
 Procedia Computer Science 83 (2016) 1268 – 1273

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs
doi: 10.1016/j.procs.2016.04.264

ScienceDirect
Available online at www.sciencedirect.com

The 2nd International Workshop on Recent Advances on Machine-to-Machine Communication
(RAMCOM 2016)

Towards Flexibility in Future Industrial Manufacturing:

A Global Framework for Self-Organization of Production Cells

Selma Azaieza,∗, Michael Boca, Loı̈c Cudenneca, Max Da Silva Simoesa,d, Jens Haupertb,
Selma Kchira, Xenia Klingeb, Wael Labidia, Karima Nahhala, Julius Pfrommerc, Miriam

Schleipenc, Christian Schulzb, Thibaud Tortecha

aCEA, LIST, Saclay, France
bDFKI GmbH, Berlin, Germany

cFraunhofer IOSB, Karlsruhe, Germany
dSYBOT Industries, Orsay, France

Abstract

The future of manufacturing leads to flexible industrial facilities in which production lines or systems are composed by several

production cells. Production cells can be reorganized and reconfigured by introducing new devices, equipment, functionalities or

even by re-configuring the communication network. In this context, machine-to-machine communication does not only provide

a transport layer for monitoring and control, but also provide a high-level distributed service framework and data management

system. In this contribution, the authors address the challenge to manage the self-organization of production cells by means

of a global framework. This framework bases on the following technologies: RobotML for the scenario description, OPC UA

for service orchestration, object memories for distributed data sharing, Frama-C/Para-C for code verification and SDN for network

reconfiguration. This framework has been deployed within a use case involving the SYBOT collaborative robot and a reconfigurable

Raspberry-Pi based camera to enhance human operator safety. Experiments show that from a high-level description of the scenario,

it was possible to automatically orchestrate at the OPC UA level the different reconfigurations of the production cell.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.

Keywords: Reconfigurable Manufacturing, Machine-to-machine Communication, Orchestration Framework

1. Introduction

As for different application domains, the manufacturing is facing a bend where traditional production processes

and work methods have to be evolved in order to be more flexible and adaptive to a quick changing context. Such

an evolution involves the adoption of Cyber Physical Production Systems (CPPS) that include technologies related

to communication and data processing between software layers and physical manufacturing devices1. In the CPPS

∗ Selma Azaiez. Tel.: +33-01-69-08-21-36.

E-mail address: selma.azaiez@cea.fr

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Conference Program Chairs

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.04.264&domain=pdf

1269 Selma Azaiez et al. / Procedia Computer Science 83 (2016) 1268 – 1273

context, production systems are self-organized and composed by networked equipment that are context-sensitive,

autonomous and cooperative. A component in a CPPS has to be able to control its tasks and interact with other

components or human operators via interfaces2. Here, the machine-to-machine communication layer has to include

more than a simple transport layer. A CPPS has to be aware about the services and functionalities provided by each

device and has to orchestrate such services in order to safely execute a high-level global service.

In this paper, we introduce a software framework that orchestrates services of the autonomous devices included

in a production cell. The framework ensures the real-time monitoring of devices, establishes network connections if

requested, deploys new applications onto the devices to offer new functionalities, and checks the correctness of the

source code of applications that will be deployed. The framework was experimented on a real use case that connect

a SYBOT collaborative robot and a reconfigurable Raspberry-Pi-based camera. The Sybot is a collaborative robot

dedicated to different industrial tasks such as polishing. The Sybot can detect a human presence by collision. When

the Sybot is equipped by a sharp object, this can cause a danger for a human operator. In our use case scenario, we

aim to enhance the human operator safety by deploying a new functionality that consists on a distant detection of the

human intrusion. For this purpose, we connect the Sybot to an external camera.

This paper is organised as follows. We first introduce some challenges of manufacturing system reconfiguration and

we introduce our integrated framework. Then we describe each framework’s building block and finally, we introduce

the use case we used to experiment the use of the framework.

2. The Challenge of Reconfiguring a Flexible Manufacturing System

Different methods have been proposed to upgrade traditional Dedicated Manufacturing Lines (DML) to flexible

systems such as Flexible Manufacturing Systems (FMS) and Reconfigurable Manufacturing System (RMS). FMS

introduces a highly flexible machines adjustable to different production patterns. But FMS are highly costly and stud-

ies show that the technical success provided by FMS is not a guarantee of a business success 3. Then, RMS were

introduced to cope with capacity, functionality and cost. With RMS, technical innovations concern both hardware

and software4, with a decentralized control of intelligent entities in a distributed infra-structure5. Mechanical and

power interfaces allow hardware flexibility and connectivity. But there is still a lack in communication flexibility that

makes complex the implementation of reconfiguration in any existing application software. These limitations could

be overcome by integrating the CPS and IoT concepts 6.Hence, more recently, the CPPS concept was introduced

and the trends move to a more complex system: open software and hardware, assorted communication technologies,

miniaturization of the hardware, reduction of cost, etc. This vision enhances the challenges. CPPS are enormous

systems that have to be self-organized and self-, real-time controlled, efficient, safe and correct. CPPS leaves the

scope of simply establishing a machine-to-machine communication in the terms of data transportation and includes

organization, context-awareness, self-evolution in a robust way. The communication layer have been enhanced by

service-oriented architecture in which each device is identified by the services it can provide or ask for. In the Indus-

try 4.0 program, OPC-UA has been selected as a standard for heterogeneous machine interoperability. However, even

if the OPC-UA provides discovery mechanisms and basic services that facilitate devices communication, the dynamic

orchestration of several heteregenous devices is still challenging. In this work, we aim at providing a methodology for

complex orchestration with a limited modification of the existing production lines. We used OPC-UA to implement

the following new internal services:

• Initial configuration: the structure and functionalities of each equipment in the production cell are modeled

using RobotML, and possible (re)-configuration are described,

• Service orchestration: the orchestration is handled by a specific device and can be managed through interfaces

such as a PC or any wireless connected devices,

• Applications: the software implementing new functionalities can to be easily and safely deployed,

• Network configuration: connections between devices can be established in an automatic way,

• Monitoring: devices can be real-time monitored by any of the other devices to take actions.

We introduce these different aspects of flexibility within a single framework that integrates technical building blocks

provided by the different research institutes: (1) RobotML for modeling initial configuration is provided by CEA, (2)

1270 Selma Azaiez et al. / Procedia Computer Science 83 (2016) 1268 – 1273

OPC-UA for service orchestration is provided by Fraunhofer, (3) Frama-C/Para-C for static analysis of application

source code is provided by CEA, (4) OMS for monitoring is provided by DFKI and (5) the SDN controller for auto-

matic network configuration is provided by CEA. The following figure shows how we used our integrated framework

in the use case.

Fig. 1. Use-Case Big Picture. Reconfiguration of a camera for intrusion detection within a robot environment.

2.1. Design of the Reconfigurable Manufacturing System Using RobotML

RobotML (Robot Modeling Language)7 is based on the Papyrus 1 modeling tool. RobotML intends to facilitate

the development of robotics applications and to ease exchanges between roboticists and end users. It allows the

specification of a component-based architecture. Low-level details have been hidden behind parametrized and easier

to manage abstractions proposed through a graphical interface integrated to Eclipse environment. A sizable amount

of low-level programming knowledge has been put into code generation transformations. RobotML generators allow

generating source code from models to several target platforms.

Our approach to configure the production scene rely on a modeling step within RobotML. At the modeling level,

each component properties and ports are configured. Properties are related to the internal configuration of the com-

ponent (e.g: Degrees of freedom of the Sybot). They can also indicate whether the component is critical or not for

safety analysis purposes. This is useful to indicate if the application to be deployed has to be checked for some safety

properties. Components can also provide and require a set of services through ports. These services are defined in

interfaces representing the API of each component so that, we can ask for a new service in this component. Also,

to allow the dynamic reconfiguration of the network, we have defined a communication interface where we can ask

components to connect to another ones. Once the components are configured, we define the architecture of the sys-

tem by connecting these components. RobotML then generates an initial configuration that will initialize the service

orchestrator. In our case, OPC-UA is used for this purpose. The mapping between RobotML and OPC-UA service

orchestrator is based on mapping between concepts used within RobotML and OPC-UA languages. Transformation

1 Papyrus, https://eclipse.org/papyrus/

1271 Selma Azaiez et al. / Procedia Computer Science 83 (2016) 1268 – 1273

rules have been implemented in Acceleo 2 language to provide an XML file which lists all the components, their

properties, their ports and the connections between them in addition to interfaces. This file is the entry point of the

OPC-UA orchestrator.

2.2. Machine-to-Machine Communication and Orchestration Using OPC UA

The OPC Unified Architecture (OPC UA)8 is an industrial machine to machine communication protocol based on

a platform independent service-oriented architecture. In the present application, OPC UA is used as a generic inter-

face and framework for the orchestration of different production components (hardware or software) and their skills

and encapsulated methods such as code analysis, network reconfiguration and deployment of new functionalities.

Fraunhofer IOSB integrated an open source OPC UA SDK9 (open62541) written in C99 into the Lua programming

language 3. The combined OPC UA server and client called OPC UA orchestration server was designed and de-

veloped based on this combination. It can run on a regular computer, as well as on mobile platforms and even on a

low-end Raspberry Pi computer.

The OPC UA orchestration server receives the description of the whole production scene from RobotML using

an XML representation. This scene description includes information about possible new functionalities and possi-

ble reconfigurations of production cells. For example, in this scenario it is possible to ask each production cell to

reconfigure its network, to perform source code analysis, to switch the camera from monitoring to detection and to

start and stop the robot. Additionally, a visual dashboard has been developed to show an overview of the scene and

to display the content of the OPC UA servers for the operator. The dashboard is based on an existing visualization

system, ProVis.Visu 4, which runs on Windows operating system and includes an OPC UA client based on the Unified

Automation C++ UA Toolkit 5. Other standard OPC UA clients can be used as well to display information of OPC

UA server. These can run on mobile platforms as well.

2.3. Real-Time Monitoring and Data Sharing Using OMS

The Object Memory Server (OMS)10 provides access to Digital Object Memories as described by the W3C Object

Memory Modeling Incubator Group11. Such memories are data repositories linked to corresponding physical artifacts

which can be viewed and manipulated by different agents, like humans, machines or other artifacts. Changes made to

the physical object can be logged over time and are digitally represented via various interfaces.

Within the developed framework, the OMS server is tightly coupled to the orchestration layer and provides mon-

itoring functions as well as a real-time representation of the system. On startup it creates object memories for each

production cell, according to the high-level RobotML scenario description. These object memories can host generic

and specific blocks. Generic blocks contain information that is relevant for all production cells, such as the production

cell identifier or the network interface status. Specific blocks are related to the production cell type and the function-

alities that have been deployed. In the considered scenario, the camera can push the intrusion detection information

each time such an event occurs, while periodically pushing its processing status (e.g. frame per seconds). These

information are described within the RobotML model and can therefore be linked to other production cell models for

on-site access. The OMS interface relies on either regular OPC UA or representational state transfer (REST) protocol

for access. The latter has made the implementation and deployment of the experimentation quite straightforward and

technologically agnostic.

2.4. Verification of Parallel Code Using Frama-C/Para-C

The verification and the validation layer is included on our software framework to ensure the safety and the com-

patibility of the software being deployed. The user may need to have some information and calculate some metrics on

2 Acceleo, http://www.eclipse.org/acceleo/
3 Lua, http://www.lua.org
4 ProVis,Visu, http://www.iosb.fraunhofer.de/servlet/is/35793/
5 Unified Automation, https://www.unified-automation.com/

1272 Selma Azaiez et al. / Procedia Computer Science 83 (2016) 1268 – 1273

the software architecture of the new application. Several kinds of analysis tools can be included in this layer depend-

ing on the kind of analysis the user wants to perform on its software. In our use case, we choose to use Frama-C [TBD

ref] platform and specific plugin Para-C dedicated to parallel applications analysis. A para-C plugin development is

an ongoing project dedicated to parallel code analysis. It is developed for two kinds of purpose. The first one is a re-

engineering purpose, where the parallel code is parsed, then its architecture is generated throughout different graphs

(i.e. thread control flow graph, data dependency graph etc.). Para-C also calculates metrics that provide information

about the software. The second purpose of para-C is to validate parallel software applications and to check whether

they are bug-free. It verifies some safety properties according to some parallel patterns. Such properties are absence

of deadlocks or race conditions.

2.5. Network Monitoring and Dynamic Reconfiguration Using SDN

The SDN architecture defines three interactions level: the infrastructure level, the SDN controller, and high-level

services. At the infrastructure level, one retrieves all communicating devices that will support data traffic exchange

and generation. These devices could be the robots, cameras, network switches and routers in the factory. To support

the SDN architecture, we provides a specific software called NEON. NEON basically establishes and maintains the

communication with the SDN controller, collect all devices network interfaces states and capabilities, and is able to

interpret and activate commands coming from the SDN controller. The SDN controller is the link between high-

level applications and the infrastructure. Its role is to collect all information from the architecture, to generate an

abstracted view of the system to high-level services and to interpret high-level actions into concrete network actions

to be pushed to the infrastructure. The high-level services layers has a direct access to the SDN controller through

a Northbound API. This API provides a wide range of output information on different format (JSON-based REST

API, binary, JSON-based CLI). The output information could be used to monitor the configuration of the network and

traffic performance at near to real time. High-level services could also push commands to request a new configuration

or advanced information such as the average signal strength on a specific wireless link. It is also possible to high-

level services to push network actions directly on infrastructure devices. Such actions are not interpreted by the SDN

controller and could target the realization of a specific task related to the device function, i.e., execution of a high-

level method (not related to network services) on a specific device. For the latter capability, a plugin system allow to

enhance the SDN controller and/or the NEON software with new high-level functionalities.

2.6. Reconfigurable Camera Software Based on User Source Code

As we said previously, the Sybot is a collaborative robot dedicated to help the humain operator in his tasks. The

Sybot has 2 main modes: a learning mode where it directly collaborates with the operator to learn how to perform a

task. In this mode, the robot records all the information about the trajectory that must be followed and the actions that

must be performed. The second mode is an automatic mode which is triggered by the operator at the end of the first

mode. When the robot is in this mode it follows the recorded trajectory and performs the recorded actions. Equipped

by a sharp object, the Sybot may cause danger to human operator. In our use case scenario, we aim to enhance the

human operator safety while reducing hardware cost. We aim to avoid the robot arm replacement. The idea consists

on connecting the robot to an external camera and to create a safe zone: when a human is approaching the robot, an

alarm is triggered and the robot is stopped.

The camera scenario is composed by two main steps. A first step is to ask the camera to work as a regular

monitoring system. The Orchestrator copies and remotely compiles a base program source code onto the camera

device. This base program streams back the raw video to the Orchestrator for monitoring purpose. This program is

not critical and does not need to be checked by the analysis tool. Then, once the network has been set up between the

camera and the robot at the system level, we ask the camera to reconfigure its software to work as an intrusion detection

device. For this purpose, the detection code is provided by the user and is critical for two main reasons. First, the code

is related to the security of the persons and goods. Second, this code has been developed by a potentially external

actor without a deep knowledge of the relying hardware. Furthermore, the owner of the equipment might require

certifications about the code reliability before deploying. Therefore, this second step is triggered once a source code

analysis is performed by Frama-C/Para-C, as seen previously. The detection code used in this scenario is a naive

OTSU threshold filter12 with parallel code sections. It discriminates each pixel of the frame into black and white

1273 Selma Azaiez et al. / Procedia Computer Science 83 (2016) 1268 – 1273

classes. It then calculates the percentage of black pixels in the result and decides whether an object is detected or not

by comparing this percentage with a given threshold percentage. Detection algorithms have been widely studied in

the literature. However, for this experimentation we use our own ANSI C, Posix Threads implementation because of

the strong requirements on source code that are expected by Frama-C/Para-C at this point. We were able to achieve

more than 24 frames per second on the Raspberry Pi 2, using the 900MHz ARMv7 quadcore processor and the

dedicated 640x480 VGA camera (no use of GPU). Also, the camera reconfiguration time, switching from monitoring

to detection with source code analysis, deployment and compilation only takes a few seconds.

3. Conclusion

Machine-to-machine communications is becoming one key topic for the future of industry. In the CPPS context,

where systems have to be context-aware and self-organized, the M2M communications not only provides a transport

layer with standard discovery protocols, but also a complete service-oriented infra-structure. In this work we propose

a framework that facilitate production cells reconfiguration by easily adding or removing functionalities. By using

our framework, the reconfiguration of the production cell does not imply more than a simple push on a button in a

GUI deployed on supervision device (e.g. a PC, a tablet, a phone, etc.). Then, the system is automatically recon-

figured using OPC-UA orchestrator server according to the RobotML scenario. We were able to deploy a complete

reconfigurable system within the Sybot collaborative robot. Online automatic reconfiguration can significantly reduce

the exploitation costs (TCO) as it does not require stopping the production for the maintenance and the integration of

new equipments. One feedback from the industry about this work is the early design stage of the system, and that the

current state of production lines is quite far from integrating such technologies. However, this is a natural and fore-

seen approach.Several perspectives are considered for our work: first cosolidate the infrastructure by using it in other

use cases, then enhance monitoring and verification and validation internal services to be more suitable to industrial

practices and finally integrate the Reference Architectural Model Industrie 4.0 (RAMI 4.0) model13 proposed by the

OPC UA foundation.

Acknowledgment

This work was supported by the HII CPS - High Impact Initiative on Cyber Physical Systems of the European EIT Digital

organization, as well as the Echord++ - European Clearing House for Open Robotics Development project.

References

1. N.n. securing the future of german manufacturing industry: Recommendations for implementing the strategic initiative industrie 4.0. Final

report of the Industrie 4.0 Working Group, acatech; 2013.

2. Monostori, L.. Cyber-physical production systems: Roots, expectations and R & D challenges. PROCEDIA CIRP; 2014.

3. R. P. Parker, A.W.. Manufacturing flexibility: Measures and relationships. European Journal of Operational Research 118 1999;:429–449.

4. Modular design for machine tools. McGraw-Hill Education; 1 edition; 2008.

5. V. MALHOTRA T. RAJ, A.A.. Excellent techniques of manufacturing systems: Rms and fms. International Journal of Engineering Science
and Technology 2010;2(3):137–142.

6. Nicoleta-Cristina Gaitan Vasile Gheorghita, I.U.. A survey on the internet of things software arhitecture. International Journal of Advanced
Computer Science and Applications 2015;6(12).

7. Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M.. Robotml, a domain-specific language to design, simulate and deploy

robotic applications. In: Noda, I., Ando, N., Brugali, D., Kuffner, J., editors. Simulation, Modeling, and Programming for Autonomous
Robots; vol. 7628 of Lecture Notes in Computer Science. Springer Berlin Heidelberg. ISBN 978-3-642-34326-1; 2012, p. 149–160. doi:

\bibinfo{doi}{10.1007/978-3-642-34327-8 16}. URL http://dx.doi.org/10.1007/978-3-642-34327-8_16.

8. The opc unified architecture (ua). OPC Foundation; ???? https://opcfoundation.org/about/opc-technologies/opc-ua/.

9. open62541: An open source and free c (c99) implementation of opc ua stack. TU Dresden PLT, Fraunhofer IOSB, RWTH-PLT; ????

http://open62541.org/.

10. The object memory sever (oms). DFKI GmbH; ???? http://www.dfki.de/omm-tools/oms.php.

11. The object memory modeling incubator group. W3C; ???? https://www.w3.org/2005/Incubator/omm/.

12. Otsu, N.. A threshold selection method from gray-level histograms. Systems, Man and Cybernetics, IEEE Transactions on 1979;9(1):62–66.

doi:\bibinfo{doi}{10.1109/TSMC.1979.4310076}.
13. The reference architectural model industrie 4.0 (rami 4.0). OPC Foundation; 2015.

