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Abstract
The necessity to demonstrate that Machine Learning (ML) systems can be safe escalates with the ever-increasing expectation
of deploying such systems to solve real-world tasks. While recent advancements in Deep Learning reignited the conviction
that ML can perform at the human level of reasoning, the dimension and complexity of Deep Neural Networks pose a
challenge to using classical safety verification methods. While some progress has been made in the supervised learning
landscape, works focusing on sequential decision-making tasks are still sparse. In this paper, we provide evidence obtained
in simulation to support that uncertainty estimation can help to prevent accidents caused by Reinforcement Learning (RL)
agents deployed in out-of-distribution environments, focusing on industrial-grade applications. We also discuss the aspects
we believe are necessary for building a safety assurance case for uncertainty-aware RL models.
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1. Introduction
This position paper is presented to serve as motivation
for the long-term objective of using the uncertainty es-
timation capabilities of a Reinforcement Learning (RL)
agent to improve its functional safety and enable RL as
a viable framework to be deployed in industrial-grade
applications. Although not a new concept, recent accom-
plishments have reignited the interest in using RL as a
viable method to obtain agents able to interact with a
wide range of environments (see [1, 2, 3]). These results
were only possible due to the integration of Deep Neu-
ral Networks (DNNs) as function approximators for RL
agents.

According to some authors (e.g., [4, 5, 6]), the industry
is eager to apply Machine Learning (ML) and DNNs more
broadly in their processes, with the possibility to increase
the safety level by aiding humans in processes that are po-
tentially harmful or even automate complex tasks beyond
human capabilities. According to [7], possible applica-
tions include aircraft control, power systems, medical
systems, and the automotive domain. However, at the
same time, industrial players are historically very con-
servative and only adopt new technologies when there
is enough evidence that supports their reliability and
cost-effectiveness. In the end, wider adoption of ML will
depend on the mitigation of existing shortcomings. DNNs
excel at learning complex representations from a bulk
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of data, allowing to reach state-of-the-art performance
in tasks such as computer vision, natural language pro-
cessing, and control of autonomous systems. However,
DNNs are too complex and have too many parameters
to be verified using standard verification and validation
methods. On top of that, DNN models are often overcon-
fident and incapable of recognizing that their predictions
might be wrong [8]. The combination of these factors
has put DNNs at the center of safe AI research in the past
few years. The main goal is to guarantee that DNNs can
be safe, reliable, secure, robust, explainable, and fair [7].

Another issue with DNNs, which also extends to Deep
RL, is formalizing how capable they are of generalizing
over novel instances. Despite the excellent results ob-
tained with known benchmarks, there is enough evidence
suggesting that DNNs are susceptible to distributional
shifts, also labeled as out-of-distribution (OOD) instances
(e.g., [9, 10]). That means that the model output is not
reliable when fed with data drawn from a distribution
that differs from its training data distribution, with the
risk of accidents when facing OOD scenarios. This is-
sue can be solved by making sure the model is trained
with data that covers every aspect it might encounter
after deployment, which is intractable for open-world
complex tasks. Alternatively, some methods have been
suggested to make DNNs robust to distributional shifts,
such as in [11]. However, making DNNs able to handle
heavy data distribution shifts is a challenging task and
the existing methods are limited. We follow a different
direction, which consists in using a monitor to identify
the OOD instances. Once OOD is detected the system
can switch to a safe control policy (that can be as simple
as "stop and wait for help"). We follow the hypothesis
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that uncertainty should grow higher when facing the
unknown (same as given in [12]) and use uncertainty
estimation as a proxy metric to classify OOD inputs.

1.1. Scope and structure of the paper
This paper aims at showing how uncertainty-based OOD
detection can help in the long-term goal of building a
solid safety case for RL agents, which must be backed
by solid safety arguments. That is not the only factor
necessary to make certification of RL models possible,
but one of the most important aspects. The paper will
focus on industrial applications of AGVs. Industrial envi-
ronments are mostly guided by specific regulations that
are helpful when outlining the system requirements and
specifications in terms of safety. We believe this can also
be used as a starting point when expanding the frame-
work to a more general case, covering a larger range of
applications.

To provide stronger evidence that this approach has
the potential to help with deriving strong safety argu-
ments, experiments with an environment that simulates
the application of transporting goods with a vision-based
automated guided vehicle (AGV) in warehouses were con-
ducted. The obtained results indicate that uncertainty
estimation and OOD detection can help to identify un-
known situations that might lead to accidents. At the
end of the document, an outline with missing aspects for
achieving the long-term objective is presented.

The document is structured as follows: section 2 shows
publications available in the literature to serve as back-
ground and motivation for this paper. In section 3 the
uncertainty-aware RL algorithm is shown. Section 4 con-
tains the experiments and preliminary results and section
5 is the conclusion with the main takeaways and future
steps outlined.

2. Related Work
AI for safety-critical applications: Different authors
defend that to enable ML models to solve safety-critical
tasks, the models must be assured by evidence that the
ML components will behave in accordance with existing
safety specifications. [13] argue that the evidence must
cover all aspects necessary to show why these compo-
nents can be trusted. The authors also present a survey
with different methods that help in collecting the evi-
dence for the whole ML lifecycle. In [7], an extensive
study in neural networks applied to high assurance sys-
tems is presented. In [14], the authors identify problems
that arise when using ML following ISO 26262, a stan-
dard that regulates the functional safety of road vehicles.
They claim that the use of ML can result in hazards not
experienced with conventional software. [15] also dis-

cuss the shortcomings of fitting ML systems to ISO 26262
and how the Safety of the Intended Functionality (SOTIF),
published in the ISO PAS 21448, offers a better alterna-
tive for safety assurance. The authors also present an
extensive list of safety concerns related to DNN models,
including the risk of the data distribution not being a
good approximation of the real world and the risk of
distributional shifts over time. [16] also argue that the
analysis of ML systems is fundamentally incompatible
with traditional safety verification since safety engineer-
ing approaches focus on faults at the component level and
their interactions with other system components while
systemic failures experienced in complex systems are not
necessarily consequence of faults from individual parts
of the system. Therefore, the safety arguments should
also reflect the inherent complexity and unpredictability
of ever-changing environments where ML systems are
designed to operate.

Machine Learning and Uncertainty: The impact of
uncertainty in Machine Learning is a recurrent topic of
research, with a plentiful of publications discussing how
ML systems should manage uncertainty and presenting
methods to quantify uncertainty. In [17], the authors
present a more general discussion on the properties of
Bayesian Deep Learning models used for computer vision
tasks that are affected by aleatoric and epistemic uncer-
tainties (the first is inherent to the system stochastic prop-
erties while the former is related to a lack of knowledge).
In [18], an introduction to the topic of uncertainty in ML
models is provided as well as an overview of the main
methods for capturing and handling uncertainty. In [19],
the authors show how autonomous systems are affected
by uncertainty and how correctly assessing uncertainty
can help towards improving the supervision of inherently
unsafe AI systems. Furthermore, a conceptual frame-
work for dynamic dependability management based on
uncertainty quantification is presented. In [20], uncer-
tainty quantification as a proxy for the detection of OOD
samples is discussed, with different methods compared
in image classification datasets, namely CIFAR-10, GT-
SRB, and NWPU-RESISC45. Some popular uncertainty
quantification methods for DNN models are Monte Carlo
Dropout [21], Deep Ensembles [22], and Evidential Deep
Learning [23].

Reinforcement Learning and Uncertainty: Most
of the work combining uncertainty quantification and
ML cover Supervised Learning, with a strong focus on
computer vision tasks. However, some literature also
shows how uncertainty-aware RL agents can be obtained.
A popular application is to use uncertainty to improve
exploration. This class of algorithms is motivated by the
principle of Optimism in the Face of Uncertainty (OFU)



and describes the tradeoff between using high-confidence
decisions, that come from the already established knowl-
edge, and the agent’s need to explore state-action pairs
with high epistemic uncertainty [24].

However, this paper will rather focus on uncertainty
as a proxy for detecting domain shifts in decision-making
agents. In [25] it is proposed to define the data distribu-
tions in terms of the elements that compose a Markov De-
cision Process (MDP), where minor disturbances should
fall under the generalization umbrella and large devia-
tions represent OOD samples. However, determining
which semantic properties represent such changes and
how to measure them is left as an open question. In [26],
the authors present an uncertainty-aware model-based
learning algorithm that adds statistical uncertainty es-
timates combining bootstrapped neural networks and
Monte Carlo Dropout to its collision predictor. Mobile
robot environments are used to show that the agent acts
more cautiously when facing unfamiliar scenarios and
increases the robot’s velocity when it has high confi-
dence. In [27] this method is extended to environments
with moving obstacles. The authors also combine Monte
Carlo dropout and deep ensembles with LSTM models to
obtain uncertainty estimates. A Model Predictive Con-
troller (MPC) is responsible to find the optimal action
that minimizes the mean and variance of the collision
predictions.

3. Uncertainty Estimation and RL
In this section, we show an uncertainty-aware RL algo-
rithm based on Variational Auto Encoders (VAEs). Dif-
ferent uncertainty quantification methods could be used,
but VAEs are an interesting choice for vision-based sys-
tems. They are considered robust models, are trained
in an unsupervised manner (i.e., labeling samples is not
necessary), are fast to train, and their generalization capa-
bilities can be visually inspected by comparing the input
and reconstructed images. However, the safety argumen-
tation would benefit from a comparison between other
alternatives, with the strengths and deficiencies of each
approach addressed, which will remain as a future work
suggestion.

3.1. Reinforcement Learning
In RL, we consider an agent that sequentially interacts
with an environment modeled as an MDP. An MDP is
a tuple ℳ := (𝑆,𝐴,𝑅, 𝑃, 𝜇0), where 𝑆 is the set of
states, 𝐴 is the set of actions, 𝑅 : 𝑆 × 𝐴 × 𝑆 ↦→ R
is the reward function, 𝑃 : 𝑆 × 𝐴 × 𝑆 ↦→ [0, 1] is
the transition probability function which describes the
system dynamics, where𝑃 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) is the probability
of transitioning to state 𝑠𝑡+1, given that the previous
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Figure 1: Example of an autoencoder network.

state was 𝑠𝑡 and the agent took action 𝑎𝑡, and 𝜇0 : 𝑆 ↦→
[0, 1] is the starting state distribution. At each time step
the agent observes the current state 𝑠𝑡 ∈ 𝑆, takes an
action 𝑎𝑡 ∈ 𝐴, transitions to the next state 𝑠𝑡+1 drawn
from the distribution 𝑃 (𝑠𝑡, 𝑎𝑡), and receives a reward
𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1).

3.2. Variational Auto Encoders
VAEs are a popular class of deep probabilistic genera-
tive models [28]. Autoencoders follow a simple encoder-
decoder structure, where the model parameters are op-
timized to minimize the difference between the input
sample and the decoded data, as shown in Figure 1. The
trained model is able to compress the inputs into a latent
representation with a smaller dimension. VAEs extend
regular autoencoders by substituting the exact inference
of the likelihood by the lower bound of the log-likelihood,
given by the evidence lower bound (ELBO):

log 𝑝𝜃(x) ≥ ℰ𝑞𝜑(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)]−
𝐷𝐾𝐿[𝑞𝜑(𝑧|𝑥)||𝑝(𝑧)]

≜ ℒ(𝑥; 𝜃, 𝜑),
(1)

where 𝑥 is the observed variable, 𝑧 is the latent variable
with prior 𝑝(𝑧) and a conditional distribution 𝑝𝜃(𝑥|𝑧),
𝑞𝜑(𝑧|𝑥) is an approximation to the true posterior dis-
tribution 𝑝𝜃(𝑧|𝑥). 𝑞𝜑(𝑧|𝑥) and 𝑝𝜃(𝑥|𝑧) are neural net-
works parametrized by 𝜑 and 𝜃 (encoder and decoder
respectively). 𝐷𝐾𝐿 is the Kullback–Leibler divergence.

3.3. Uncertainty estimation based on
Variational Auto Encoders

OOD detection using VAEs assumes that the model as-
signs higher likelihoods to the samples drawn from the
in-distribution (ID) pool than the OOD samples, which
is valid for different benchmarks as shown in [12]. Met-
rics derived from the model likelihood are then used as



Figure 2: Examples of ID and OOD obstacles (top images and
bottom images respectively). In the ID scenario the obstacles
are blue and dark red, while the OOD obstacles are green.

uncertainty estimates. We follow the Evidence Lower
Bound (ELBO) Ratio method proposed in the same pa-
per, which represents the ratio of lower bounds of the
log-likelihood of a given sample and the maximum ELBO
obtained with the ID samples [12]. For notation simplifi-
cation, considering a fixed VAE model parametrized by 𝜑
and 𝜃, the ELBO value ℒ(𝑥; 𝜃, 𝜑) will be represented as
𝐸𝐿𝐵𝑂(𝑥), with 𝐸𝐿𝐵𝑂𝐼(𝑥) representing the ELBO for
a VAE model only trained with ID samples. Following
this notation, the ELBO Ratio uncertainty 𝒰(𝑥0) for an
arbitrary input 𝑥0 is shown in equation 2.

𝒰(𝑥0) =
𝐸𝐿𝐵𝑂(𝑥0)

𝐸𝐿𝐵𝑂𝐼(𝑥𝑚𝑎𝑥)
, (2)

where 𝐸𝐿𝐵𝑂𝐼(𝑥𝑚𝑎𝑥) is the maximum 𝐸𝐿𝐵𝑂 value
calculated for all ID samples (a sort of calibration based
on the training data).

4. Experiments and Preliminary
Results

Environment: To better support the proposed idea, ex-
periments were conducted and the preliminary results
will be presented as further evidence. For the experi-
ments, a custom environment was created using PyBullet
[29]. It was designed to represent a warehouse with a
configurable layout limited by walls, goods to be trans-
ported by an automated guided vehicle (AGV), and a set
of obstacles that might be in the way. The goal is to reach
a certain location that contains a good to be transported,
represented by a wooden pallet, while avoiding obstacles
or hitting the walls.

The AGV has a camera attached and its control de-
cisions are made based on the state 𝑠𝑡 encoded by the
input images and the coordinates of the AGV and the
goal. The image resolution can be configured, but for
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Figure 3: RL-based controller framework.

the results shown below RGB images with 84 x 84 pixels
were used. The observation encoding also includes the
positions of the AGV and the goal. The AGV action is
a 2-dimensional vector, 𝑢𝑡, representing the linear and
angular velocities. A reward of 100 is given if the agent
reaches the goal position, -100 if it hits an obstacle, and
-10 if it times out (i.e., it reaches the maximum number
of steps).

To attest to the capacity of the uncertainty estimator
to spot critical failures that might be related to OOD
instances, an ID and an OOD environment were used.
The differences consist of the type of obstacles present
in each environment, with obstacles that differ in color
and shape, as shown in figure 2.

AGV controller framework: The controller used to
solve the motion planning described above is shown in
figure 3. The first module is a path planner, responsible
to determine the optimal path to reach the goal position
based on the agent’s location. The planner takes the AGV
kinematic model and solves the planning with the 𝐺1

Hermite Interpolation Problem with clothoids. Interpo-
lating a sequence of waypoints using clothoid splines
will result in a smooth trajectory, suitable for the motion
planning of mobile robots, as shown in [30, 31]. The
planner takes a simplified observation 𝑠̃𝑡, consisting of
the AGV and goal coordinates, as input. Its output is a
position in the polar coordinate system 𝑝𝑡 = (𝜌𝑡, 𝜃𝑡),
where 𝜌𝑡 and 𝜃𝑡 are the radial and angular coordinates at
time 𝑡, respectively. The second module is a non-linear
controller used to calculate the control action 𝑢𝑡 neces-
sary to reach the coordinate 𝑝𝑡. The last module is the
RL agent. Its goal is to follow the proposed trajectory,
i.e., keeping 𝑢𝑡 ≈ 𝑢*

𝑡 as much as possible, proposing a
different control action 𝑢*

𝑡 ̸= 𝑢𝑡 only to avoid a collision.
To fulfil this task, an intrinsic reward 𝑟𝑖𝑡 was added, with
𝑟𝑖𝑡 = 0.0 if 𝑢*

𝑡 = 𝑢𝑡 (a small difference is tolerated) and
𝑟𝑖𝑡 = −0.1 otherwise. The optimal policy becomes a



(a) ID input images. (b) ID reconstructed images.

Figure 4: VAE model compression-decompression capabilities
with ID images after 10 epochs of training.

tradeoff between avoiding the risk of collision (with the
expressive -100 reward punishment) and following the
path planner to avoid the small punishments. The RL
agent was trained in the ID environment using the Soft
Actor-Critic algorithm [32].

Uncertainty estimator: The VAE uncertainty estima-
tion model was trained to fit instances randomly sampled
from the ID environment in a Supervised Learning man-
ner. To that end, 20.000 images were collected from the
ID environment and 2.000 from the OOD, which are used
for validation purposes during the model training. The
model was trained for 10 epochs.

After training the RL agent and the VAE uncertainty es-
timator, rollouts are performed in the OOD environment
with this agent, and (state, action, reward) tuples are
saved for post-analysis. The episode termination states
are then passed through the uncertainty estimator to
verify if crashes present a significant correlation to high
uncertainty levels. The hypothesis is that if a crash hap-
pens due to the agent not being able to avoid an obstacle
semantically different from the ones experienced during
training, the OOD detector could flag this instance be-
fore the crash occurs. ID inputs on the other hand should
signal low uncertainty, indicating that the RL agent is
able to handle such situations. It is worth mentioning
that these experiments only consider a very limited num-
ber of OOD obstacles. Since in reality the number of
unknown obstacles can be extremely high, these exper-
iments should be extended to a set of obstacles that is
statistically significant to the problem dimension.

Figure 4 shows how the VAE learns to reconstruct the
images observed in the environment populated with ID
obstacles, with the input and reconstructed images. After
10 epochs of training, the obstacles are recovered with a
good definition. However, the model is not able to recon-
struct the floor textures completely, which is of minor
relevance in this scenario but should be investigated if
such features would represent safety-critical aspects (e.g.,
oil in the floor, large cracks or holes).

Figure 5 on the other hand, represents the same model
trained in the ID environment trying to reconstruct im-
ages with OOD obstacles in it. It is visible that, even after

(a) OOD input images. (b) OOD reconstructed im-
ages.

Figure 5: VAE model compression-decompression capabilities
with OOD images after 10 epochs of training.

10 epochs of training, the model is not able to recover the
obstacle color or shape correctly, with blurred obstacles
rendered in the output. That inability to correctly com-
press and decompress the images with OOD obstacles is
responsible for increasing the calculated uncertainty.

Figure 6 shows the obtained results for the RL agent
running in the OOD environment. The agent ran for
10.000 steps, which was equivalent to around 70 episodes.
The y-axis represents the ELBO Ratio, which was nor-
malized to get the values in the interval [0,1]. Episodes
that ended with a crash are represented by the red bars
while all other episodes are given by the blue bars. The
results show that some of the crash episodes presented
high uncertainty while very few non-crash episodes pre-
sented significant uncertainty levels. Some failures did
not trigger a high uncertainty level. These states could
represent residual insufficiencies of the trained agent
(e.g., caused by lack of training), that the OOD detector
is not accurate for these inputs, or that the collision was
not caused by an OOD element (e.g., the AGV crashed
to a wall). To attest to the calibration of the uncertainty
quantification, the same experiment was repeated in the
ID environment, with the results shown in figure 7. The
ELBO Ratio values are much lower for the entirety of the
episodes and more consistent. That is expected, since in
this case all the states should be considered ID, showing
that the VAE is not outputting false positives for these
data samples.

5. Discussion and Future
Perspective

This paper focuses on motivating the promising perspec-
tive of using uncertainty quantification for improving
the safety case of RL systems deployed in industrial ap-
plications, concentrating on camera-based systems. For
that end, an environment modeling a typical warehouse
was created. The preliminary results obtained with a
VAE-based uncertainty estimator suggest this monitor
can distinguish some of the states that result in accidents



Figure 6: Uncertainty estimates on terminating states of
episodes for the OOD environment.

related to environmental distributional shifts. However,
it is important to notice that not all accidents are caused
by OOD obstacles but can also be influenced by the re-
ward function definition, observation encoding, model
generalization capabilities, among other aspects. Iden-
tifying and separating accidents caused by the inability
of the agent to handle novel obstacles from accidents
caused by other unrelated limitations is necessary before
assessing the effectiveness of the OOD detection monitor.

Many published works already discuss the importance
of uncertainty estimation and OOD detection in the
whole Safe AI spectrum, but we believe a more structured
way to integrate these systems and empirical results to
create a compelling safety assurance case is needed, es-
pecially for RL systems. To reach this long-term goal, we
suggest the following future steps:

• Operational Design Domain (ODD) [33]: In
real-world applications, the number of contextual
combination possibilities makes any attempt for
extensive testing intractable. Therefore, precise
system specification is paramount before starting
to build the assurance case. The ODD should
include all contextual information that covers the
intended operation of the system.

• Extensive experimentation: Once an appropri-
ate ODD is derived, the experiments described
in this document can be extended to a much
broader scope. Varying parameters, changing
scenario configuration, considering more obsta-
cles, and adding sensor noise are just a few
aspects that should be extensively considered.
Strong safety arguments will depend on the ex-
periments achieving a high statistical confidence
level for the contexts described in the ODD. This
should also include multiple uncertainty estima-
tion methods, not covered in this paper.

• Qualitative analysis: Understanding the system

Figure 7: Uncertainty estimates on terminating
states of episodes for the ID environment.

at a higher level of abstraction is also important to
build a strong safety case. For that, it is important
to visualize the scenarios that lead to high or low
uncertainty and try to understand patterns that
lead to wrong predictions, outliers, false positives
and negatives, etc.

• Residual error: The uncertainty monitor is not
intended to cover every safety aspect but rather
covers failures caused by the inability of the sys-
tem to handle domain shifts. Therefore, risks
associated with other aspects will still be present
and should be addressed by other methods.

• Integration of uncertainty monitor and RL
agent: This paper focuses on how OOD scenar-
ios might lead to system failures and how OOD
detection can help in detecting such states before
the failure happens. However, an important ques-
tion is not addressed here and should be a high
priority next step: what to do when an OOD in-
put is detected? In other words, how to integrate
OOD detection and a safe fallback policy into the
decision-making system.

• Failure rate calibration: The uncertainty values
are not sufficient to estimate a failure probabil-
ity because an OOD instance does not necessar-
ily imply a failure will happen. However, upper
bound probabilities could be derived from the un-
certainty estimates, i.e., if the model predicts that
there is a 30% probability of the 𝑠𝑡 being OOD,
the risk of failures caused by distributional shifts
should be below 30%.

• SOTIF: As shown in Section 2, traditional func-
tional safety standards fail to properly address ML
systems. In contrast, SOTIF is a much more appro-
priate framework to build a safety argumentation
for such systems. However, building an assurance
case based on an uncertainty-aware RL agent, to
the best of our knowledge, was not yet done. In



SOTIF it is necessary to attest to the absence of
unreasonable risk due to hazards resulting from
functional insufficiencies of the intended func-
tionality, which is challenging due to the nature
of model-free RL and sequential decision-making
systems.

Not necessarily those items were touched on in this
paper but it serves as a roadmap to guide our research
efforts in the near future, as we believe that covering
these points in deeper detail will result in incremental
progress towards achieving a sound argumentation to
allow uncertainty-aware RL agents to be deployed in
safety-critical applications.
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