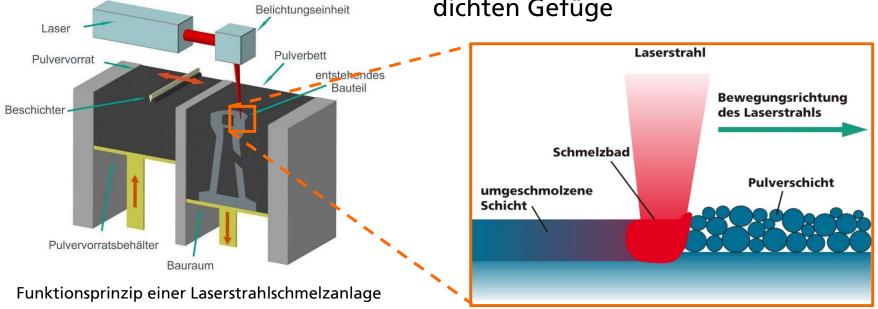
Einordnung nach DIN 8580

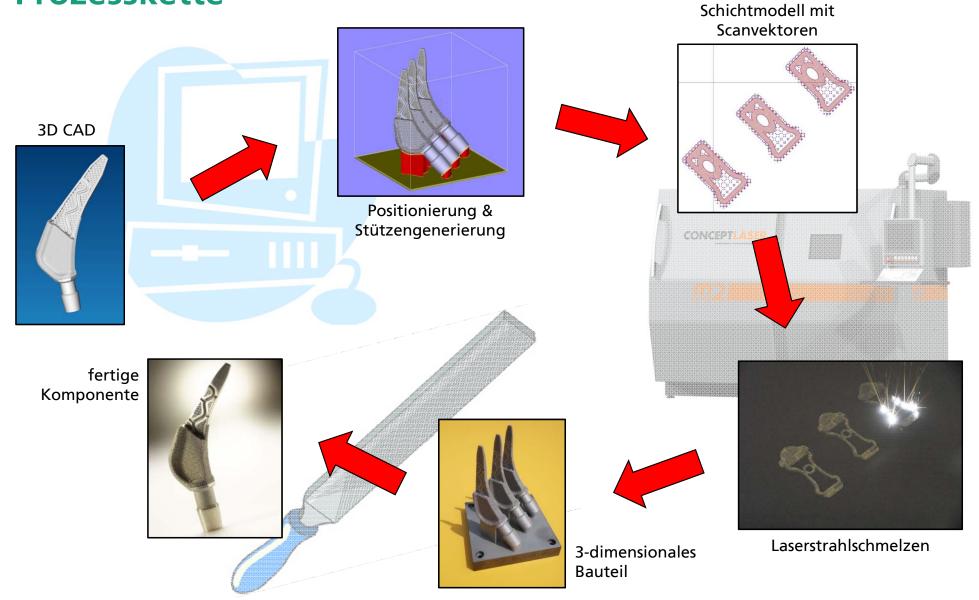

Additive Fertigungsverfahren

Grundlagen und Begriffe

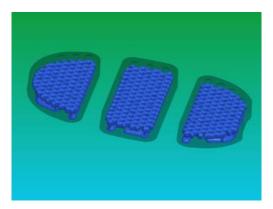
Prinzipskizze generativer Fertigungsverfahren (Quelle: Gebhardt, A.: Generative Fertigungsverfahren)

- generativ [aus dem Lateinischen]
 erzeugend, urformend; hier: aufbauende
 Verfahren, z. B. schichtweise, additiv
- Rapid Prototyping (RP): generative Herstellung von Bauteilen mit eingeschränkter Funktionalität (Prototypen, Versuchsteile)
- Additive Manufacturing (AM): generative Herstellung von Endprodukten/ Serienteilen (Konstruktion und Material entspricht dem des Endproduktes)
- 3D-Drucken: populäre Bezeichnung, die sich meist auf den Bereich der Low-Cost-Anlagen für den Heimgebrauch bezieht

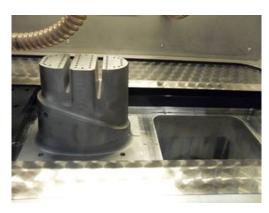



Verfahrensvorstellung

- direktes Verfahren, bei dem die gewünschten Teile in einem einstufigen Prozess im metallischen Serienmaterial entstehen (ggf. ist Entfernung von Stützstrukturen und Reinigung erforderlich)
- vollständiges, lokales Aufschmelzen von Metallpulvern zu einem 99,5 - 100 % dichten Gefüge



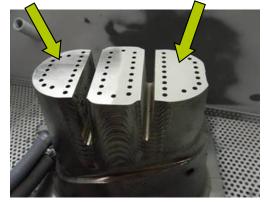
Prozesskette



Hybridbauweise

CAD-Modell der Flächenkühlung

Ausrichten und Fixieren in der Strahlschmelzanlage


gefräster Grundkörper mit Kühlbohrungen (vorgeschruppt)

Strahlschmelzanlage vorbereitet

→ fertig für Bauprozess

Vorbereitung der Verbindungsfläche

Werkzeugeinsatz mit Flächenkühlung → fertig für die Schlichtbearbeitung

(Mit freundlicher Genehmigung vom Institute for Advanced Tooling IAT der Stellenbosch University, Südafrika)

Werkstoffe und mechanische Kennwerte

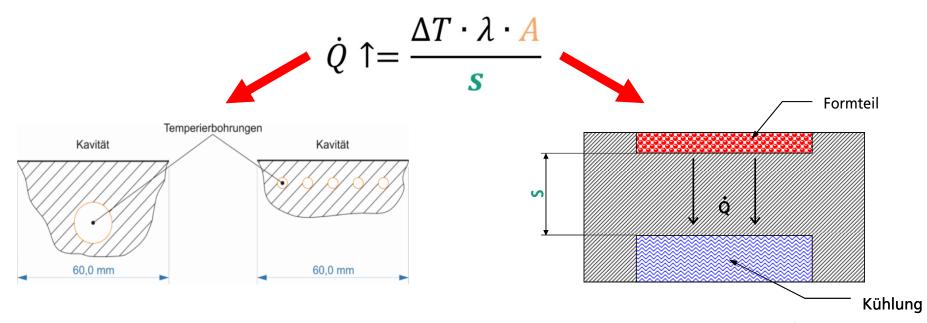
Werkstoff	Zustand	Zugfestig- keit R _m [MPa]	Streck- grenze R _{p 0,2} [MPa]	Bruch- dehnung A [%]	Härte	E-Modul [GPa]
Werkzeugstahl ¹ 1.2709 X3NiCoMoTi 18 9 5	wärmebehandelt (490°C)	2.040 - 2.180	1.870 - 1.940	3 - 5	54 - 56 [HRC]	
Werkzeugstahl (rostfrei) Corrax®	wärmebehandelt (525°C)	1.700	1.600	> 2	48 - 50 [HRC]	
Edelstahl 1.4404 X2CrNiMo 17-12-2	wie gebaut	640	500	> 15	20 [HRC]	
Titan ⁴ 3.7165 TiAl6V4	wärmebehandelt	950 - 1.250	800 - 1.100	10 - 20	32 - 36 [HRC]	
Aluminium ² 3.2381 AlSi10Mg	wie gebaut lösungsgeglüht T6 wärmebehandelt	353 - 482 221 - 260 281 - 320	210 - 295 126 - 160 222 - 262	2 - 7 10 - 18 5 - 10	95 - 119 [HB] 63 - 74 [HB] 85 - 101 [HB]	67 - 78 57 - 73 69 - 80
Inconel 718 ³ 2.4668 NiCr19NbMo	wie gebaut lösungsgeglüht T6 wärmebehandelt	929 - 1308 896 - 1080 1334 - 1545	583 - 945 549 - 922 924 - 1278	20.2 - 32.7 31.9 - 42.2 6.6 - 19.4	280 - 395 [HV 10] 273 - 320 [HV 10] 453 - 485 [HV 10]	128 - 232 142 - 257 149 - 242

weitere Werkstoffe: CoCr, 17-4 PH,


AlSi12, Hastelloy X

¹ Kennwerte lt. VDI 3405 Blatt 2

³ VDI 3405 Blatt 2.2

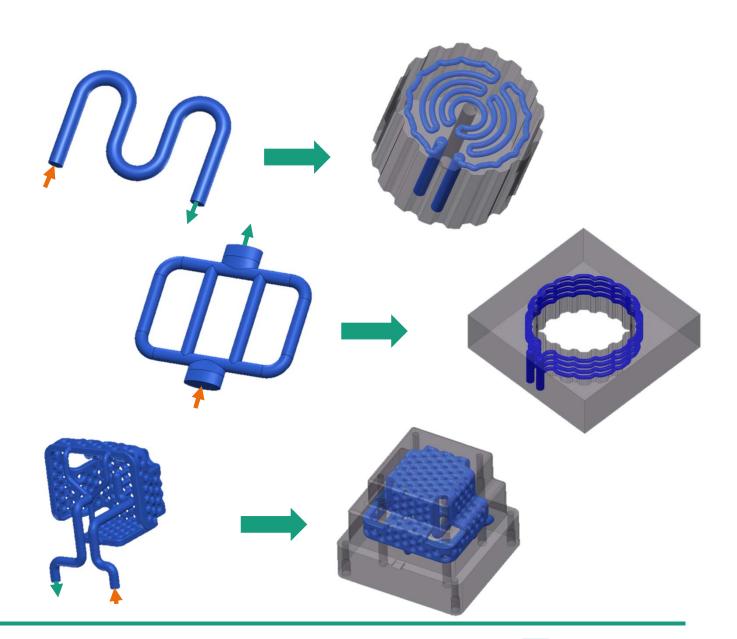

² VDI 3405 Blatt 2.1

⁴ VDI 3405 Blatt 2.4 in Vorb.

Temperierung

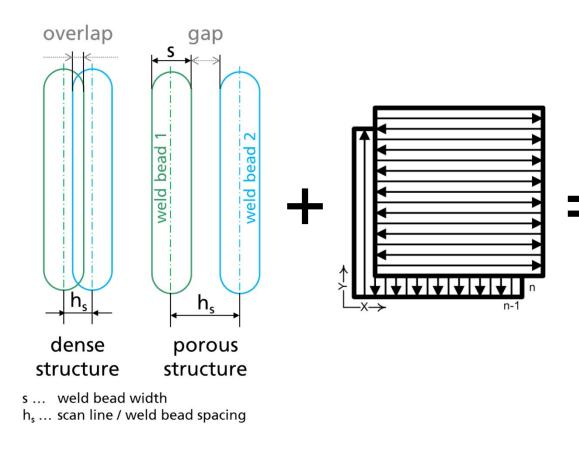
Einfluss des Kanalabstands s (Haupteinfluss) und der Kanaloberfläche A

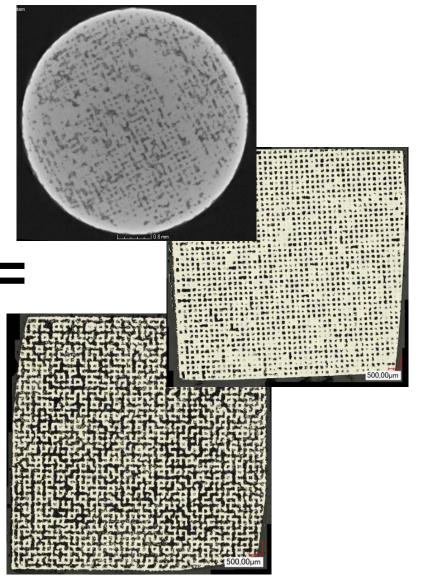
- lacktriangle mit größerer Kanaloberfläche wird ein höherer Wärmestrom \dot{Q} übertragen
 - Prozesszeit sinkt
- lacktriangle wird der Abstand s reduziert, steigt der Wärmestrom \dot{Q}
 - Prozesszeit sinkt


Temperierung

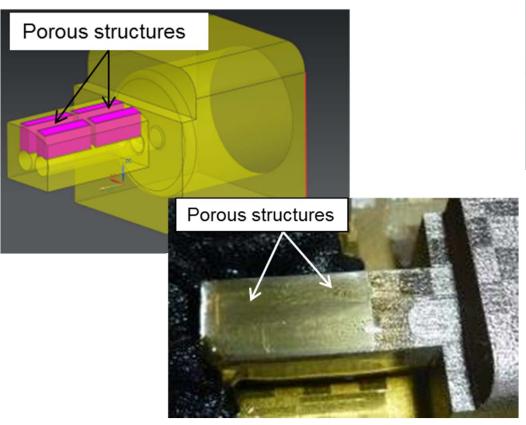
Serieller Kreislauf

Paralleler Kreislauf

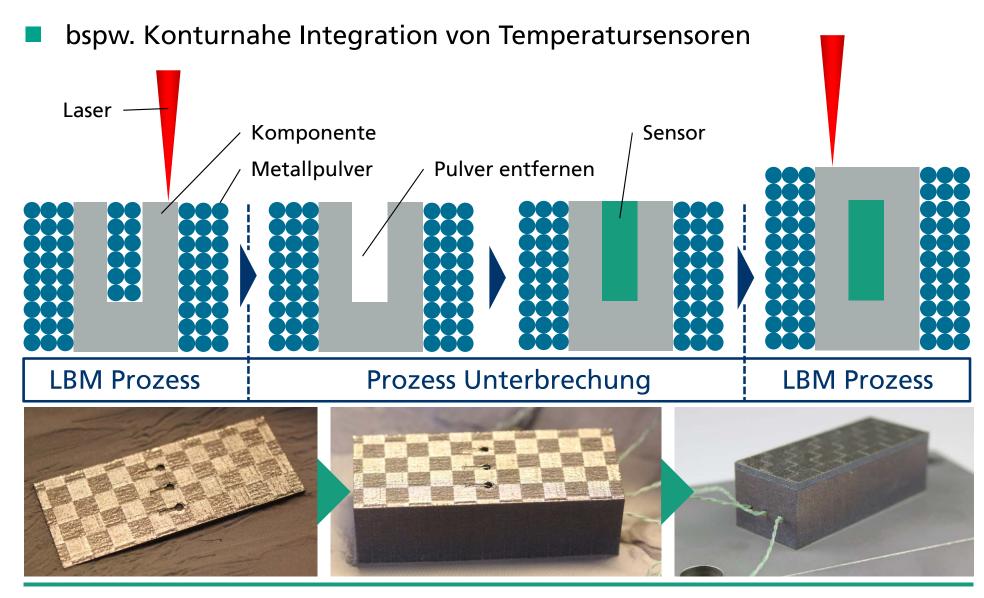

Flächenkühlung

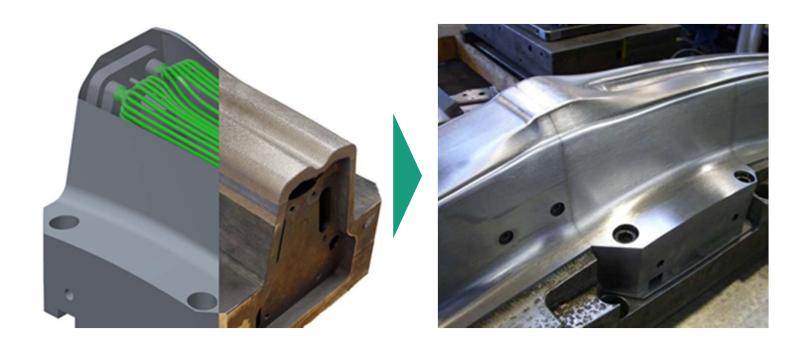

Zulauf/ Rücklauf

Zellulare Strukturen


als Formentlüftung

Zellulare Strukturen

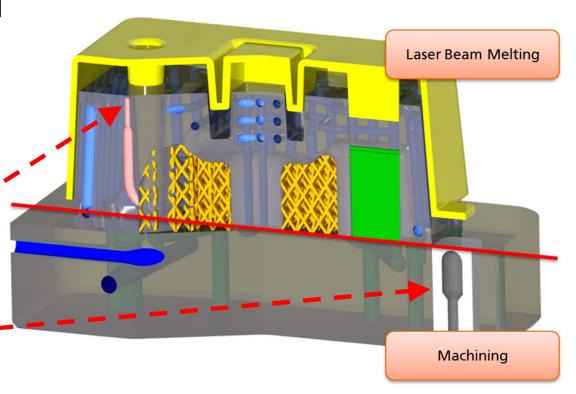

zur Schmiermittelzufuhr



(Quellen: Stoll, Philipp: Gute Poren - Erwünschte Porosität in SLM-Werkstücken. Rapid.Tech 2015, Erfurt, 10. - 11.06.2015)

Sensor/ Aktorintegration

Funktionsintegration in Werkzeuge und Formen – Anwendungsbeispiele



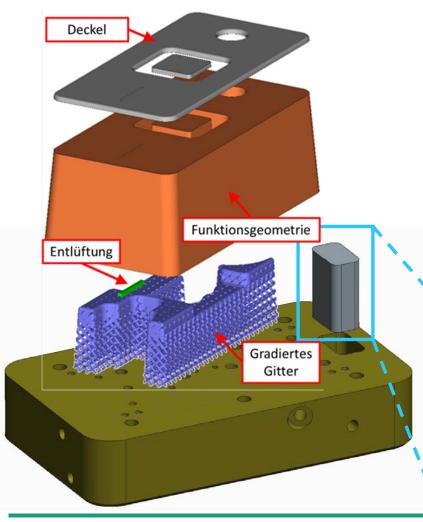
Kunststoffspritzgießen

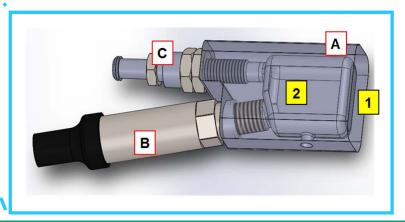
Gestaltung

"Leichtbau" zur Volumen- und Kostenreduzierung

- Hybridbauweise
 - gefräster Grundkörper
 - additive Funktionsgeometrie
- poröse Struktur zur Entlüftung
- Integration von _ _ _Temperaturfühler und Drucksensor _ _ _ _

CAD-Modell Spritzgießwerkzeug "FunGeoS"

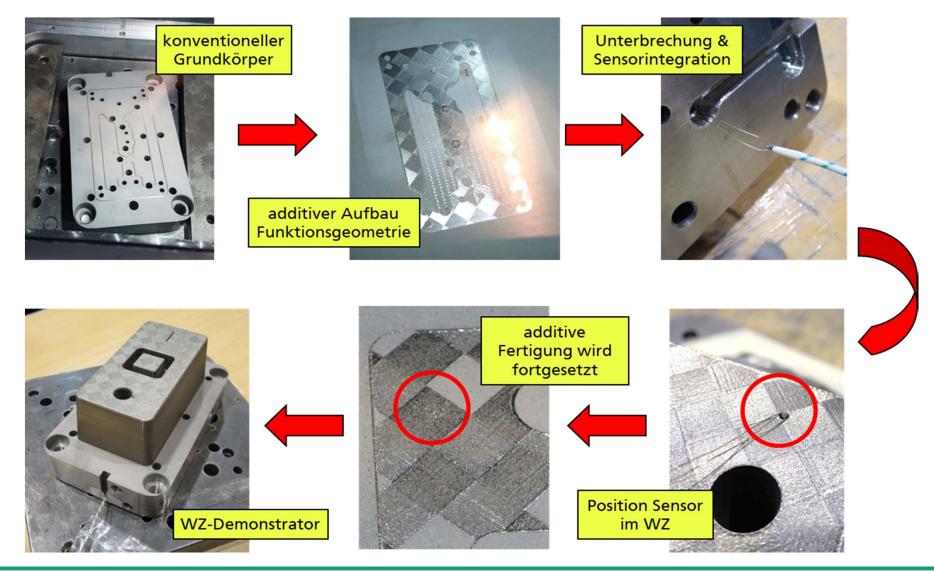




Kunststoffspritzgießen

<u>Fertigungsstrategie</u>

- Einzelsegmente für individuelle Parameter
- Gitter ohne Konturfahrt zur Sprungzeitminimierung
- Funktionsstruktur und Deckel mit besonders dichten Parametern
- Parameter für poröse Strukturen zu Formentlüftung
- (Medien)-Drucksensor vorerst als separater Einsatz


- [A] Einsatz mit
 - [1] Membran und
 - [2] Reservoir
- [B] elektronischer Drucksensor
- [C] Entlüftungsventil

Kunststoffspritzgießen

Anwendung im Werkzeug- und Formenbau Druckgießen

Motivation:

kritische Porositäten im Bereich des Ölfiltergehäuses einer Lagertraverse (V8 Motor)

Werkzeugeinsatz mit konturnaher Kühlung

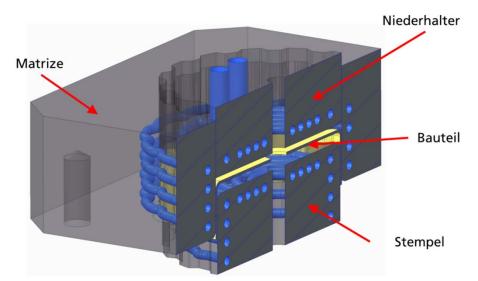
Fertigteil

<u>Lösung:</u>

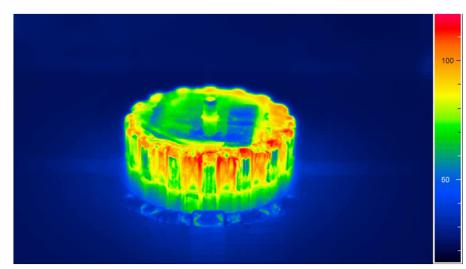
laserstrahlgeschmolzener Werkzeugeinsatz mit konturnaher Kühlung in Hybridbauweise

Ergebnisse:

- weniger Hotspots → weniger Porosität (- 50 %) → weniger Ausschuss → geringere Kosten
- Reduzierung der Zykluszeit → höhere Produktivität



Blechumformung (warm)

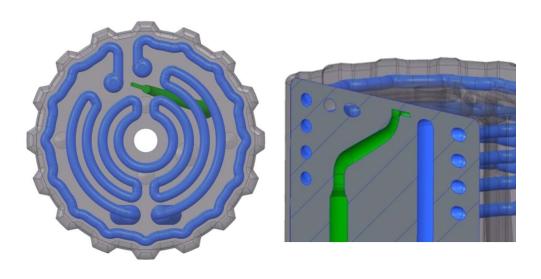


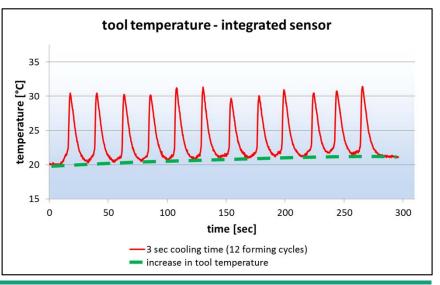
Motivation

- Steigerung der Leistungsfähigkeit von drei Blechumformprozessen (Tiefziehen, Abstreckziehen, Blechwarmumformung) unter Nutzung des generativen Laserstrahlschmelzens
 - Schaffung von Mehrwert und Integration zusätzlicher Funktionen
 - je nach Zielanwendung Kühlen, Heizen, Schmieren und Sensorik

3D-CAD Modell Blechwarmumformwerkzeug

Rückkühlung generativ gefertigter Stempel




Anwendung im Werkzeug- und Formenbau Blechumformung (warm)

Ergebnisse Blechwarmumformung

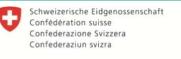
- Erfolgreiche Integration eines Thermosensors in das Werkzeug für die Blechwarmumformung → Nachweis der Funktionalität in Testläufen
- signifikante Reduktion der Kühl-/Haltezeit von 10 s auf 3 s unter Einhaltung der Anforderungen hinsichtlich geometrischer Abweichungen und Härte der Bauteile

Anwendung im Werkzeug- und Formenbau Blechumformung ("kalt")

<u>Lösungsweg</u>

Entwicklung zellularer Strukturen für lokale Schmiermittelversorgung zur gezielten Verringerung des Reibwerts im Umformprozess

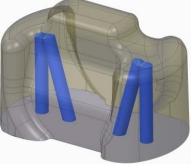
CAD-Modell der Matrize mit Position der zellularen Strukturen zur Schmiermittelversorgung


umgeformtes Blechteil

Massivumformung (Gesenkschmieden)

Zielstellung:

Reduzierung thermisch-mechanischer Verschleiß bei Schmiedegesenken


Ausgangssituation:

- große thermisch-mechanische Belastung, insbesondere an der Außenkontur des Werkzeugeinsatzes
 - → hoher Verschleiß
- unzureichende Kühlung aufgrund der komplexen Werkzeugform

Lösungsansatz:

- Integration eines komplexen, konturnahen Kühlsystems
- Herstellung durch Hybrid Tooling
 (konventionell hergestellter Grundkörper
 + generative Funktionsgeometrie)

gebohrte Kühlkanäle

Verschleiß nach **5836** Schmiedezyklen

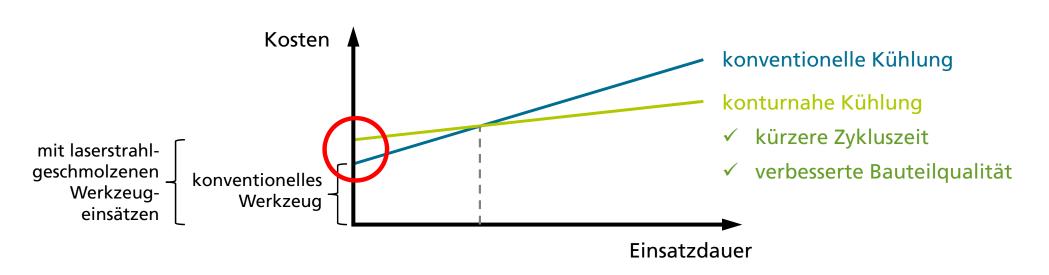
komplexes, konturnahes Kühlsystem

Verschleiß nach **6855** Schmiedezyklen

→ deutliche Reduzierung des Werkzeugverschleißes → Standmengenerhöhung um 17,5%

Entwicklungstrends

Trends der Generativen Fertigung


Kosten / Wirtschaftlichkeit (aktuell)

Pulvermaterial: 100 - 600 €/kg

WZ-Stahl ~ 150 €/kg

Maschine: 50 - 80 €/h

<u>Aufbaurate:</u> 5 - 20 cm³/h

Trends der Generativen Fertigung im Bereich Werkzeug- und Formenbau

Temperierung

- integrierte Heatpipe-Strukturen zur Temperaturregulieren komplexer und thermisch hoch belasteter Werkzeugbereiche für kleine Geometrien
 - durch direkte Strukturintegration von Heatpipes in das Werkzeug, anstelle nachträglicher Montage (kein thermischer Übergangswiderstand, Maximierung Wirkflächen)
- integrierte Heizelemente für bspw. Aluminiumumformung
 - konturnahes "Einschmelzen" von Rohrwendelpatronen

Sensorintegration

■ Ziel ist eine intelligentes Werkzeug mit Sensoren für Temperatur, Druck oder zur Bestimmung Werkzeugverschleiß

belastungsgerechte Werkzeuggestaltung bspw. gradierte Gitterstrukturen

- Ziel ist die Minimierung des aufzubauenden Volumens um Fertigungszeit und Kosten zu sparen
- Reduzierung der thermische Trägheit → schnellere Reaktion, geringere Werkzeugerwärmung

Trends der Generativen Fertigung Potential im Werkzeug- und Formenbau

- Im Werkzeug- und Formenbau hat sich die Erkenntnis noch nicht in ausreichendem Maße durchgesetzt, dass sich Mehrkosten eines generativen Werkzeugs oft sehr bald mehrfach amortisieren.
- Für ein bestmögliches Verhältnis aus erreichbarem Mehrwert und geringen Werkzeugkosten sind Kenntnisse über generative Fertigung, insbesondere der Restriktionen notwendig.
 - Man sollte "generativ" konstruieren!!!
 - > Die Möglichkeit der Hybridbauweise reduziert die Kosten.
- Ohne entsprechende Simulationswerkzeuge sind verlässliche Aussagen zur verbesserten Kühlung nur unzureichend möglich.
- Der für das Laserstrahlschmelzen typische 1.2709 stößt immer noch auf Skepsis beim Endanwender.

Dipl.-Ing. (FH) Mathias Gebauer

Gruppenleiter »Anwendung« Abteilung »Generative Verfahren«

Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU

Noethnitzer Strasse 44 | 01187 Dresden Telefon: + 49 (0) 3 51 / 47 72-21 51 Fax: + 49 (0) 3 51 / 47 72-23 03

E-Mail: mathias.gebauer@iwu.fraunhofer.de

