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Abstract—With the rise of Industry 4.0, businesses are increas-
ingly turning to Machine Learning to leverage data for improving
quality and productivity. However, one open challenge when
embracing Machine Learning in this context is the integration
of cloud infrastructures, as well as the heterogeneity of data,
interfaces, and protocols in the production environment. To
address this, we are developing a framework that aims to simplify
the adoption of Machine Learning techniques for heterogeneous
industrial automation systems. One of the core features of
this framework is the ability to handle data about production
devices – a scenario that is naturally suited to the use of
Asset Administration Shells. However, the implementation of
a system that uses Asset Administration Shells comes with its
own set of challenges, such as the abstraction of details from
users and the representation of device topologies. Thus, this
paper introduces the concepts and implementation of a Metadata
Manager component in the aforementioned framework that uses
Asset Administration Shells as its basis. We further examine
the Metadata Manager’s current structure with unit testing,
derive planned extensions, and discuss future directions from
the Industry 4.0 perspective.

Index Terms—Asset Administration Shell, BaSyx, AASX Pack-
age Explorer, production plant metadata, digital twin

I. INTRODUCTION

The concept of Industry 4.0, which refers to the evolution
of manufacturing processes towards a highly automated and
adaptable infrastructure [1], has become increasingly popular
in recent years. As businesses strive to remain competitive
and to adjust to market demands [2], they are turning towards
solutions that improve operation quality and productivity.
These are objectives that are at the core of Industry 4.0, with its
focus on digitalization and on leveraging the resulting data [1].
Naturally, this approach paves the way for the use of emerging
Machine Learning (ML) techniques, which is indeed an active
area of investigation [3], [4]. However, a number of challenges
have been reported when applying these techniques in the
context of Industry 4.0, including the need to consider cloud
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architectures and to handle large amounts of heterogeneous
data, diverse system interfaces, and communication protocols
[3].

To address these challenges and to provide a solid founda-
tion for the application and life cycle management of ML in
industrial automation environments, we propose an adaptive
framework to simplify the use of ML techniques, called
ACD*C (Automated Continuous Dynamic {Acquisition, Pro-
cessing, Analysis} Cycle). To accomplish this, the ACD*C
framework encapsulates ML algorithms and processes as
services, making it possible to deploy key functionality as
required. Additionally, it provides standardized connectors to
production line devices, harmonizes output data, and supplies
key information to assist Data Scientists.

From this, the framework needs to manage metadata about
the production devices, their underlying topology, and the
settings required for communicating with them. Thus, the
ACD*C framework has been designed to include a Metadata
Manager as one of its key components. As most of this meta-
data pertains to production devices, the Manager is developed
around the concept of the Asset Administration Shell (AAS),
which includes standardized data interfaces for Industry 4.0
components [5], [6]. The AAS was chosen because – as the
digital reflection of assets – it cannot only naturally track the
desired device information, but also ensure that the framework
remains interoperable and leverages eventual manufacturer-
provided AAS data in the future [7], [8].

The goal of this paper is to examine the process of im-
plementing the Metadata Manager while building upon the
concepts of the Asset Administration Shell. Specifically, we
see the main contributions of this paper in the following:

• Proposal of a Metadata Manager and its integration with
AAS within the framework, for supporting ML life cycle
in Industry 4.0.

• Implementation of the Metadata Manager with AAS in
an industrial use case in a lab environment.

• Derived findings and planned extensions employing other
AAS characteristics.



• Identification of future directions to be pursued as the
AAS continues to mature as a concept and reaches
broader adoption.

The remainder of this paper is organized as follows. Sec-
tion II contains a more detailed description of the ACD*C
framework, as well as a discussion of relevant ideas and
technologies pertaining to the AAS. Section III presents de-
sign decisions and challenges in the implementation of the
Metadata Manager. Section IV analyzes current execution time
results obtained from unit testing. Section V explores planned
extensions to the Metadata Manager. Section VI considers
future directions for the framework and for this domain in
general. Section VII concludes the paper.

II. BACKGROUND

A. ACD*C Framework for Supporting the Data and Machine
Learning Life Cycle

With the aim to simplify the application of ML techniques
in the Industry 4.0, our goal is to develop an interoperable
framework – the ACD*C framework – that supports and
optimizes the data and ML life cycle. This framework supports
the application of ML to a wide variety of scenarios, includ-
ing fault detection, predictive maintenance, and production
optimization. Likewise, it enables the use of a broad range
of ML techniques, from neural networks and deep learning
to reinforcement learning. These techniques can either be
used for separate analysis, or for directly influencing the
production process (e.g., to improve machine utilization or
throughput). The ACD*C framework addresses the three main
ML processes for (1) data acquisition, (2) data processing
including model training, and (3) data analysis. These stages
are realized by so-called ML-Services, which are services
that encapsulate particular steps in the Machine Learning
process (e.g. training). These services can be deployed in a
decentralized fashion to devices in the plant. In addition to
supporting this flexible integration of services, which facil-
itates the automation of ML processes, this framework also
provides unified access to data and metadata for both ML-
Services and Data Scientists. Figure 1 shows a high-level
overview of the four components in the ACD*C framework.
The ML-Interface component enables uniform data access
and assists Data Scientists in the creation of ML-Services by
giving access to important contextual data and metadata as
well as handling any required data transformations; the ML-
Management component controls the processes of training and
redeploying models as required; the Metadata Management
component provides information about the assets and topology
of the production plant, as well as handling metadata related to
the ML process; the Service Management component handles
the creation, deployment, and coordination of services.

A set of selected machines is employed to illustrate a use
case for the ACD*C framework, and this setup is referred
to throughout this paper. As shown in Figure 2, this modular
production use case consists of a series of modular production
system (MPS) stations organized as a minimal production line.

Each station independently handles a distinct manufacturing
step in the assembly of magazines, caps, and rings into a
composite final product. In this installation, stations are not
connected by conveyor belts, but instead by a robot that
moves the partially assembled products from one station to
the next. Once the products are fully assembled, they are
inspected by a camera to determine whether they match the
given specifications (i.e., whether the magazines, caps, and
rings of the correct color were used in the assembly process).
The ACD*C framework is applied to this use case, with the
goal to enable the creation of an ML-Service that performs
image-based error detection using the output produced by the
camera. Note that the ML-Service that accomplishes this is
deployed to a PC connected to the camera.
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Fig. 1. Overview of components in ACD*C framework.
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Fig. 2. Diagram with overall representation of the modular production use
case.



B. Literature Review
As this project investigates the intersection between the

concepts of Industry 4.0, Asset Administration Shell, digital
twins, Machine Learning, and related technologies, this lit-
erature review focuses on providing a brief explanation and
introduction to these various concepts and related work. The
motivation for this subsection is to provide an essential set
of definitions for the terms used throughout the paper and to
discuss how these ideas interrelate.

1) Industry 4.0 and Machine Learning: The term “Industry
4.0” refers to the idea of a fourth industrial revolution [9].
Whereas the first industrial revolution focused on mechaniza-
tion, the second on the use of electricity, and the third on
process digitalization, the vision of Industry 4.0 is to introduce
smart objects into the manufacturing process [1]. Specifically,
the goal is to further the digitalization of production plants by
leveraging the dynamic connection and integration of devices
at the shop floor [10]. It is little surprise, then, that Machine
Learning is instrumental to the execution of this vision. In
fact, research on the use of Machine Learning to the domain
of Industry 4.0 is very active, with a particular emphasis on
fault detection and predictive maintenance approaches [3]. In
order to make use of these techniques, and to support the tenet
of Industry 4.0 in general, it is necessary to employ a unified
standard to communicate about the capabilities of devices
and the data produced by them [11]. With a standardized
format, data can be processed in a machine-interpretable
manner, leading to the ultimate goal of independent and self-
configuring devices.

2) Asset Administration Shell and Digital Twins: To ad-
dress the need for standardized data about the components of
a manufacturing plant, researchers and practitioners developed
the concept of the Asset Administration Shell (AAS), which is
a software representation of a physical asset in the production
line [12]. An AAS is comprised of a number of submodels,
each capturing a different information perspective and its
corresponding data properties for the underlying asset [13].
Employing the AAS ensures that a consistent information
model is used, which in turn supports the interoperability of
components [14]. The concept of the AAS is similar to that
of digital twins in that both provide detailed digital models
of a physical system. However, the AAS can be thought of
as an enriched and mature version of a digital twin, where
all information and interfaces to the corresponding device are
fully available [15]. This availability is crucial for supporting
the principles of Industry 4.0 and ML. The work in [16]
indicates that the structure and information provided by the
AAS support the employment of ML techniques.

3) Supporting Technologies: Supporting tools and tech-
nologies have been developed to promote the use of Industry
4.0 and Asset Administration Shell concepts. One of them is
the AASX Package Explorer, which is a tool for creating,
viewing, and editing .AASX files [17], [18]. The Package
Explorer allows for the modelling of assets and the creation
of their AAS, as well as the assignment and organization of
data properties. It is an intuitive tool for perusing the structure

of Asset Administration Shells. Another key technology is
BaSyx [19], [20], which is a platform that provides software
to assist with the implementation of Industry 4.0 applications.
It includes components to assist with the modelling, commu-
nication, and data processing for shop floor devices. BaSyx
incorporates the concept of AAS into the platform, allowing
their dynamic creation and also loading from .AASX files.

4) Metadata Management: Independently from the con-
cepts of Industry 4.0 and AAS, metadata management of
software systems has been an area of focus on its own accord.
Metadata management is connected to database technologies,
where information such as schema mappings must be ef-
ficiently stored and handled [21]. Research in this field is
ongoing, with works in the area evolving from predominantly
discussing the speed of data access [22] to presenting broader
architectural and technological ideas [23]. One of these pro-
posals involves a data lake, which is a platform for handling
heterogeneous data sets in a unified manner. The architecture
of a data lake introduces ideas such as data ingestion, cleaning,
and versioning [24], all of which are relevant when imple-
menting a metadata management solution. Still, the focus of
metadata management in the context of industrial automation
systems is not on handling big data (as it is the case with data
lakes), but on supporting the digitalization and automation of
industrial processes by providing crucial information. Namely,
the work in this area seeks to standardize data so that it can
be freely exchanged among enterprise systems [25].

5) Service-Oriented Architecture: Another fundamental
concept that must be mentioned is that of Service-Oriented
Architectures (SOA), which is consistently used as a funda-
mental paradigm by our ACD*C framework and ultimately
connects to the overall notion of Industry 4.0. SOA organizes
components as services, resulting in a flexible system that can
easily be updated or reconfigured as necessary [26], [27]. This
architecture echoes Industry 4.0’s objective of reaching a mod-
ular and interoperable ecosystem for smart manufacturing [28],
constituting an area of active research. As example, the work
in [29] clearly connects the two ideas, pointing out that robots,
machines, and applications can be made available as services
for use in the manufacturing process. These services can be
flexibly discovered and composed, and they communicate via
a standardized service bus. Likewise, the work in [30] explores
the compatibility between service-based cloud computing and
Industry 4.0 standards, concluding that manufacturing services
can successfully be used via a cloud-based interface. Thus,
SOA can be seen as instrumental in the implementation of the
infrastructure required for realizing Industry 4.0 concepts.

III. METADATA MANAGER

The Metadata Manager was implemented in Java, making
use of the BaSyx platform [19]. It provides a standardized
interface that can be used by the Service Management com-
ponent (cf. Figure 1) to provide and retrieve metadata about
devices in the production plant. This data is used to generate
appropriate connectors to communicate with devices, to check
resources before deploying ML-Services, and to provide useful



information to Data Scientists – as they develop specific
ML-Services within the ACD*C framework. The Metadata
Manager will also be extended to track metadata related
to ML experiments. Building upon BaSyx’s structure, the
introduced Metadata Manager uses the AAS to structure and
store device data. To do so, it instantiates a BaSyx server
and registry to manage the created shells. As summarized
in Table I, the current interface for the Metadata Manager
allows the user to create device representations (either by
manually providing the information or by importing it from
a .AASX file), remove them, and retrieve information about
the data variables (i.e. communication properties) of each
device. Additionally, the Metadata Manager interface allows
users to set topological connections between devices (once
again, either manually or by importing an .AASX file), remove
them, and retrieve a graph-based topology representation. The
following subsections discuss in more detail the use of AAS in
the implementation of the Metadata Manager, addressing three
parts of the component. For each subsection, a key concern re-
garding the use of AAS for the implementation is highlighted.
Throughout this section, screenshots obtained with the AASX
Package Explorer are used to provide data examples based on
the previously presented modular production use case.

A. Basic Device Information

The methods related to the creation, removal, and import
of devices were implemented using the AAS functionality
provided by BaSyx. Figure 3 shows the .AASX file, created
using the AASX Package Explorer, to describe the Asset
Administration Shells for the devices that make up the modular
production use case. This example showcases how each AAS
is organized for a device. Namely, all shells have one obliga-
tory nameplate submodel, which captures basic information
about the device (e.g., its name, IP address, voltage, etc),
and one optional variables submodel, which stores the details
of the variables to be used when communicating with the
device (including details such as the variable type, associated
register address, and communication protocol). The variables
submodel is optional because certain devices (e.g., PCs) do
not require any specific variables for communication. As
mentioned before, devices can be created either directly by
the user or by importing the contents of a .AASX file.

The creation, retrieval, and removal of this information has
a straightforward implementation, as it leverages functionality
already provided by BaSyx. The main concern for this part
of the implementation was in abstracting away the AAS and
submodel details from users, so that it is not necessary for
them to understand the details of the BaSyx platform when
using the Metadata Manager. At times, this was accomplished
by defining and using classes for holding specific categories
of information (e.g., a DataVariable class).

B. Topology

Topological information is useful for the ACD*C framework
because it gives further insight as to where to deploy ML-
Services and where useful ML data flows through. Addi-

TABLE I
OVERVIEW FOR THE METADATA MANAGER’S CURRENT INTERFACE.

Method Name and Parameters Description and Return Type

createDevice
• String deviceName
• String ipAddress
• boolean

deploymentHost
• List<DataVariable>

dataVariableList

Creates a new device with the
specified information.

• Returns boolean

removeDevice
• String deviceName

Removes the specified device.
• Returns boolean

importDevices
• String fileName

Creates devices based on the de-
scriptions contained in a .AASX
file.

• Returns boolean

checkDataVariableExists
• String deviceName
• String

dataVariableName

Checks whether a given data vari-
able has been defined for a de-
vice.

• Returns boolean

getDataVariableInformation
• String deviceName
• String

dataVariableName

Retrieves the details for a given
data variable.

• Returns DataVariable

getConnectorSettings
• String protocol

Provides the connector settings
according to the communication
protocol.

• Returns
ConnectorDetails

getIPAddress
• String deviceName

Retrieves the IP address for a
given device.

• Returns String

createTopologyRelationship
• String firstDevice
• String secondDevice

Creates a topology relationship
between devices.

• Returns boolean

removeTopologyRelationship
• String firstDevice
• String secondDevice

Removes the topology relation-
ship between devices.

• Returns boolean

getTopology Retrieves a graph representation
of the current topology for exist-
ing devices.

• Returns
TopologyGraph

importTopology
• String fileName

Creates topology connections
based on the descriptions in a
.AASX file.

• Returns boolean

tionally, this topology information could be used to optimize
how devices are interconnected in the production plant. The
methods for defining, importing, and removing topology con-
nections between devices are also implemented using AAS
concepts. Specifically, each topological connection is repre-
sented as a RelationshipElement, which captures an association
between two elements in the model. In this context, having
this association means that the two devices can communicate
with one another. The RelationshipElement contains direct
references, based on unique identifiers, to the shells for each



Fig. 3. Screenshot of the .AASX file that describes devices in the modular
production use case.

device. One of the key decisions, when implementing the
topology logic, concerned the storage of this data. On the
one hand, all topological connections could be tracked in a
submodel of an abstract AAS. On the other hand, they could
be included as a shared submodel of each device’s AAS.
Eventually, the decision was made to adopt the former option,
as the implementation logic was more intuitive when main-
taining the submodel under a specific AAS. Figure 4 shows
an example .AASX file, containing the topology information
for the modular production use case. While this option is easier
to work with, it requires the creation of an abstract ”topology”
shell, which is a logical component rather than a physical
device in the production plant [31].

Fig. 4. Screenshot of the .AASX file with the topology relationships for the
modular production use case.

Other concerns in the implementation of the topology have
to do with the graph-like nature of this data. One challenge is
in handling fully connected topologies, which not only result
in an explosion of relationships, but they are also tedious to set
up. Our ACD*C framework addresses this by providing users
with a shorthand, where a relationship can be created between
a device ID and an empty ID. This means that the specific
device is fully connected to all other registered devices. Fi-
nally, another set of challenges is in ensuring that all recorded
relationships remain valid. For instance, if a device is removed,
so should all the relationships that include that device. As

another example, a relationship between two devices should
not be created more than once. To address this, the ACD*C
framework uses an internal graph representation that tracks all
current edges (i.e., device relationships). Whenever performing
a modification that affects the topology state, the code checks
against/updates this internal graph to prevent these issues.

C. Connector Information

The ACD*C framework also maintains information that
is used for creating the connectors that interact with the
devices in the production plant. This information is provided to
users based on the connectors currently made available in the
framework, which are mapped to a specific communication
protocol. As shown in Figure 5, this information was also
represented using AAS, as connectors fall under the category
of logical production components. An AAS was created for
each type of connector, containing a settings submodel that
holds information on the names and types of the arguments
the connector requires, as well as the module used to access
the connector code. Additionally, a separate AAS keeps track
of the mapping between the communication protocol used and
the corresponding connection that should be instantiated (this
association is recorded using a ReferenceElement that points
to the a specific connector’s AAS).

Fig. 5. Screenshot of the .AASX file with the connector information for the
modular production use case.

For this part of the implementation, the main concern has to
do with the current mechanism for the creation of connectors.
Namely, they are created by the Service Manager component
and not connected back to the Metadata Manager, meaning
that AAS cannot directly use the connectors to retrieve the
current state of the underlying devices and to communicate
with them. This will be addressed in upcoming updates to the
implementation of the Metadata Manager.

IV. UNIT TESTING RESULTS

As part of the implementation process, JUnit tests were
created to validate the functionality of the interface provided
by the Metadata Manager. While these tests cannot be used
as direct evidence regarding the effectiveness of the imple-
mentation, they do reveal general efficiency trends that can
be used as feedback for further improvement. JUnit 4 tests



were run via Eclipse version 2019-12 (4.14.0), on an Ubuntu
20.04.3 LTS virtual machine (VM) with 1024 MB RAM. The
VM runs on a Windows 10 Enterprise host with 16 GB RAM,
using a single core of the host’s quad-core 2.80 GHz processor.
Tests were executed 10 independent times, with a warm-up run
beforehand.

Table II presents the mean execution time of the ”happy
path” (i.e., the default usage scenario) for each method of-
fered by the Metadata Manager’s interface. Note that the
time recorded for each test excludes the overhead associated
with instantiating the Metadata Manager, as well as start-
ing/stopping the server and registry used for AAS manage-
ment. The results show that, in general, the methods for
setting and retrieving basic device information (e.g., creating
and removing devices, or retrieving data variable information)
have roughly similar execution times. In this group, the
getDataVariableInformation method has the slowest execution
time, as it must access multiple submodel values (which incurs
some communication latency with the server). Meanwhile,
the method for retrieving connector information also performs
similarly to those in the previous group. The methods related
to the creation and management of topology connections, on
the other hand, have noticeably slower execution times. The
importTopology method, in particular, requires at least twice as
long to execute as all other methods, even when compared to
the importDevices method (which is structurally similar in its
implementation). Likewise, the removeTopologyRelationship
and getTopology methods both take longer to execute than
methods in other groups.As these results show, rethinking the
topology representation is important to improve the perfor-
mance of the Metadata Manager in upcoming versions.

TABLE II
MEAN EXECUTION TIMES FOR UNIT TESTS (MS), WITH CORRESPONDING
STANDARD DEVIATION. VALUES ARE ROUNDED TO ONE DECIMAL PLACE.

Test Name Mean ± Std (ms)

testCreateDevice 414.2± 107.6

testRemoveDevice 604.8± 366.9

testImportDevices 593.5± 180.4

testCheckDataVariableExists 419.1± 153.0

testGetDataVariableInformation 701.0± 199.3

testGetConnectorSettings 390.2± 93.4

testGetIPAddress 475.1± 55.5

testCreateTopologyRelationship 562.8± 127.0

testRemoveTopologyRelationship 2075.0± 836.1

testGetTopology 1637.7± 331.9

testImportTopology 3467.2± 462.3

V. FINDINGS AND PLANNED EXTENSIONS

In addition to the need to refine certain aspects of the current
implementation, the discussion and assessment of the present
Metadata Manager has revealed two interesting extension
possibilities to the component, as follows.

A. Dynamic Asset Administration Shell

The first planned extension is to upgrade the AAS from
static information containers to data models that are periodi-
cally updated when the state of the underlying physical device
changes. As discussed in the introductory examples presented
in the BaSyx documentation [32], this can be accomplished
by assigning lambda functions to the properties that should
be dynamically updated. These functions then invoke logic
that interfaces with the device (either the actual physical
device or a simulated one). In the context of the ACD*C
framework, this raises two important questions. The first
question, which was already mentioned during discussions
about the current implementation, is how to tackle the creation
of connectors within the framework. As the BaSyx exam-
ple shows, the properties in the AAS must have access to
the device interface (in the case of the ACD*C framework,
the connector). However, the platform currently handles the
connector creation in a different module. Thus, the overall
framework’s architecture must be adapted so that the Metadata
Manager either handles the creation of connectors, or at least
has direct access to them. The second question is how the
ACD*C framework can offer a general-purpose mechanism
that allows users to define and customize the state-related
information they would like to dynamically track for each
device. While that is straightforward in the BaSyx example (as
there is a single temperature variable), this requires knowledge
of what information is exposed by the different devices in
the production plant. Thus, the ACD*C framework must be
extended to either import metadata related to device states, or
at least allow users to define it.

B. Exposing State Data

Once the first planned extension is carried out, the ACD*C
framework should be able to track state updates of all ma-
chines. This is valuable data, since it provides insight into the
functioning of the production plant, whether any unexpected
states have been observed, and what their root cause is.
Indeed, this information can be leveraged, with the help of
ML, to support tasks such as predictive maintenance, anomaly
detection, and production optimization (e.g., ensuring that no
machine is underutilized). In order to train ML models that
offer these capabilities, the data should be provided in a time
series format [3]. Figure 6 shows a visual representation of
this concept. In this example, the current state of each device
in the modular production use case is tracked in the form of
a finite state machine representation. The current states of all
devices are grouped by time, thus providing a snapshot of the
overall behavior of the production plant at any given moment.

To incorporate these conceptual extensions into the ACD*C
framework, the exact representation of a state must be decided
upon. The key question is whether the states are automatically
inferred based on the current values of selected internal
variables, or whether an explicit description is provided for
the possible states and transitions. While the first option allows
for a simpler implementation, it does not encode any domain-
specific knowledge about the behavior of devices. The second
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Fig. 6. Conceptual example of state time series for the modular production
use case. Note that the finite state machine representations in this example
are not accurate depictions of the devices’ functions.

option, on the other hand, requires all general device states
and transitions between these states to be modelled explicitly.
The additional modelling effort in this scenario can be signif-
icant, depending on the behavior complexity for the device.
However, this involves a direct understanding of its logical
functioning, which in turn improves data interpretability.

The approach of explicitly modelling device states has
been adopted by the BaSyx platform, with the introduction
of control components. These provide a way of controlling
physical devices via a service-based interface [33]. Control
components are particularly relevant to this discussion because
they employ finite state machines to track the status of devices
[34]. While some of these state machines only provide general
information, such as the error state (i.e., whether the operation
is normal or an error has occurred) or the occupation state
(i.e., whether the device is currently free or occupied by a
different entity), others give specific insight into the device’s
behavior, such as the execution state (i.e., whether a device
is idle, executing a job, suspended, etc.). Additionally, the
control component supports the execution of user-created state
machines in parallel with the standard ones, which can com-
plement the information already available. Thus, the derived
plan for extending the Metadata Manager is to periodically
track this state data and make it available for users of the
ACD*C framework.

VI. FUTURE DIRECTIONS

The issues discussed in the previous sections hint at planned
extensions for the Metadata Manager and ACD*C framework.
However, there are also more general future directions for the
framework. Following the discussion of state representations
for devices, one interesting prospect is to further expand on
this idea by investigating ways of including a description
of the functionality of devices in the Asset Administration

Shell. Over time, this means that device manufacturers could
also include standardized information about the device’s spe-
cific states in the AAS, which would be useful for testing,
simulations, and further simplifying the creation of a digital
twin. Indeed, this idea is being actively investigated, with
some work focusing on describing state information and then
including it into the AAS for later consumption by other tools
[35]. Eventually, rather than manually modelling the states of
devices, which could become a complex and time consuming
endeavor, the finite state machine could be automatically
abstracted from the device’s data and communication patterns.
Once again, this is another active area of investigation, with
researchers exploring methods to translate the functionality
of programmable logic controllers (PLCs) into state machine
representations [36]. In general, these developments steer the
work in the field towards the ultimate goal of reaching a fully
matured representation of a digital twin, which seamlessly
connects static information with dynamic functionality.

Another interesting development is the incorporation of ad-
ditional testing information to the Asset Administration Shell.
For instance, descriptions of test cases could be included,
with required input, expected output, and the sequence of
states that should be observed as the device operates to fulfill
the task. Making this information available would be useful
for diagnostics, troubleshooting device configurations, or for
ensuring that it behaves as specified. In the case of the ACD*C
framework, this information would also be potentially useful
as training data for ML-based fault detection. While an exact
description of this idea was not found in the literature, the
area of verification and validation of industrial systems with
the help of digital twins shows similarities [37], [38]. In
particular, existing approaches seek to perform this validation
via testing or formal verification techniques. This area seems
to be under-explored at the moment [37], though further work
in this domain could eventually lead to the development of
approaches for safety and reliability assessment at runtime.

VII. CONCLUSION

This paper introduced the implementation of the Metadata
Manager, which is a component of the ACD*C framework
for supporting the life cycle of Machine Learning in Industry
4.0. The Metadata Manager was built using the concept of
Asset Administration Shells and leveraging the existing logic
offered by the BaSyx platform. The functionality provided by
the Metadata Manager can be conceptualized into three parts:
methods that provide and retrieve basic information about de-
vices in the production line, methods for creating, deleting, and
exploring topological connections between devices, and logic
for retrieving information for the creation of communication
connectors for the framework. Executed unit test results show
that the efficiency of the current implementation of the Meta-
data Manager can be improved, especially where the topology-
related methods are concerned. Additionally, analyses on the
planned extensions to the Metadata Manager indicate that the
tracking of dynamic device states and the sharing of this
data with the framework’s users is a high-value next step. In



addition to these planned extensions, future work will include
a thorough evaluation of the proposed approach and additional
discussions on domain-specific ML applications.
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O. Niggemann, and C. Röcker, “Assistance system to support trou-
bleshooting of complex industrial systems,” in 2018 14th IEEE Interna-
tional Workshop on Factory Communication Systems (WFCS). IEEE,
2018, pp. 1–4.

[17] “AASX Package Explorer,” https://github.com/admin-shell-io/
aasx-package-explorer, accessed on 31 May 2022.

[18] A. Deuter and S. Imort, “PLM/ALM integration with the asset admin-
istration shell,” Procedia Manufacturing, vol. 52, pp. 234–240, 2020.

[19] “Eclipse Foundation: BaSyx,” https://wiki.eclipse.org/BaSyx, accessed
on 31 May 2022.

[20] K. Esper and F. Schnicke, “Evaluation of the maintainability aspect of
industry 4.0 service-oriented production,” in 2020 IEEE International
Conference on Industry 4.0, Artificial Intelligence, and Communications
Technology (IAICT). IEEE, 2020, pp. 8–14.

[21] P. G. Kolaitis, “Schema mappings, data exchange, and metadata man-
agement,” in Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, 2005, pp. 61–75.

[22] S. A. Brandt, E. L. Miller, D. D. Long, and L. Xue, “Efficient metadata
management in large distributed storage systems,” in 20th IEEE/11th
NASA Goddard Conference on Mass Storage Systems and Technologies,
2003.(MSST 2003). Proceedings. IEEE, 2003, pp. 290–298.

[23] P. Sawadogo and J. Darmont, “On data lake architectures and metadata
management,” Journal of Intelligent Information Systems, vol. 56, no. 1,
pp. 97–120, 2021.

[24] F. Nargesian, E. Zhu, R. J. Miller, K. Q. Pu, and P. C. Arocena, “Data
lake management: challenges and opportunities,” Proceedings of the
VLDB Endowment, vol. 12, no. 12, pp. 1986–1989, 2019.

[25] R. Eichler, C. Giebler, C. Gröger, E. Hoos, H. Schwarz, and
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