
31.07.2001,
title.fm

A publication by Fraunhofer IESE

A Framework for Product Line
Quality Model Development

The PuLSE-Eco Meta Quality Model

Authors:
Klaus Schmid

In part supported by the
ESAPS project
Eureka Σ! 2023 Programme,
ITEA project 99005

IESE-Report No. 047.00/E
Release 1.0
June 21, 2001

Fraunhofer Institut
Experimentelles

IESE

Software Engineering

31.07.2001, title.fm

Fraunhofer IESE is an institute of the
Fraunhofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists com-
panies in building software competencies
customized to their needs, and helps them
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6
D-67661 Kaiserslautern

vCopyright  Fraunhofer IESE 2000

Table of Content

1 Introduction 1

2 Structure of Product Line Quality Models 3
2.1 Product Line Quality Models as Extensions to Conventional

Quality Models 3
2.2 Product Line Development Situations 5
2.3 Reduction of Product Line Situations 10

3 An Approach for Developing Product Line Distortion Models 13
3.1 Identification of Quality Drivers 14
3.2 Develop Qualitative Causal Model 15
3.3 Develop Project Data Questionnaires 15
3.4 Quantifying Relationships 16
3.5 Operationalizing the Model 16

4 Structure of Situation-specific Models 18

5 Product Line Quality Models 19

6 Usage of Quality Models in Scoping 22
6.1 Categorizations of Quality Drivers 22
6.2 Process Aspects 24
6.3 Evaluating Assets Using the Product Map Approach 24

7 Model-Guides: Instantiating the Meta-Quality Guide 27
7.1 Background and Theory 27
7.2 Adaptation of the Framework 28
7.3 Identification of Quality Drivers 28
7.4 Experiences and Issues 29
7.5 Appendices 29

8 Model-Guides: Project Specific Instantiation 30

9 Summary 32

10 References 33

A Scale 34
A.1 Importance Scales 34

vi Copyright  Fraunhofer IESE 2000

1Copyright  Fraunhofer IESE 2000

1 Introduction

This report provides the background material for developing product line quality
models. While the approach aims at the development of quality models to sup-
port the PuLSE-Eco V2.0 scoping approach1, the resulting models are not
restricted to this context, but support the development of arbitrary, general pur-
pose product line quality models.

This report does not provide any quality models, but provides a common frame-
work for the development and documentation of these models. This framework
describes the underlying structure of the specialized models, as well as a basic
approach for developing them. This helps to ensure that the various quality
models will adher to the same general structure.

The resulting quality models are described in companion reports (effort model-
ling [2], reliability modelling [3]). The motivation behind this guidebook is to pro-
vide guidance to anybody attempting to develop additional models for not yet
covered quality aspects.

As the quality models that are built using this approach are still generic models,
the resulting models still need to be adapted to the project-specific context,
turning them into customized models. This gives the three level hierarchy
depicted in Figure 1.

The quality model framework depicted in Figure 1 is described in this report.

1 PuLSETM is a registered trademark of Fraunhofer IESE.

Figure 1: Hierarchy of quality models used in PuLSE-Eco

Quality Model Framework

Effort Model Reliability Model ...

Project 1
Effort Model

Project 2
Effort Model

Project 3
Effort Model

Project 1
Reliab. Model

Project 2
Reliab. Model

2 Copyright  Fraunhofer IESE 2000

The framework is supposed to be instantiated for quite a large number of prod-
uct line quality models over time. An analysis of existing standards on quality
factors (cf. [5]) and of product line literature lead to the following list of qualities
as potential candidates:

• Process Qualities:

– Effort and derived qualities as TTM, pure maintenance effort, etc.

• Product Qualities:

– Reliability (only impact on)
- Maturity
- Fault Tolerance
- Compliance

– Usability (only impact on)
- Understandability

– Efficiency (only impact on)
- Time behaviour
- Resource utilisation

– Maintainability (only impact on)
- Analysability
- Changeability
- Stability
- Testability

– Portability (only impact on)
- Adaptability

The breakdown given above is based on [5] and restricted to those factors
where an impact on quality from product line can be reasonably expected. All of
the above-mentioned qualities are generally accepted to be impacted by prod-
uct line development, thus in order to derive appropriate models for them
adapted quality guides would be needed. However, we expect only to develop
models for those that have a major impact on the business decision of product
line development.

The remainder of this report is structured as follows: in Section 2 we discuss the
general structural aspects of product line quality models, i.e., how is such a
model structured, what is the structure of product line development, as far as it
has an impact on the quality model, etc. In Section 10, we discuss basic inputs
and approaches to the development of the generic quality models. The subse-
quent section then discusses how to describe the generic models for the specific
qualities and how to instantiate them for specific projects. Finally, Section 6 dis-
cusses how the quality models can be used for answering quality related ques-
tions about the product line.

3Copyright  Fraunhofer IESE 2000

2 Structure of Product Line Quality Models

In this section, we concentrate on the basic structure of quality models for prod-
uct lines, as oppossed to the development and usage of these models.

We discussed the relationship between the meta-model, the generic quality
models, and the instantiated models for specific projects already in the previous
section (cf. Figure 1). Here, we will particularly focus on the structure of the
generic models. We will describe the various parts and discuss what is product
line specific.

2.1 Product Line Quality Models as Extensions to Conventional Quality Models

There are three basic situations that needs to be distinguished in case one asks
for a product line specific quality model:

1 There already exists a model for estimating the respective quality in the
organization

2 There already exists profile data for the quality, but not an estimation model

3 There exists neither a model nor profile data

The last situation actually goes beyond the realms of what we are discussing
here in the context of PL quality models. In this case, existing knowledge on
developing estimation models for one at a time system development should be
applied in order to develop basic models that can be extended towards product
line models.1 Thus, we will restrict ourselves in this report to the question of
how to extend existing quality models towards product line quality models.

In order to address situation 1 and 2 in a homogenous fashion, we use a basic
model structure, which is compositional. This approach is shown in Figure 2. As
is illustrated there, the base information is taken from a standard quality model
and then the deviation according to product line development is added to it.
One should note that there are actually different models for the different prod-
uct line development situations (cf. Section 2.2). Besides the specific situation
this deviation strongly depends upon the specific product line development plan
that is envisioned. Thus, it is shown as an additional input. Further, other influ-

1 While we do not focus on the specific development of base models for the various qualitites, some product
line quality models also include default base models for the different models.

4 Copyright  Fraunhofer IESE 2000

ential factors (e.g., project-, personnel-, or product line specific aspects) deter-
mine the specific form of the deviation. These influential factors may overlap
with the influential factors that are needed for the basic quality model, but usu-
ally a major part of the factors come in in addition to the base factors. If such a
base model is not available, but a profile (i.e., a description of the quality distri-
bution) is available, then one can start with the one-at-a-time quality profile
directly. We use the following notation to describe the quality modeling shown
in Figure 2:

Given a quality (e.g., eff: effort or rel: reliability) and a feature for which the
to-be-expected quality has to be determined, denotes the
value of the quality attribute for this feature according to the basic quality
model, where denotes the characterization of the feature and its over-
all development situation in terms of influential factors. In particular, P denotes
the product (P) context. In cases, where functionality is retrieved from a different
product P’ this is denoted by mentioning the P’-context in addition.

On the other hand, in the case of product line development different product
line development situations (i.e., modes) have to be distinguished (cf. Section
2.2). Consequently, we denote the corresponding quality attribute value for the
product line situation as and denote the product line
distortion itself as: . Using this notation we can
describe as:

base value
(e.g., size)

basic quality model
(i.e., one-at-a-time

development)

influential factors

product line quality
distortion model

PL
influential

factors Product line specific
quality profile

One-at-a-time
quality profile

Figure 2: Overall model structure for product line quality models

product line
development
plan

Q f
Qbase sit f P,()()

sit f P,()

QPL mode sit f P P', ,(),()
Q∂ PL mode sit f P P', ,(),()

QPL
QPL mode sit f P P', ,(),() Q∂ PL mode sit f P P', ,(),() Qbase sit f P P', ,()()⋅=

5Copyright  Fraunhofer IESE 2000

So far, we did only deal with quality attributes on a per feature basis. However,
there are some general (infrastructure) activities, which will usually be difficult to
relate to a single feature (cf. Section 5).

Depending on the specific quality analysed, it may be very hard to attribute the
quality contribution of this activity to a certain feature. For example, gathering
the high-level requirements will be very hard to relate to single features from an
effort point-of-view. However, from a defect point-of-view the requirements will
show up as defects in specific software features. We will discuss these infra-
structure activities further in Section 2.2.

In general the quality impact of these activities can only be analyzed on a per-
project level. Consequently, they depend on project characteristics. We will
denote this by: . Where gives a project-classi-
fication in terms of situational factors.

In order to understand the role of the product line development plan, one needs
to understand various different software development modes that are relevant
to product line development. This will be discussed in Section 2.2. In the subse-
quent sections we will then discuss various issues related to the notion of prod-
uct line development situations. Finally, in Section 5 we will wrap up this discus-
sion and show how the product line development plan uses the situation-
specific models for deriving product line quality models.

2.2 Product Line Development Situations

We can distinguish different situations in which product line development hap-
pens depending on whether we are doing development for reuse or with reuse.
In addition, we can differentiate different starting situations, depending on
whether some software already exists and if so, in what state it is. If we take the
development of software for a specific system additionally into account, then
we can classify the product line development situations along the following two
dimensions:

• development approach

– development for specific system (one-at-a-time development; single sys-
tems are developed)

QPL mode sit proj(),() sit proj()

reusable asset

Reuse

development from
scratch
New

implemented in
different product

Adapt

implemented in
legacy product

Reeng

system-specific development (spec) QPL(spec,reuse,sit(f,P) QPL(spec,new,sit(f,P)) QPL(spec,adapt,sit(f,P,P’)) QPL(spec,reeng,sit(f,P,P’))

development with reuse (with) QPL(with,reuse,sit(f,P)) QPL(with,new,sit(f,P)) QPL(with,adapt,sit(f,P,P’)) QPL(with,reeng,sit(f,P,P’))

development for reuse (for) QPL(for,reuse,sit(f,P)) QPL(for,new,sit(f,P)) QPL(for,adapt,sit(f,P,P’)) QPL(for,reeng,sit(f,P,P’))

Table 1: Product Line Development Situations

6 Copyright  Fraunhofer IESE 2000

– development with reuse1 (using an existing reuse base a new system is
developed – this is also called application engineering)

– development for reuse (reusable assets are developed – this is also called
domain engineering)

• starting situation

– nothing exists (development from scratch)
– reusable asset exists
– implemented in a different product (needs adaptation)
– implemented in legacy system (needs reengineering)

These two dimensions define the matrix given in Table 12.Using this notation we
can write:

The core reason for distinguishing between the different situations using such a
matrix is that the actual processes enacted will vary depending on the situation
and thus also the influence of the quality will change accordingly. As the specific
activities will actually vary from company to company, we discuss here prototyp-
ical, high-level categories of activities.

As we discussed in Section 2.1, we focus on the quality impact on individual fea-
tures. However, there are some process steps, which have an impact on the
quality aspect, which cannot be easily attributed to a single feature. A prototyp-
ical example for this is the development of a reference architecture and the rela-
tionship of this activity to effort.

In the case of single system development (spec), we can identify the following
main activities, if we assume that implementation happens via the successive
integration of features:

1 Note, that in the development with reuse specific system parts may also be developed as system specifics,
i.e., they are developed from scratch, but they are developed in the context of developing a system mostly
from reusable pieces.

2 Note, that a mode is actually described using two parameters: . As a notational simplifi-
cation we write instead of .

mode x y,()=
QPL x y sit f(), ,() QPL x y,() sit f(),()

Qbase sit f P P', ,()() QPL spec new sit f P P', ,(), ,()=

7Copyright  Fraunhofer IESE 2000

• General requirements gathering
• Detailed requirements gathering (can be attributed to individual features)
• System architecture development
• Detailed design (can be attributed to individual features)
• Implementation (can be attributed to individual features)
• Unit test (can be attributed to individual features)
• Integration (test) (can be attributed to individual features)

Besides the basic development phases, we also want to take into account the
maintenance phase. Here, we focus on pure problem correction:

• Problem correction (can be attributed to individual features)

The activities given above apply for the starting situation new. They have to be
adapted for the other starting situations accordingly. However, the identified
infrastructure activities stay the same in this case. When looking at the categori-
zations as “related to individual features” vs “general activities” given above,
one should keep in mind that depending on the specific quality under study the
categorization may look somewhat different.

Similarly to the categorization given above, if we look at the product-line based
development of software, we can in a matching form identify general activities
and activities that can be attributed to individual features.

If we look at the standard product line process given in Figure 3, we can distin-
guish the following activities for the two life-cycles (here, we count scoping as
part of the domain engineering life-cycle.)

Figure 3: Product Line Process Illustration

System
Requirements

System
Design

System
Implementation

Domain
Analysis

Reference
Architecture

Reusable Asset
Implementation

System
Requirements

System
Design

System
Implementation

System
Requirements

System
Design

System
Implementation

Sc
op

in
g

Product Line
Information

Product Line
Engineering

8 Copyright  Fraunhofer IESE 2000

As two different main life cycles exist (domain engineering and application engi-
neering), we have to distinguish the identified main activities accordingly:

Domain Engineering:

• Product line mapping
• Scoping
• Detailed Domain Analysis (can be attributed to individual features)
• Development of reference architecture
• Detailed design (can be attributed to individual features)
• Implement feature reusable (can be attributed to individual features)
• Unit test (can be attributed to individual features)
• Problem correction (can be attributed to individual features)
• Product rebuilding1 (can be attributed to individual features)

The product rebuilding step is specific to a product line development approach,
as in this case if a generic asset is updated, we need to integrate the new
instance of the component into all systems, so that the problem correction is
integrated everywhere.

Similarly, there is the application engineering life-cycle. Here, we have again two
main process variants, depending on whether a reusable asset for this feature
already exists or not. In the case that no reusable asset for the system part exists,
the process is rather similar to the process for single system development.2

For parts that are reuseable For parts that are not yet reuseable

General requirements gathering
(per feature) Details for system-specific adaptation Detailed requirements gathering

Derive product instance architecture
(per feature) Retrieve feature implementation
(per feature) Instantiate feature implementation Detailed design
(per feature) Component implementation
(per feature) Unit test
(per feature) Integration (test)
(per feature) problem correction done in problem correction

domain engineering

1 Is performed only as a consequence of problem correction.
2 Note, that in the case that non-reusable sub-systems become as small as individual features, we have a di-

rect mapping to the quality impact also for “generic” activities.

9Copyright  Fraunhofer IESE 2000

Again, we have specific variants of these processses for the situations where
already products exist which can be adapted or reengineered.

If we look at the steps that have now been identified as general infrastructure
steps we find that these are the high level analysis (requirements, scoping) and
development (architecture) steps. In addition, general activities like configura-
tion management may play a role, but this is outside the scope of this study. We
will defer the discussion of these general steps till Section 5 and will for now
concentrate on the activities that can be attributed to individual features. Based
on the discussion above, we can derive the list of activities given in Table 2:

If we want to look at the total quality for a specific feature (or product) then we
will usually have to take contributions from different modes into account (e.g.,
feature is developed for reuse, later it is reused in different products). We will
discuss this composition of quality values in more detail in Section 5.

In the above table many activities can happen in different modes leading to vari-
ations of how the activities will be performed and this may consequently have
different impacts on those qualities. In order to distinguish between the same
activity in different modes, we mark multiple occurences with ✝ and *. We use ✝
to differentiate among instances of the same activity in different starting situa-
tions and * to differentiate among instances of the same activitiy in different
development approaches (e.g., integrate).

Now, we will turn to a different concern: in principle we need for each of the
fields in the table (and actually for each of the high-level activities) a different
quality estimation model (at least a different quality distortion model). This

reusable asset

Reuse

development from scratch

New

implemented in
different product

Adapt

implemented in
legacy product

Reeng

system-specific
development

(spec) not
applicable

a) Detailed requirements
b) Detailed design

c) Implement F
d) Unit test

e) Integrate F in P

a) Detailed requirements✝

b) Identify F in P’
c) Recover code from P’

d) Adapt Code for P
e) Unit✝ test

d) Integrate✝ F in P

a) Detailed requirements✝✝

b) Identify✝ F in P’
c) Recover✝ code from P’

d) Adapt✝ Code for P
e) Unit✝✝ test

f) Integrate✝ F in P

development
with reuse

(with)

a) Detailed requir.
b) Instantiate feature

b) Retrieve F
b) Integrate F in P✝✝✝*

a) Detailed requirements*
b) Detailed design*

c) Implement* F
d) Unit* test

e) Integrate* F in P

a) Detailed requirements
b) Identify* F in P’

c) Recover* code from P’
d) Adapt* Code for P

e) Unit✝* test
f) Integrate✝* F in P

a) Detailed requriements
b) Identify✝* F in P’

c) Recover✝* code from P’
d) Adapt✝* Code for P

e) Unit✝✝* test
f) Integrate✝✝* F in P

development
for reuse

(for) not
applicable

a) Detailed domain analysis
b) Detailed design**

c) Implement** F
d) Unit test**

a) Detailed domain
analysis✝

b) Identify** F in P’
c) Recover** code from P’
d) Make code generically

reuseable
e) Unit test✝**

a) Detailed domain analysis✝✝

b) Identify✝** F in P’
c) Recover✝** code from P’
d) Make code generically

reuseable✝

e) Unit test✝✝**

Table 2: High-level Development Activities Based on Product Line Development Situations

10 Copyright  Fraunhofer IESE 2000

would in many situations be prohibitively costly from an effort point-of-
view.1Consequently, we need to study possibilities to reduce the number of
needed sub-models.

2.3 Reduction of Product Line Situations

In the preceeding section we mapped out the space of product line develop-
ment situations and discussed how hogh-level activities vary throughout these
situations. However, in real world applications the amount of data that would
be necessary to construct individual models for each of these situations would
usually be prohibitively large. Consequently, we need to look into possibilities for
reducing the overall number of required (sub-)models.

In this section, we will only discuss general reduction possibilities. More specific
possibilities may turn up for specific qualities or within specific projects. These
will be discussed in the respective reports. Obviously, any sort of model simplifi-
cation leads to additional constraints on model-building and may negatively
impact the precision of the models. Consequently, the simplifications described
here should be re-evaluated in the specific project contexts.

From Table 2 we can easily infer that a large number of activities are rather simi-
lar in the various modes. While they are never identical, they are similar enough
to warrant some simplifications. In this section, we will discuss two major simpli-
fications that directly lead to mode reductions and will point out an analogy
which can also be used for reducing the amount of model-building.

The first simplification, we want to point out relates to the distinction between
system-specific development (spec) and development for reuse (for). In the
modes, where we are doing (basically) development with reuse, but do not have
a reusable asset, we are actually developing the software for a specific system,
despite the fact that we are doing this in the context of product line engineer-
ing.

While the product line development environment will usually have some impact
(e.g., reference architecture) we can assume that this will usually be rather small.
In particular, as we do here explicitly exlude the general activities like reference
architecture development, we can make the following three simplifications:

•

•

1 The precise number of (sub-)models (e.g., whether a per-activity decomposition is needed) obviously de-
pends on the exact granularity on which the different models are needed.

QPL with new sit f P,(), ,() QPL spec new sit f P,(), ,()=

QPL with adapt sit f P,(), ,() QPL spec adapt sit f P,(), ,()=

11Copyright  Fraunhofer IESE 2000

•

This reduces the overall number of sub-models we need to look at from ten to
seven.

On the other hand, if we look at the reuse step (with, reuse), we see that the
impact of this step on the final product quality will usually be slim, in case we
truely do product line engineering. This is due to the fact, that in true product
line engineering components will be reused verbatim and the integration will
strictly adhere to the constraints provided by the reference architecture. Thus, if
the reference architecture has been appropriately developed, so that compo-
nents can be integrated in a straightforward manner into the architecture, then
the integration will only require a neglectable effort, will not contribute to the
defects, etc. Thus we will usually assume that:

•

One should keep in mind that this approximation strongly relies on the existence
of a well-defined reference architecture for the product line and the presence of
verbatim reuse. If these preconditions are not met, this simplification cannot be
made.

If we now look at the remaining six modes and compare them with each other,
we can notice that there is an analogy between the “with-” and the “for-” cat-
egory. The common difference is that in the “for-”category development is done
with the goal of developing generically reusable assets based on a domain
model, while on the other hand in the “with-”category we are aiming at devel-
oping assets for specific system requirements. Thus, we save the additional
development activities for making the software more generic, but have to invest
additionally in integrating the assets with the overall product. However, as these
differences only depend on the development approach , but not on the starting
situation, we can assume (as an approximation) that the impact on the quality-
attribute only depends on the difference with respect to the starting situation.
Actually, in some development processes the transition between the two rows
may actually be explicitly performed as an individual activity “make more gen-
eral”, i.e., the feature implementation may be first aimed for a specific system,
but within the bounds of the reference architecture and is later on turned into a
generic implementation. Using as notation for the quality
impact of this activity, we can make the following assumptions:

•

•

•

Using this simplification we can again reduce the number of quality sub-models
from six to four. Note, that in order to make use of this simplification it is suffi-

QPL with reeng sit f P,(), ,() QPL spec reeng sit f P,(), ,()=

QPL with reuse sit f P,(), ,() 0=

QPL gen sit f P,(),()

QPL for new sit f P,(), ,() QPL spec new sit f P,(), ,() QPL gen sit f P,(),()+=

QPL for adapt sit f P,(), ,() QPL spec adapt sit f P,(), ,() QPL gen sit f P,(),()+=

QPL for reeng sit f P,(), ,() QPL spec reeng sit f P,(), ,() QPL gen sit f P,(),()+=

12 Copyright  Fraunhofer IESE 2000

cient to have either or both and
 for at least one x.

Using the above simplifications we were able to reduce the required number of
quality sub-models from ten to four. Additional reductions may be possible for
specific qualities.

QPL gen sit f P,(),() Q for x sit f P P'[],(), ,()
Q with x sit f P P'[],(), ,()

13Copyright  Fraunhofer IESE 2000

3 An Approach for Developing Product Line Distortion Models

In the preceeding sections we discussed at quite some length the various modes
for which we will need (sub-)models and the relationships among them. In this
section we will discuss in more depth, a so-to-speak default approach for build-
ing these models. This approach will hardly be the most optimal approach for all
kinds of product line aspects. However, we think it allows a reasonable fall-back
strategy in cases where no other good approach is known. In particular, the
issue of product-line specific models has not yet achieved a lot of attention in lit-
erature. Consequently, no other default approaches exist.

In cases, where the existing approach for quality estimation approaches for the
base quality can be extended towards product line engineering, this should be
done. In the other cases (i.e., no such extension seems reasonable), modeling
the base quality using an existing approach and modeling the product line dis-
tortion using the approach described here, should be regarded as a standard
approach.

The approach described here is actually derived from the Cobra-method for
cost- and risk-modelling [3]. Consequently, integration with the approach
described here for developing the product line distortion model is rather
straightforward.

The basic approach for developing product line distortion models as it is
described here is based on the Corba [3] model-building approach.This
approach integrates both qualitative (expert knowledge) and quantitative data.
This reduces the overall requirements of this approach for data, which in turn is
a major requirement for a model-building approach which is suppossed to be
used in conjunction with scoping, where usually only rather little data is avail-
able.

The model-building phase of the Cobra-method consists of the following main
steps:

1 Identifying the quality drivers

2 (opt.) Develop qualitative causal model

3 Develop Data Questionnaire

4 Quantify Relationship

5 Operationalize Model

Below we will now discuss each of these steps in turn with a particular emphasis
on how the steps differ from the corresponding steps in the original method and

14 Copyright  Fraunhofer IESE 2000

what is particular about their application in the context of product line distortion
models.

3.1 Identification of Quality Drivers

There are actually two levels of quality driver identification. First of all the various
quality drivers potentially relevant to a certain quality should be identified. These
should be described in the corresponding quality report (cf. Section 1). As a basis
for this both literature and experts can serve. If we use this approach to develop
base models for a quality, we can freely use literature as a basis for this. How-
ever, specifcally for quality distortion models there is hardly any applicable litera-
ture available. In this case we have to rely even more on expert knowledge.

Given such a description of potential quality drivers, those quality drivers partic-
ularly relevant to the specific project need to be selected. This should be usually
be performed by the project experts. These are on one hand the experts of the
organization coming from the environment, and on the other hand experts on
the product line approach that is introduced in the organization. The latter
group of experts may also be part of the organization or may come from the
consulting organization, if there is not yet a sufficient understanding in the
organization of the new approach.

When selecting the experts for performing the rating one should keep in mind
that we are here addressing the product line distortion model, but product line
development may still be a rather new idea to them at this point, thus the group
responsible for the introduction of the new approach needs to be appropriately
included. This is a particular important issue if the model building for the base
quality and for the product line adaption happens simultaneously.

A typical approach is to express the importance of the various quality drivers
using importance scales1. As these scales are constructed in such a way as to
provide numerical equivalences, we can than compute an average importance
values for the different influential quality drivers. Note, that this ranking
approach is substantially different from the approach used in [3].

This initial rating can be performed upfront by the experts via questionnaires.
After these ratings have been gathered, agreeement of the experts needs to be
analyzed. Typical agreement measures are the standard deviation among ratings
or Kendall’s coefficient of concordance. When disagreements have been found
they should be discussed with the experts and resolved.

From the final list the most important factors should be selected as a basis for
the modeling effort.

1 Importance scales (both in german and in english) were developed and are described in Appendix A.1.

15Copyright  Fraunhofer IESE 2000

3.2 Develop Qualitative Causal Model

This step aims at identifying interactions among the individual quality drivers.
The reason for this is that interactions among the different quality drivers may
change the impact for the quality drivers on the final result and thus on the
overall precision of the final estimates.

While capturing the interrelations among quality drivers will improve the overall
precision of the final models, it also has the disadvantage that it puts a higher
workload on the experts, thus we regard this step as optional. The decision has
to be made as a trade-off between the increase in precision that can be
expected and the additional load on experts.

Like the first step, this step can happen on two levels: during development of
the general quality model and during development of the project-specific quality
model. In the first case only qualitative causal relations that hold generally (i.e.,
for every kind of project) among the different quality drivers are captured. Dur-
ing development of the project-specific model this model will be restricted to
the specific quality drivers relevant in the specific project and will be augmented
with additional causal relations that hold only for the specific project.

The standard way for developing a causal model is to perform expert interviews
where the experts are asked in what way the various quality drivers are expected
to impact the quality and whether are other cost drivers that have to be consid-
ered simultaneously in order to determine the impact of the cost driver.

Usually, different experts will identify different relationships. Consequently, the
various proposal need to be gathered, integrated, and the final model needs to
be validated with the experts.

This basic approach is identical on both levels, the general quality model level
and the project-specific quality model level.

3.3 Develop Project Data Questionnaires

For each of the quality drivers identified above appropriate questionnaires need
to be developed, which basically provide a characterization of the drivers in
terms of independent variables. For the rest of the process it is helpful to use
equally spaced scales as values for the variables.

Typically used scales are frequency, evaluation or agreement

A standard variable decomposition should be provided along with the list of
quality drivers in the general quality guide.

This basically reduces the development of project specific questionnaires to the
selection of the relevant subset of variable definitions. However, if additional
qualitative causal relationships are identified for the project they need to be

16 Copyright  Fraunhofer IESE 2000

taken into account for the questionnaires. Further, the final questionnaires
should be validated with the people who will have to fill in the questionnaires,
finally, whether they are useable from their point of view.

Experience shows that depending on the people involved scales sometimes will
need to be adapted appropriately [3].

3.4 Quantifying Relationships

The quantitative relationships are highly project- and situation-dependent. Con-
sequently, we will not be able to provide general quantitative information on the
quality model level. Therefore, the quantification has to happen completely on
the project level. An approach for performing such a quantification relying on
triangular distributions has been described in [3]. The approach described here is
strongly based on this approach.

First, we differentiate between the nominal case and an extreme quality-over-
head1 situation. The goal is to determine how high the quality-overhead will be
if the extreme situation happens (e.g., if there is no domain knowledge avail-
able, then quality will rise by 30 per cent). This information is gathered from the
experts, where they are asked for minimal, maximum, and most-likely values for
the quality. We call these points respectively, where q rep-
resents the quality in question. From these three points a triangular distribution
is constructed which is used as a basis for deriving the final estimates.

Obviously, the situation is much more complex if interactions among relation-
ships is taken into account. Then there will be different distributions depending
on the exact value of the interacting factor. Briand et al. [3] provide a description
of this approach, which we will not repeat here.

3.5 Operationalizing the Model

In the previous steps we determined the individual relationships the model con-
sists of. In this section, we will briefly discuss how these relationships are used to
compose a final model.

This final model will then be used to derive the specific values for individual
assets that shall be scoped for product line development. We use the notation

 to denote the value derived in characterizing the asset a with respect to
quality driver . Using the quantities derived in Section 3.4 above, we can

1 We use here the concept of overhead in general. In cases, where there is a quality for which more is better
(e.g., reliability) it would be actually more precise to use the term quality reduction.

λq min, λq max, λq ml,, ,

vλ a()
λ

17Copyright  Fraunhofer IESE 2000

derive final values for the various quality overhead values specific for the current
situation (i.e., the specific assets that shall be scoped at a certain point in time).

The basic approach is to characterize the assets in terms of the quality drivers
that are seen to be relevant. The specific values that are given are transformed
into numbers from 0..n, where 0 corresponds to the nominal case and n to the
most extreme. This value is then used to scale the distribution derived in Section
3.4. This distribution can then be employed in different ways, e.g., using Monte-
Carlo-Simulation (cf. [3]) or using the most likely value of the distribution as a
predictor. No matter what way the quality overhead estimate is derived, we
denote it as where v(a) stands for the values characterizing
the asset a.

As we assume the individual quality overhead factors are orthogonal, we can
arrive at the final quality overhead by adding up the individual quality overhead
numbers.

The operationalization of the model as discussed above only relates to the qual-
ity overhead part. In addition we need a base estimate to derive the final esti-
mate. If we have both a base estimate and measurement data, we can in turn
use this data to improve the relationships we found.

o a() o v a)()()=

18 Copyright  Fraunhofer IESE 2000

4 Structure of Situation-specific Models

In Section 3 we discussed in general, how quantitative models for product line
development can be constructed. However, as we discussed in Section 2.2 there
are many different modes of software development in the case of product line
development, each of which basically needs a product line distortion model. In
Section 2.3 we discussed ways of reducing the overall number of product line
distortion models we finally need to develop using the approach described in
the preceeding sub-section.

Besides the various distortion models it will usually be relevant to develop a
product line base model . (Obviously, if such values are
already given (e.g., through a different kind of model, or for another reason,
then only distortion models are needed).

Using the notation presented in Section 3.5 we can describe the distortion
purely as quality overhead times a basic constant typical of the mode:

There are two aspects particularly noteworthy about this description:

1 We replaced a (for asset) by , i.e., a feature characterization relative
to a project context, as this is what we mean by an asset in the context of
asset scoping.

2 We anotated the overhead notation ‘o’ with the mode, as different charac-
teristics λ may be relevant in different modes and if the same characteristics
are relevant still different values may apply in the various situations.

Using this notation we can give the following formulation for mode-specific
quality estimates: (using base=spec,new)

That is we describe a product line mode basically as a distortion of the base
mode.

Q spec new sit f P,(), ,()

αmode

δQ mode sit f P,(),() αmode omode sit f P,()()∑⋅=

sit f P,()

Q mode sit f P,(),() δQ mode sit f P,(),() Q base sit f P,(),()⋅=

19Copyright  Fraunhofer IESE 2000

5 Product Line Quality Models

In the preceding section we discussed how product line models for the individ-
ual product line development modes may be developed. However, the ultimate
goal of the quality models we are looking at in this report is to analyze the
potential for product line development certain assets exhibit. In order to do so, it
is insufficient to merely analyze a certain development step for a single product,
but we have to look at all the different development modes an asset goes
through in product line development in order to determine the impact of the
different development traces.

We call these possible development traces scenarios. The typical scenario for
product line development would be to develop an asset in domain engineering
for reuse and then to reuse it in all products. On the other hand, the typical sce-
nario for stovepipe-development would be to develop an asset of the respective
functionality individually for all the different systems.

The mode-specific models we discussed in Section 2 are the basic building
blocks for determining the quality impact of the different development scenar-
ios. In order to describe how these different (sub-)models interact in order to
derive a quality model for the whole product line, we will now introduce a short-
hand notation for scenarios. As a basis we use the mode notation introduced in
Table 1 and augment it with product specifications.

As we simply want to specify development actions for individual features, we
keep this feature implicit and only give the mode the feature development goes
through and the product it is developed for. We write the development
approach as name of the situation, indexed by the starting mode, and write the
product the development relates to in brackets. Some examples of this notation
are given in the following table:

Development situation Shorthand

System-specific development, develop artifact from scratch for product P specnew(P)

System-specific development, adapt artifact from different product P’ specadapt(P, P’)

System-specific development, use asset reengineered from product P as basis specreeng(P)

Develop system with reuse, based on reusable asset, for product P withreuse(P)

Develop system with reuse, but develop feature from scratch for product P withnew(P)

Develop asset for reuse from scratch fornew()

Develop for reuse, based on asset developed for specific product P
(Generalize asset)

foradapt(P)

Table 3: Scenario Situation Notation (Examples)

20 Copyright  Fraunhofer IESE 2000

Using this notation we can now formally describe complete development sce-
narios. For example, the standard development scenario for product line devel-
opment would be described as (in a situation with four products):

S1 = fornew(), withreuse(P1), withreuse(P2), withreuse(P3), withreuse(P4) (1)

In comparison a development scenario where the functionality would first be
developed for a single system, then extended for generic reuse, and then reused
over several products would be written as:

S2 = specnew(P1), foradapt(P1), withreuse(P2), withreuse(P3), withreuse(P4) (2)

Further, the standard stove-pipe approach would then be written as:

S3 = specnew(P1), specnew(P2), specnew(P3), specnew(P4) (3)

Using this notation, we can easily describe various development scenarios. One
should also note that these scenarios can also be interpreted as operators. Thus,
each of these operators provides the value of the respective quality that results
(i.e., is estimated) if the operator is applied to the feature (i.e., the feature is
developed in the way described by the development scenario). In cases, where
we use scenarios in such a way we will add the specific quality as an index.

[S3]q(f) = [specnew(P1), specnew(P2), specnew(P3), specnew(P4)]q(f) =
[specnew(P1)]q(f) o [specnew(P2)]q(f) o [specnew(P3)]q(f) o [specnew(P4)]q(f) (4)

In Equation 4 we use f to denote the feature on which the models are applied, q
denotes the specific quality in question and o denotes the composition operator
applying for the quality q.

The specific composition operator may vary based on the quality. For example, if
the quality under study is cost, then the composition operator is + as costs are
additive. Thus Equation 4 can be expressed (for q=cost) as:

[S3]cost(f) = [specnew(P1)]cost(f) + [specnew(P2)]cost(f) + [specnew(P3)]cost(f) +
[specnew(P4)]cost(f) (5)

Or simply as:

(6)

Using this approach we can now simply denote the quality advantage of per-
forming product line development over traditional development as the differ-
ence between the quality attribute value for product line development and the
standard approach (stove-pipe-development) as the numeric difference between
the two:

S3[] tcos f() specnew Pi()[] tcos f()
i 1=

4

∑=

21Copyright  Fraunhofer IESE 2000

(7)

Note that the way the equation is written we define to be positive in case
there is a benefit of product line development over stove-pipe development.
While Equation 7 only holds for four products the generalization is straightfor-
ward and is thus not further discussed here.

Equation 7 is actually a simplification in the sense that we do only compare
stove-pipe development with product line development. This gives a relative
benefit. However, in the more general case we will be actually interested in the
question whether product line development is better than any other form of
product development. This absolute advantage can also be defined using the
notation introduced above:

(8)

However, in all practical cases we will use Equation 7 for deriving the benefit of
the product line approach.

∆Q f() S3[]Q f() S1[]Q f()–=

∆Q

ΘQ f() min S[]Q f() Scenarios S,S S1≠{ } S1[]Q f()–=

22 Copyright  Fraunhofer IESE 2000

6 Usage of Quality Models in Scoping

The quality models developed based on this guidebook are supposed to be used
for supporting planning and management of product line development, in par-
ticular in the context of PuLSE-Eco. In particular, they are supposed to be the
basis for deriving the asset scope, i.e., determine the assets that should be
developed in a reuseable manner. Thus, the models are used within the product-
map-based part for detailed scoping. At this point in the process a coarse-
grained scope is already available.

In this section we will discuss some general issues of model structure, which are
mostly orthogonal to the issues discussed in the preceeding sections, and are
strongly related to the usage of the models. In the following subsections we will
in turn discuss categorizations of quality drivers and how these categorizations
relate to the product map.

6.1 Categorizations of Quality Drivers

Depending on the specific purpose of the categorization, a categorization of
quality drivers can be performed along many different dimensions. Some exam-
ples of such categorizations are given in literature. In particular, for the purpose
of specific (single-system) quality models different categorizations have been
described. However, also in the context of product line development some cate-
gorizations have been described, in particular, by Bandinelli et al. The categoriza-
tion used in [6] partitions quality aspects along the following dimensions:

• Organisation

• Personnel

• Process

• Products

While such a categorization of quality drivers is very helpful in order to organize
data gathering and understanding of influential factors, a different categoriza-
tion is important to assist in using the quality models for scoping. This differenti-
ation is based on the scope of the quality drivers. We distinguish the following
scopes:

• Product Line — the aspect or property holds for the complete product line
(e.g., certain organization specific aspects fall into this category).

23Copyright  Fraunhofer IESE 2000

• Individual Product(s) — The aspect holds only for certain products, e.g., if
only certain products need to have a certification.

• Individual Feature(s) — The aspect holds only for certain features, but with
respect to these features for all products exhibiting the feature (e.g., if certain
web-based features exist, they will usually be stronger impact by change,
than other features, but this holds for all products in the same way).

• Individual Product/Feature combinations — The aspect holds only for certain
Product/Feature combinations, e.g., the complexity of a certain functionality
in a specific product (supposed the complexity depends on the other features
interacting with this one).

This is similar to the categorization given by Bandinelli and Sagarduy , who ana-
lyzed the scope of reuse investment models in [7]. They came up with the fol-
lowing differentiation1:

• Domain Scope — the investment model analyzes the return over all products
in the domain. This can be taken to correspond to our product line level.

• Project Scope — the investment model analyzes the return over a single
product. While this basically corresponds to our product level, the results are
fundamentally different, as here individual products are analyzed from the
perspective that they simultaneously develop for and with reuse.

• Component Scope — the investment model analyzes the return for a single
component. Here, a further distinction is made between producer and con-
sumer view. This is further refined in our categorization, as we differentiate
between complete feature and product/feature combinations.

The differences among the two classifications comes from the difference in their
underlying goals. In particular, the classification given by Bandinelli and Sagar-
duy does not mention product/feature combinations, as they are only looking at
the level of complete investment models. However, all their model scopes can be
simulated in a straightforward manner, if we represent information using a
product map based approach. Actually, Equation 7 gives the combined benefit
from producer and consumer view over the whole organization.

Project and domain scope evaluation will be discussed in more detail in Section
6.3. Additional information on making investment decisions using this approach
is given in the PuLSE-Eco method guide [4].

1 Note, that this is not — like ours — a categorization meant to differentiate among different types of quality
drivers, but which is meant to differentiate among different kinds of investment models.

24 Copyright  Fraunhofer IESE 2000

6.2 Process Aspects

When using the models developed according to this guide, usually the realm of
the process under consideration will vary among applications, e.g., whether
maintenance benefits should be considered or not, whether only implementa-
tion benefits should be regarded, etc.1

Thus, in order to tailor the models appropriately to the individual projects, the
various models have to make their relationship to the process explicit. While it
will usually not be possible to develop per-process-step sub-models, this enables
to select those quality drivers up-front, that could be potentially relevant to the
process steps under consideration. Clarity of the process scope is also relevant in
order to baseline the models appropriately (how many person-months per Line
of Code). We will use the task decomposition given in Section 2.2 as our refer-
ence process model.

As we discussed in Section 2.2, some features can be directly linked to individual
features, while others cannot be linked to individual features, as they discuss the
relationship among features like reference architecting does. However, the qual-
ity impact (e.g., effort) will still depend on the features over which it stretches.
Consequently, we will simply take those activities into account by attributing a
corresponding sub-part of the quality aspect value according to the proportional
size of the feature (e.g., in the case of effort we will attribute x/s-parts of the
effort of domain analysis to a feature, if x is the feature size (corrected by the
quality drivers) and s is the overall project size.

6.3 Evaluating Assets Using the Product Map Approach

In this section, we briefly describe how the individual assets are evaluated using
a product map. The product map is a tabular notation for capturing the individ-
ual information items relevant to evaluating the possible assets. This table gives
an overview of the product line in the sense, that it shows the various to be
developed products along the horizontal axis and lists the various features along
the vertical. Further, it lists the quality driver (values) relevant to evaluating the
various potential assets. At this point the categorization of quality drivers based
on their scope as described above comes in:

• Product Line

• Individual Product(s)

• Individual Feature(s)

1 In one real application we had the situation that the organization was only interested in design, implemen-
tation and testing, but not in analysis or maintenance.

25Copyright  Fraunhofer IESE 2000

• Individual Product/Feature combinations

Depending on the specific category of the quality driver, it will show up in a dif-
ferent place in the product map. This is shown in Table 4.

Note, that the quality drivers on the product line level can be treated as con-
stants in the model and thus do not show up explicitly in the product map.
Using this approach, we can in an easy manner capture and evaluate the infor-
mation relevant to the possible assets. The underlying evaluation approach cor-
responds to Equation 7. This evaluation is then shown on a per-quality basis to
the right of the product map.

The integration of the per-quality evaluations is then based on a weighting
approach. The details of this are beyond the scope of this report and are dis-
cussed in [4].

The mapping of quality drivers to the product map as discussed above works in
a straightforward manner in cases where the various activities can be linked to
individual features (cf. Section 2.2). If process steps are taken into account that
cannot be mapped in a straightforward manner onto a feature-specific level, we
will distribute the quality impact in a proper manner over the individual features
as discussed in Section 6.2.

Table 4: Segments of a Product Map

fe
at

ur
e-

re
la

te
d

qu
al

ity

dr
iv

er
s

product-
based quality

drivers

Product-based quality driver values

Fe
at

ur
e-

ba
se

d
qu

al
ity

dr

iv
er

 v
al

ue
sfeature-/

asset-
list

Product list

Product/Feature
quality driver

values

Q
ua

lit
y

fr
un

ct
io

n Σ

pe
r q

ua
lit

y
as

se
t

ev
al

ua
tio

n
va

lu
es

ov
er

al
l a

ss
et

 e
va

lu
at

io
n

va
lu

es

unused

26 Copyright  Fraunhofer IESE 2000

As discussed above, the product map does not show the distribution over time.
However, in some cases it is needed to be able to determine the distribution of
the quality aspect over time (cf. investment models, [4]). This is strongly sup-
ported, if we have per-activity sub-models. If those are not available, it is useful
to have at least a standard quality decomposition available. If possible such a
decomposition should be given by the individual quality guides. At least
expected deviations of the product line case from the single-system develop-
ment should be identified.

27Copyright  Fraunhofer IESE 2000

7 Model-Guides: Instantiating the Meta-Quality Guide

The overall purpose of this guidebook is to provide a framework for the individ-
ual quality models. These quality models are in turn described via individual
model guidebooks (cf. Section 1). In this section we provide a generic outline for
the individual model guides in order to promote standardization and effective
working with these model descriptions. This section can be regarded as a
requirements document for model guidebooks.

The overall structure of the individual model guides is as follows:

1 Background and Theory

2 Adaptation of the Framework

3 Identification of Quality Drivers

4 Experiences and Issues

5 Appendices

In the rest of this chapter we will describe the specific contents of these sections
in more detail, devoting a subsection to each of these chapters.

7.1 Background and Theory

In this section a general discussion of the quality under analysis should be given.
This should give some background material and the quality-specific terminology.
Especially, theoretical issues particular to the treatment that is given to the sub-
ject in this guide should be presented and justified (e.g., preference of a certain
analysis approach over others).

In cases where a multi-staged approach is necessary, e.g., if cost is defined
through effort or reliability based on defects, the relationship of the two quali-
ties should be discussed in this section.

This section should also provide comments on the major information used as
input to the model guide.

28 Copyright  Fraunhofer IESE 2000

7.2 Adaptation of the Framework

The framework describes a standard approach, a top-level process for product
line development, and standard situations. While we expect them to hold more
or less for all individual quality guides, some deviations might be necessary for
specific qualities. These should be described in this section.

In particular, the report should explicitly discuss the following issues:

• Product Line Development Situations — What is the relationship of the qual-
ity to the various situations, e.g., will reuse have an impact on the quality

• Process Steps — What is the relationship of the quality to the various situa-
tions, e.g., do we need to consider only a subset of the process steps, do we
need to alter or augment the list of steps

• Situation Reduction — Which situation reductions apply as given in the
framework report and which reductions apply in addition to these.
The report should provide at this point an overview of the specific product
line quality (distortion) models that need to be developed.

7.3 Identification of Quality Drivers

This will usually be the most comprehensive part of the guidebook. It should first
consist of an overall account of how analysis of quality drivers were performed
(e.g., who was interviewed on which topic, when) and then followed by a
detailed description of the various factors that could be identified.

The factor list is the core part of the whole quality model documentation. In
order to provide an overview it should start with an overview diagram structur-
ing the various factors into groups and identifying any general interactions (i.e.,
interactions that are supposed to be independent of the specific model instanti-
ation). Then a detailed documentation of the model should follow, structured
according to the submodels (base-model, various distortion models). This
detailed documentation identifies the relevant factors, and provides measure-
ment instruments for them.

Thus the overall sub-structure of this part should be something like this:

• Description of the Analysis

• Overview of the Model

• (per sub-model one section) Description of quality drivers

29Copyright  Fraunhofer IESE 2000

7.4 Experiences and Issues

In this section general information resulting from application or relevant to the
application of the model guide should be described. As it should also describe
experiences and lessons learned from applying this guide, it is supposed to con-
tinuously evolve over time.

7.5 Appendices

The appendices should contain supporting material for instantiating the model
application. At least the appendices should contain:

• Questionnaire(s) for identifying the major project-specific factors
(these should be using the relevancy sclale given in Appendix A).

Further appendices may exist depending on the specific quality guide.

30 Copyright  Fraunhofer IESE 2000

8 Model-Guides: Project Specific Instantiation

In the previous section, we discussed the general requirements for quality guides
in general. In this section, we will in turn discuss how the documentation of the
application of model guides in a certain project context should happen.

Usually a single project documentation will describe all qualities relevant to the
project scoping in an integrated manner. The major aspect of the project docu-
mentation is that it should provide a basis to understand:

• Why certain qualities were chosen

• How was the project conducted (what was special about the application)

• What were the results (e.g., of applying the questionnaires)

• Which factors were chosen

• How were they quantified

• Which were the final models used in scoping

The following outline follows these requirements:

1 Identified business goals and derivation of the involved qualities

Using the business goal description for PuLSE-Eco (cf. [4]), the relevant busi-
ness goals are identified, weighted, and traced to the relevant quality mod-
els.

In this context also the relationship between the abstract process given in the
quality guide and the concrete process in the organization should be dis-
cussed.

2 Identification of quality models

An overall description of the how the relevant quality drivers were identified
is given (if there are substantial differences, this can happen on a per-quality
basis).

3 Resulting quality models

Per quality model it is documented, what were the questionnaire-results,
which drivers were chosen as most relevant, and what were the results of the
quantification of the drivers. Derived from that the specific mathematical
evaluation models are given, which will be used for the final scoping.

31Copyright  Fraunhofer IESE 2000

The sections described above will usually be only part of a larger project-specific
scoping report.

32 Copyright  Fraunhofer IESE 2000

9 Summary

In this report, we described the basis for developing quality models that can be
used by the PuLSE-Eco scoping approach to provide a quantitative basis for the
scoping of the asset base.

We described the general structure of these models as well as the necessary
notation and terminology to discuss the specific models and perhaps needed
deviations from the standard model.

In particular, we discussed the process aspects of product line development, we
discussed the general structure of product line quality models, and discussed
how specific quality models can be developed.

Further, we discussed in detail the relationship between the meta-quality model
and the specific quality model guides and how these can be instantiated for the
specfic projects.

33Copyright  Fraunhofer IESE 2000

10 References

[1] Klaus Schmid. Product Line Mapping Report. IESE-Report No. 028.00/E,
Fraunhofer IESE, Sauerwiesen 6, D-67661 Kaiserslautern, 2000.

[2] Jürgen Wüst. An Effort-Model for Product Lines. Technical Report, Fraun-
hofer IESE, Sauerwiesen 6, D-67661 Kaiserslautern, 2000. Forthcoming.

[3] Lionel C. Briand, Khaled El Emam, and Frank Bomarius. COBRA: A Hybrid
Method for Software Cost Estimation, Benchmarking, and Risk Assessment.
20th International Conference on Software Engineering, 1998, Kyoto,
Japan, pp. 390–399.

[4] The PuLSE-Eco Scoping Method. Technical Report, Fraunhofer IESE, Sauer-
wiesen 6, D-67661 Kaiserslautern, 2001. Forthcoming.

[5] Draft ISO/IEC FCD 9126-1.2

[6] Sergio Bandinelli and Goiuria Sagardui Mendieta. Domain Potential Analy-
sis: Getting Serious About Product-Lines. Third International Workshop on
Software Architectures for Product Families, IW-SAPF-3, Las Palmas de Gran
Canaria, Spain, March 15-17, 2000.

[7] Sergio Bandinelli and Goiuria Sagarduy. A Unifying Framework for Reuse
Economic Models. Technical Report, European Software Institute, ESI-1996-
Reuse03, November, 2000.

34 Copyright  Fraunhofer IESE 2000

A Scales

A.1 Importance Scales

For ranking the importance of the various quality drivers (influential factors on
the quality) scales have been developed both in english and in german.

(Further validation of these scales might be appropriate

German:

English:

Value 0 1 2 3 4 5 6 7 8 9

Text nicht wich-
tig

etwas
wichtig

weitestge-
hend wich-

tig

ziemlich
wichtig

extrem
wichtig

Table 5: German Version of Importance Scale

Value 0 1 2 3 4 5 6 7 8 9

Text not
relevant

somewhat
relevant

mostly rel-
evant

extremely
relevant

Table 6: English Version of Importance Scale

Copyright 2001, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Document Information

Title: A Framework for Product
Line
Quality Model Develop-
ment
The PuLSE-Eco Meta Qua-
lity Model

Date: June 21, 2001
Report: IESE-047.00/E
Status: Final
Distribution: public

