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Abstract—Cellular vehicle-to-everything (C-V2X) communica-
tion is a key enabler for future cooperative automated driving
and safety-related applications. The requirements they demand in
terms of Quality of Service (QoS) performance vary according to
the use case. For instance, Day-1 applications such as Emergency
Brake Light warning have less strict requirements than remote
driving. In this paper, we seek to answer two questions: Are
current LTE networks ready to support Day-1 applications at all
times? And, can underperforming situations be reliably predicted
based on GPS and network-related information? To address these
questions, we first implement a system that collects positioning
data and LTE key performance indicators (KPIs) with a higher
time resolution than commercial off-the-shelf LTE modems, while
simultaneously measuring the end-to-end (E2E) delay of an LTE
network. We then use this system to assess the readiness of
multiple mobile network operators (MNOs) and a live Mobile
Edge Computing (MEC) deployment in an urban scenario. For
evaluating whether an adaptable operation is possible in adverse
circumstances, e.g., by performing hybrid networking or graceful
degradation, we finally use Machine Learning to generate a
client-based QoS predictor and forecast the achievable QoS levels.

Index Terms—C-V2X, LTE, MEC, QoS Prediction, Machine
Learning, OpenAirInterface

I. INTRODUCTION

Fast and reliable communication systems will be one of
the major enablers for cooperative automated driving. Cellu-
lar vehicle-to-everything (C-V2X) communication, which is
currently based on LTE and evolving towards 5G, has lately
gained attention as a potential solution to this challenge,
favored by the ubiquity of deployed cellular networks. Hybrid
networking via the two operation modes currently supported
by V2X further increases the reliability by using either the
sidelink PC5 interface or ITS-G5 for short-range communi-
cations, while the uplink/downlink Uu interface via the Core
Network (CN) will be used for an increased communication
range [1]. This work focuses on the latter case.

From the application perspective, cooperative self-driving
systems have strict Quality of Service (QoS) requirements for
data rate, reliability, and end-to-end (E2E) delay that need
to be satisfied despite the highly-dynamic nature of vehicular
networks, where instantaneous key performance indicators
(KPIs) fluctuate rapidly. The degradation of such indicators
leads to a worse QoS performance, restricting the use of
safety-related applications. Previous works that evaluated the

feasibility of using commercially-deployed LTE networks for
such applications were based on a single LTE network [2], [3],
and did not consider performance differences among Mobile
Network Operators (MNOs) in a city.

Although identifying and selecting the best performing
MNO increases the reliability of the communication, routing
packets through the CN will unavoidably increase the delay
overhead making it challenging for safety-related applications
to fulfill their QoS requirements. A possible solution to
this problem is to use Mobile Edge Computing (MEC) [4]
to enhance the LTE architecture by enabling the access to
cloud-based services directly from the Radio Access Network
(RAN), without having to route any traffic through the CN.
Under this paradigm, a reduction of the average delay of up
to 80% has been reported using simulations [5]. However, no
experimental work that confirms this has been published yet.

An additional step for the realization of resilient au-
tonomous systems is the introduction of real-time QoS pre-
diction. This will allow applications to gracefully degrade
their operation and adapt to future conditions, maintaining a
necessary safety level at all times, while still providing the
optimal performance based on the best achievable QoS.

This QoS prediction can be done in different ways: Using a
network-based, client-based, or combined approach. Network-
based QoS predictors deployed in a MEC architecture pro-
vide on-demand notification messages informing about the
foreseeable QoS based on current network KPIs. However,
if the operator cannot support such functionality at all times,
e.g., due to roaming, handovers, or being out of coverage, no
prediction will be available. Further, only averaged statistics
will be provided and fast changing situations cannot be taken
into account. Client-based or UE-based QoS predictors, on the
other hand, are intended to be deployed on the vehicle itself
providing prediction based on the User Equipment’s (UE)
current KPI measurements and a trained Machine Learning
(ML) model. Here, the vehicle will be capable of sensing the
current network situation and predicting the achievable QoS
level independently of the MNO.

Previous works on LTE QoS prediction have focused on
forecasting throughput using either network-based [6] or
client-based data [7], [8]. Existing literature on delay predic-
tion neither takes into account dynamic channel conditions nor
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uses advanced methods such as ML models [9].
The main contributions of this paper are therefore threefold,

addressing the aforementioned knowledge gaps:
1) We expose and quantify differences among MNOs and

assess their readiness to support C-V2X communications.
2) We provide empirical results to evaluate the enhanced

performance of a live MEC network deployed at the
premises of one MNO, as well as its suitability for
different V2X applications.

3) We forecast E2E delay performance using a UE-based
QoS predictor which is generated by training an ML
model based on instantaneous KPIs. These KPIs were
collected from live LTE networks on the road using a
prototype that we implemented.

II. MEASUREMENT SETUP AND DATA COLLECTION

A. Empirical Uu-based C-V2X Setup

The C-V2X scenario under consideration, illustrated in
Figure 1, shows how the communication link is established:
The transmitting vehicle uses a commercially-deployed LTE
network to send UDP datagrams to a relay server, which
forwards the messages to the receiving vehicle connected to
the same LTE network. Two relay servers have been deployed
in our setup: One hosted on the Internet for assessing its
access via commercially-deployed LTE networks, and the
other located on MNO1’s premises and thereby closer to its
eNBs for evaluating a MEC network architecture.

Our measurement campaigns aimed to collect KPIs of mul-
tiple MNOs simultaneously in order to investigate a potential
correlation between these metrics and the QoS in terms of the
E2E delay, as well as their readiness for applications with strict
QoS requirements. Here, we define the E2E delay as the time
it takes to deliver a packet from the transmitting vehicle via the
network and the relay server to a receiving vehicle. We covered
an urban scenario with a mix of highways and inner-city
streets, and transmitted messages with a fixed payload size and
constant intervals. While different packet sizes were initially
investigated, we finally chose a fixed packet size of 300 bytes,
since this is the average size of a ETSI Cooperative Awareness
Message (CAM) [10], a periodically broadcast message with
vehicle’s status information. As a transmission interval, we
chose 40 ms as further explained in Section II-E.

B. E2E Delay Measurements using COTS equipment

For setting up the C-V2X communication we developed
a UDP traffic generator that runs on an On-Board Unit
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Figure 3: Flowchart of the real-time I/Q Signal Collector.

(OBU) equipped with the Commercial Off-The-Shelf (COTS)
Sierra Wireless EM7565 LTE modem and connected to a
roof-mounted antenna of our vehicle. For each of the three
MNOs as well as the MEC architecture, a separate OBU was
mounted in the vehicle, each with a SIM card restricted to
access only LTE networks and configured with a network-
specific Access Point Name (APN). Carrier aggregation was
disabled at the UE. Since a single vehicle was used for the
experiment, each OBU acted both as transmitter and receiver
for a particular MNO, transmitting UDP datagrams with a
unique sequence number as payload and registering the times-
tamps at which it was sent and received back from the relay
server. Clock synchronization among OBUs was performed via
the Precision Time Protocol (PTP) by a master OBU using
the high-precision Pulse-Per-Second (PPS) signals provided
by the u-blox EVK-M8 Global Navigation Satellite System
(GNSS) receiver, which additionally collected geographical
information along the road. Figure 2 illustrates the equipment
used per monitored MNO.

C. Real-time I/Q Sample Collection

One major issue of using COTS LTE modems for collecting
KPIs was the introduction of hardware constraints that pre-
vented precise KPI extraction: We detected identical readings
over periods of 1-3 seconds where signal fluctuations were
evidently overlooked, making such readings unsuitable for
precise QoS prediction. In order to increase the granularity of
our measurements we implemented a Signal Collector, whose
design is depicted in Figure 3 and main task is the collection of
raw I/Q signals from the serving eNB for later post-processing.
The Signal Collector has been realized using five main threads.

The LTE Band Scanning Thread monitors downlink chan-
nels and estimates the receive gain needed in each channel for
successful LTE signal decoding. For this, it uses an Automatic



Source KPIs Granularity

COTS LTE
modem

SINR, RSSI, RSRP, RSRQ,
LTE band, earfcn, ECI ∼ 1-3 s

GPS receiver latitude, longitude, speed 50 ms

OAI-UE
SINR, RSSI, RSRP, RSRQ,

Noise Power, Rx Power, PCI 10 ms

Table I: KPIs collected during the drive test.

Gain Control (AGC) tuned for our USRP B210 Software-
Defined Radio (SDR). Additionally, it identifies the serving
eNB’s downlink channel based on the E-UTRA Absolute
Radio Frequency Channel Number (earfcn) polled by the OBU
from its LTE modem at all times and made available via LAN.
The SDR controlled by this thread operates in discontinous
mode to avoid buffer flushing, thus speeding up band scanning.

The LTE Signal Collection Thread uses the previously
discussed information to tune to the channel used by the COTS
modem and start collecting LTE signals in blocks of 10 ms
with the appropriate carrier frequency (fc), sampling rate (fs)
and receive gain. Further, it monitors the eNB’s fc every 10 ms
to determine if a handover has occurred. To ensure a real-time
operation, an SDR running in continuous mode is used here.
After collecting ten blocks of 10 ms, an alternative buffer is
allocated for measurements over the next 100 ms, allowing
the Serialization Controller Thread to use the inactive buffer
for writing its content to a solid-state disk (SSD), which is
ultimately carried out by one of the two available LTE Signal
Serialization Threads in order to parallelize such operation.

The integration of such system with the OBU is done using
an on-board switch as shown in Figure 2, while co-located roof
antennas connected to the SDRs and LTE modem ensured that
the received signals underwent similar channel effects.

D. Decoding raw LTE Signals to Extract KPIs

After concluding the measurements, the collected raw I/Q
samples are post-processed using a modified version of the UE
implementation of OpenAirInterface (OAI-UE) [11], which is
used to perform downlink LTE PHY-layer procedures [12]
on the de-serialized I/Q signals, and thus obtaining specific
KPIs, as defined in [13]. In order to ensure the reliability of
the post-processed information, false positives are removed
based on an intermediate verification step consisting in doing a
one-to-one mapping between the Physical-layer Cell Identifier
(PCI) decoded using our offline version of OAI-UE and the
E-UTRAN Cell Identifier (ECI) provided by the LTE modem.
For this purpose, a maximum likelihood estimation approach is
used for the time window when the UE was connected to each
cell. The information obtained from the different data sources
is finally merged into a unique overall data set based on
the aforementioned GNSS-based clock synchronization among
on-board systems. The list of relevant KPIs collected along the
road is shown grouped by source in Table I.

In order to evaluate the validity of our OAI-UE approach,
we compare the Reference Signal Received Power (RSRP)
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Figure 4: OAI vs. COTS LTE modem measurements.
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Figure 5: Effect of different transmission intervals on the E2E
delay in a static setup, for a payload size of 100 bytes.

values obtained by decoding raw signals with the measure-
ments obtained using the COTS LTE modem. Figure 4 shows
this comparison for an exemplary snapshot of a few minutes
for MNO2, which indicates that both approaches agree on the
overall behavior, except for a few outliers. Further, the figure
clearly shows the different resolution in time of the COTS LTE
modem and the OAI-UE. Due to the higher update rate, the
OAI-UE measurements are more beneficial for a packet level
QoS prediction; therefore, we will focus on OAI-UE KPIs in
the remainder of the paper.

E. Effect of the Transmission Interval in the E2E Delay

Based on preliminary measurements, we show that different
transmission intervals have a significant impact on the E2E
delay, as depicted in Figure 5. These results show that mes-
sages transmitted at shorter intervals, e.g., every 50 ms, reduce
the average E2E delay by 34.34 ms (MNO1) and 27.68 ms
(MNO2) compared to those transmitted at longer intervals,
e.g., every 1 s. This suggests that for any outgoing packet the
resulting E2E delay is influenced by the time elapsed since
the last transmission to the same destination. This is likely
caused by the various routing protocols at the core and ISP
networks or vendor-specific features of the eNBs (e.g., the
scheduler’s algorithm) which are out of the scope of this work.
Nevertheless, in order to prevent these factors from strongly
influencing the E2E delay we use a fixed transmission interval
lower than this threshold, i.e., 40 ms, given that these effects
have a minor impact below 50 ms.
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Figure 6: Locations of MNO3’s delay measurements, indicat-
ing the route covered in Munich’s urban area.

III. DATA ANALYSIS AND RESULTS

A. Adequate Allocation of Radio Resources

Two main eNB design criteria are used in urban scenar-
ios, such as the one studied herein and shown in Figure 6:
(1) high user density favors the deployment of closely-located
eNBs where the use of high frequencies is preferred due to
their stronger channel attenuation, thus reducing the coverage
area of a cell and increasing the Signal-to-Interference-plus-
Noise Ratio (SINR) in the adjacent cells; and (2) higher traffic
demand justifies the use of wider bandwidth increasing the cell
capacity and the number of users that can be simultaneously
served.

We found that MNO1 mostly fulfilled these two criteria,
while we observed deviations for MNO2 and MNO3. In the
case of MNO2, our vehicle spent 24% of the time in coverage
of 25 eNBs configured with a carrier frequency (fDL

c ) more
suitable for rural areas, while 65.7% of the time it was served
by 10 MHz instead of 20 MHz bandwidth cells. Slightly
better results were obtained for MNO3. Thus, these eNBs
in MNO2 and MNO3 will experience worse performance
for C-V2X communications under crowded conditions, unless
radio resource optimizations are conducted.

The overall frequency mapping results are shown in
Table II, which also lists the LTE channel configurations
detected for each MNO including the percentage of the trans-
actions collected in each channel. The total number of eNBs
covered in our drive test were 83, 114, and 86 for MNO1,
MNO2, and MNO3, respectively.

B. Radio Conditions along the Road

The allocation of sufficient radio resources does not nec-
essarily guarantee a good QoS performance in C-V2X com-
munications. Adequate transmission power management and
handover mechanisms at the eNBs are also needed for optimal
operation of the RAN. Consequently, these two factors have
a large impact on the KPI measurements at the UE, which
are later fed back to the eNB for selecting the Modulation
and Coding Scheme (MCS). The MCS in turn determines
the achievable throughput and E2E delay of the cell. Thus,
having poor signal reception either by lack of coverage or by
inefficient handover mechanisms is linked to poor QoS.

MNO Band earfcn fDL
c Bandwidth Percent.

MNO1
8 3749 954.9 10 MHz 6.1%
3 1300 1815 20 MHz 79.6%
3 1444 1829.4 10 MHz 14.3%

MNO2

20 6300 806 10 MHz 24%
3 1801 1865.1 20 MHz 34.3%
1 101 2120.1 10 MHz 34.4%
7 2850 2630 10 MHz 7.3%

MNO3
3 1600 1845 10 MHz 55.2%
1 252 2135.2 20 MHz 37.9%
7 3350 2680 20 MHz 6.9%

Table II: LTE channels detected during drive test, including
percentage of occurrence. Carrier frequency (fDL

c ) in MHz.
Sample size: MNO1: ∼105k; MNO2: ∼133k; MNO3: ∼100k.
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Figure 7: Measurements of RSSI and RSRP KPIs.

Figure 7 shows a comparison of the MNOs based on the
probability distribution of their RSRP and Received Signal
Strength Indicator (RSSI) as measured during our drive test.
This figure clearly shows that MNO3 has a significantly higher
portion of measurements that were taken in cells with poor
coverage, followed by MNO2. In contrast, MNO1 exhibits a
much better KPI distribution, where just 8.7% of the mea-
surements present fair-to-poor coverage (RSRP ≤ −90 dBm),
compared to 26.3% for MNO2 and 34.2% for MNO3. These
differences will influence the QoS performance for each op-
erator.

C. Overall E2E Delay Performance for V2X Applications

Our measurements, shown in Figure 8, confirm that the pre-
viously discussed stronger signal reception at the UE exhibited
in MNO1’s RAN network is linked to a lower E2E delay,
in contrast to MNO2 or MNO3 where lower RSRP/RSSI
levels correlate to a worse performance. Here, stronger sig-
nal strength measurements encourage choosing higher-order
modulation schemes as well as higher coding rates, which
improve the throughput at the expense of weakening the error
protection. As a result, the transmission delay is shortened
which in turn decreases the overall E2E delay.

In this paper, we evaluate two main V2X applications:
Advanced driving (safety-related application) and Day-1 use
cases (e.g., Emergency Brake Light [14]), with an E2E delay
requirement of 50 ms and 100 ms, respectively [15]–[18].
These QoS requirements are used to evaluate whether the LTE
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networks under study are able to support such applications.
The compliance for both use cases is presented in Table III,
where the portion of packets that fulfills each delay require-
ment is shown for each MNO and the MEC case.

These results, which are also presented in Figure 8, show
that in spite of MNO1’s superior performance compared to the
other two operators, it does not comply with the requirements
of the safety-related application in 12.2% of the cases. This,
however, improves as we analyze Day-1 use cases, where the
E2E delay requirement rises to 100 ms, and a performance
above 96% is achieved for all MNOs, making all studied LTE
networks potentially suitable for Day-1 applications.

D. Evaluation of the E2E delay using a MEC Architecture

The deployment of the MEC architecture in the network of
MNO1 aims to further reduce the E2E delay. As a result, the
delay shown in Figure 8 is reduced by 18.46 ms on average
with respect to the non-MEC case. Further, MEC achieves
97.6% and 98.7% of the cases a delay below 50 and 100 ms,
respectively, as shown in Table III.

Despite the improved performance of the MEC case, 2.4%
of the packets do not adhere to the 50 ms threshold. This can
be seen more clearly in Figure 9, which shows the E2E delay
in the time domain for all cases. For visual clarity, samples
have been averaged over time windows of 250 ms. The plot
shows short bursts of delays above the 50 ms threshold at
different times and for short durations, which likely points
to inefficient handovers or different parameter configurations
in the eNBs. Further, this indicates that while one eNB may
be very reliable for safety-critical C-V2X communication,
the next one may be very unreliable. Finally, there are out-
of-coverage periods such as when traversing a tunnel, e.g.,
around the 13 minute mark. These effects are also noticeable in
Figure 6 which shows the delays of MNO3 along the covered
route: Darker zones (red) represent underperforming eNBs or
non optimal handover points where the delay increases, while
lighter zones (yellow) have the potential of supporting Day-1
V2X applications. Gaps in the route relate to traversed tunnels.

Our vehicle’s speed distribution is shown in Figure 8 for
the sake of completeness. The average speed was 28.4 kmph.

The underperforming eNB sectors can be more easily iden-
tified in Figure 10, which shows the E2E delay distribution
per eNB sector for the first 40 traversed eNB sectors for each
MNOs and the MEC case. This shows that the dependence of

Use Case Delay MNO1 MNO2 MNO3 MEC

Day-1
use cases ≤ 100 98.5% 97.6% 96.7% 98.7%

Advanced
driving ≤ 50 87.8% 55.3% 56.2% 97.6%

Table III: Compliance of observed LTE networks with the QoS
requirements for V2X applications. E2E delay given in ms.
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Figure 9: E2E delays over a time snapshot for all MNOs/MEC.

the QoS performance on the current eNB has to be considered
for safety-critical communications, as not all eNBs will meet
the requirements with a high probability. Further, it highlights
the need for a good prediction, the use of hybrid networking,
or ultimately graceful degradation of the application.

While our analysis focuses on applications exchanging
CAM messages, our results imply that Descentralized Envi-
ronmental Notification Messages (DENM) [19] carrying event-
driving hazard warning are strongly supported by existing LTE
networks given their downlink-only nature.

IV. E2E DELAY PREDICTION

Based on the previously discussed measurements, we de-
veloped a QoS prediction for the E2E delay of a new packet
transmission. From the application perspective, the precise
value is likely not as important as whether or not the delay is
sufficiently low, i.e., below a given threshold. Therefore, herein
we view the prediction as a classification problem of the E2E
delay regarding a given threshold. In practice, the appropriate
threshold depends on the target application, and thus would
have to be tuned for each application class separately. In this
paper, we consider the thresholds of 50 and 100 ms.
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For the predictor we focus on supervised machine learning
in the form of a Neural Network (NN) for classification, as
NNs are able to learn very complex functions based on the
provided features. The structure of the NN that we use is a
single hidden layer with 128 neurons, with the parameters
determined using hyperparameter tuning for our data set.
Further, in order to verify the training performance across the
entire data set, we apply k-fold stratified cross-validation using
k = 5 [20].

For the data set, we combine the non-MEC measurements
of MNO1 and MNO2 to generate a large data set with a good
delay spread and to avoid learning MNO-specific behavior.
While it would be possible to differentiate between the MNOs
based on the name of each eNB, we will neither consider the
eNB name nor the MNO as a feature for learning and treat both
MNOs as belonging to the same scenario. Further, we choose
to omit position information for training in order to generate a
prediction model which can extrapolate to unknown scenarios.

As previously mentioned, the E2E delay is not solely based
on the RAN, but the CN and ISP networks as well. However,
as the UE KPIs only give an indication of the performance
on the RAN, we do not have any direct indication of delay
occurring on CN and ISP networks. In order to mitigate this
effect, we add the expected E2E delay as a feature, i.e., the
average delay of all packets transmitted per eNB during our
measurements. While this feature is not readily available from
COTS modems, it can either be crowdsourced or computed
locally based on delay measurements for the serving eNB,
which the application will likely monitor anyway. In the latter
case, the expected E2E delay feature will take a few packets
to converge on an accurate value, which should only be a
problem in the case of a very frequent handovers.

precision recall f1-score support
≤ 50 ms 0.8510 0.9203 0.8843 0.7773
> 50 ms 0.6109 0.4372 0.5090 0.2227

Table IV: Prediction quality using the joint data set.

precision recall f1-score support
≤ 50 ms 0.7611 0.6954 0.7267 0.5
> 50 ms 0.7196 0.7817 0.7494 0.5

Table V: Prediction quality after balancing the classes.

NN RNN RF SVM
joint data set 0.8127 0.8176 0.7967 0.8107

balanced data set 0.7385 0.7387 0.7018 0.7372

Table VI: Prediction accuracy using different ML approaches.

In order to determine a good set of features for training
the NN, we apply the Maximum Dependency (MD) algorithm
[21] for feature selection. This algorithm iteratively builds
the set of features, such that it maximizes the multivariate
mutual information of the classifier, while avoiding redundant
information. For this joint data set, the best set of features
according to the MD algorithm in order of importance are
expected E2E delay, speed, SINR, RSRP and RSSI.

In Table IV we show results of the prediction using binary
classification for a threshold of 50 ms. Here, we see that
the delays ≤ 50 ms have a much higher f1-score, which is
mainly due to the larger support. Further, while the overall
accuracy is ≈ 0.8127, the main problem is the precision of
delays ≤ 50 ms, which means that approximately 15% of all
positive predictions for this threshold are incorrect. If we try
to reduce the influence of different supports in both classes, by
randomly removing a sufficient number of samples from the
≤ 50 ms class, such that both classes have the same support,
the results change to those shown in Table V. Due to this
change, both classes have an f1-score of around 0.73, while
delays ≤ 50 ms have a higher precision and delays > 50 ms
have a better recall, and the overall accuracy is ≈ 0.7385.
With this approach the misclassifications are more balanced,
but the overall performance is not improved.

In order to verify if the chosen type of ML algorithm is a
good choice, we compare the prediction accuracy of different
common ML approaches for the joint data set, as well as the
balanced version of this data set in Table VI. In addition to
the NN, we consider a Recurrent Neural Network (RNN) with
Long Short-Term Memory (LSTM) neurons, a Random Forest
(RF), and a Support Vector Machine (SVM). From the results
in Table VI it is clear that none of the investigated approaches
performs significantly better than the NN, and only the RNN
has a marginally better prediction accuracy. This is expected
since the RNN is well suited for time sequences and high E2E
delays often occur in bursts. However, this slight increase in
accuracy does not justify the increased cost of training and
execution of the RNN compared to the much simpler NN.

As multiple V2X applications may share the same wireless
link, it is important to also consider the prediction of multiple



precision recall f1-score support
≤ 50 ms 0.7991 0.9324 0.8606 0.7056
> 50 ms &
≤ 100 ms 0.4519 0.3898 0.4181 0.1944

> 100 ms 0.6579 0.05807 0.1053 0.1000

Table VII: Prediction quality for multiclass classification.

thresholds. To this end we consider the prediction performance
of three classes: “≤ 50 ms”, “> 50 ms & ≤ 100 ms”,
and “> 100 ms”. In our measurements delays of > 100 ms
only occurred in ≈ 2% of all packets, which is too low for
reliable training. Therefore, to generate a more balanced data
set we randomly removed packets from the other two classes,
such that these two classes keep their ratio the same and
the > 100 ms class has relative support of 10%. Table VII
shows prediction performance for this multiclass classification
approach. With an accuracy of ≈ 0.7395, these results show
similar issues to the binary classification approach: Those
classes which do not occur often have a low f1-score and
the overall accuracy is not very high.

V. CONCLUSION

In this paper, we evaluated the performance of C-V2X
communications by carrying out on-road measurements for
multiple MNOs. Our results show that existing LTE networks
are suitable to support Day-1 applications with delay require-
ments below 100 ms up to 98.5% of the time, while more
critical applications demanding delays below 50 ms will still
face difficulties. Introducing a MEC architecture addressed the
latter requirements in 97.6% of the cases, reducing the average
E2E delay by 18.46 ms. Further, we identified underperform-
ing eNBs and handovers that will potentially account for
a higher performance if optimized. Thus, current achievable
delay is partially limited by LTE’s radio access network; 5G
has a higher potential for more demanding future use cases.

In order to adapt our V2X application to varying QoS levels,
we also investigated how well the collected data is suited
for achieving a reliable QoS prediction. With our prediction
approach we achieved f1-scores of up to 88% without using
any position information or MNO-specific optimizations. This
is unfortunately not sufficient for highly reliable safety-critical
applications. While adding further measurements would im-
prove the prediction performance, it is uncertain if this results
in a highly accurate prediction. The main issue is that the
measured UE KPIs did not give a sufficiently clear indication
of the resulting E2E delays in all situations. A major reason
being that no information regarding the CN and ISP networks
or the eNB configuration was available. This indicates that a
combined network- and UE-based QoS prediction approach
which incorporates information from the MNO, e.g., new
features provided by a network-based QoS predictor, should
lead to a significantly more reliable prediction.

Our results show a great challenge for improving current
LTE and future 5G networks, and the need for reliable QoS
prediction to enable hybrid networking or graceful degradation
of the application.
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