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Abstract—The highest solar cell conversion efficiencies are
achieved with four-junction devices under concentrated sunlight
illumination. Different cell architectures are under development,
all targeting an ideal bandgap combination close to 1.9, 1.4, 1.0,
and 0.7 eV. Wafer bonding is used in this work to combine materi-
als with a significant lattice mismatch. Three cell architectures are
presented using the same two top junctions of GaInP/GaAs but dif-
ferent infrared absorbers based on Germanium, GaSb, or GaInAs
on InP. The modeled efficiency potential at 500 suns is in the range
of 49–54% for all three devices, but the highest efficiency is expected
for the InP-based cell. An efficiency of 46% at 508 suns was already
measured by AIST in Japan for a GaInP/GaAs//GaInAsP/GaInAs
solar cell and represents the highest independently confirmed effi-
ciency today. Solar cells on Ge and GaSb are in the development
phase at Fraunhofer ISE, and the first demonstration of functional
devices is presented in this paper.

Index Terms—Concentrator photovoltaics, high-efficiency,
multijunction, photovoltaic cells.

I. INTRODUCTION

FOUR-JUNCTION solar cells are under development as
the next-generation product for high-concentration photo-

voltaics to replace today’s triple-junction technology. Lattice-
matched and metamorphic triple-junction cells on Ge reach
efficiency values up to 42% [1], [2] and the best inverted meta-
morphic GaInP/GaAs/GaInAs solar cell up to 44.4% [3]–[5].
Further improvements in cell performance are expected by
adding an additional p-n junction with optimum bandgap
energy. From detailed balance calculations, it is known that a
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Fig. 1. Absorber and substrate materials for three wafer-bonded four-junction
solar cells. (a) InP-based, (b) Ge-based, and (c) GaSb-based.

combination of 1.9, 1.4, 1.0, and 0.5 eV absorbers is ideal to
convert the 500×AM1.5 direct sun spectrum [6], which is the
typical spectrum for concentrator photovoltaic applications. In
reality, this material combination is not easy to achieve, mainly
because III–V compounds with large bandgap are predomi-
nantly found for small lattice constants, whereas low-bandgap
absorbers tend to have larger lattice constants. Lattice-
mismatched growth using two metamorphic GaInAs junctions
and two lattice constant grading layers has turned out to be a
suitable method to form four-junction solar cells [3], [7], as well
as transfer printing [8]. Wafer bonding is an alternative approach
and has been used to form multijunction solar cells combining
InP- and GaAs-based compounds [9]–[13]. In this paper, we
present the latest status of a four-junction solar cell development
using an upper GaAs-based GaInP/GaAs cell structure bonded
to a lower GaInAsP/GaInAs cell structure on InP as schemat-
ically presented in Fig. 1(a). This cell includes only lattice-
matched epitaxial growth, which results in the lowest threading
dislocation densities. Two alternative cell architectures are intro-
duced using a combination of wafer bonding and metamorphic
growth to reach the optimum set of bandgap energies. Fig. 1(b)
shows a cell on Germanium with a metamorphic GaInAs subcell
bonded to a top GaInP/GaAs tandem. Fig. 1(c) shows a cell on
GaSb bonded to an inverted metamorphic GaInP/GaAs/GaInAs
triple-junction cell. All three designs use similar top cell ab-
sorbers, but the materials for the lower two subcells are different.

The cell structure on Germanium benefits from the low-
est substrate cost and an established cell processing in the
concentrator photovoltaic industry. GaSb, on the other hand,
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allows us to extend the spectral absorption range toward 0.5 eV
(2480 nm) by using lattice-matched GaInAsSb compounds [14],
[15]. Therefore, this is the only cell concept that reaches the op-
timum set of bandgap energies for a four-junction cell from
detailed balance calculations [6], [16]. However, in reality, the
performance of a specific multijunction solar cell stack is not
only related to the bandgap energies of the materials but rather
influenced by specific material properties such as absorption
coefficient, mobility, minority carrier lifetime, and availability
of suitable barrier materials. This paper, therefore, starts with
a more detailed evaluation of realistic efficiency potentials for
the wafer-bonded four-junction solar cells and then discusses
experimental fabrication and recent results for each of the cell
architectures.

A. Theoretical Modeling

Theoretical calculation were performed using a self-built code
for calculating the absorption in each layer of a four-junction
cell, using the transfer matrix method [17]. It was assumed
that light is coherent throughout the whole device structure. To
achieve a proper optical termination, the substrate was defined
to have an infinite thickness. Absorption coefficients for the
materials were taken from [18]–[22], as well as from in-house
measurements at Fraunhofer ISE. For unknown compositions,
the data were interpolated from the nearest available neigh-
bors. A morphing algorithm was used for the interpolation of
n(λ) and k(λ) data, which takes into account critical energy
points where the slope of the dielectric functions changes signifi-
cantly. Linear interpolation with composition was performed be-
tween these critical energy endpoints. The interpolation method
was tested for AlxGa1-x As compounds and found to lead to
excellent agreement with experimental results. The dielectric
function of ternary and quaternary III–V compounds was then
determined by using this morphing algorithm, and the transfer
matrix method was used to calculate the expected absorption
in each solar cell layer. The current of a subcell is then calcu-
lated for the AM1.5d spectrum by assuming that each absorbed
photon creates one electron–hole pair, which contributes to the
photocurrent.

The algorithm for the optimization of the four-junction solar
cell followed a sequence of

1) finding the optimum bandgap combination by maximizing
a fitness function defined as the sum of all bandgap ener-
gies multiplied by the photocurrent of the current limiting
subcell; this represents an approximation to the power of
the device;

2) applying a single-diode model to each junction to deter-
mine the overall dark-current characteristics of the four-
junction cell;

3) optimizing PMPP by assuming J(V) = smallest photocur-
rent of all subcells minus the sum of the dark currents of
the subcells.

Typical values have been assumed for the series resistance
(15 mΩ·cm−2) and grid shading (4%). These values are realistic
and may be even improved in the future. The parallel resistance
was taken as infinite. The reverse saturation current Jrs is a

TABLE I
REVERSE SATURATION CURRENTS Jrs DETERMINED FROM

CURRENT–VOLTAGE CHARACTERISTICS OF SINGLE-JUNCTION SOLAR CELLS

AND USED IN THE THEORETICAL MODEL

Material System Saturation Current Jr s

AlGaInP (1.92 eV) 5.5 × 10−25 A/m2

GaAs (1.42 eV) 1.6 × 10−16 A/m2

GaInAs (1.08 eV) 2.0 × 10−10 A/m2

GaInAsP (1.08 eV) 1.9 × 10−11 A/m2

GaSb (0.73 eV) 6.7 × 10−05 A/m2

GaInAs (0.71 eV) 2.1 × 10−04 A/m2

Ge (0.67 eV) 3.1 × 10−03 A/m2

TABLE II
MODELED I–V PARAMETERS FOR THE OPTIMIZED FOUR-JUNCTION CELL

CONCEPTS UNDER 500×AM1.5D CONDITIONS

Device Concept η [%] Vo c [V] Js c /C [mA/cm2] FF [%]

InP-based cell (a) 53.8 4.376 14.2 86.7
Ge-based cell (b) 49.5 4.170 13.8 86.2
GaSb-based cell (c) 51.5 4.412 13.4 86.9

function of the bandgap energy of the material and may be deter-
mined from a thermodynamic limit approximation (Shockley–
Queisser), or following the method described by Wanlass et al.
[23], [24]. We used measured values of the best single-junction
solar cells with similar material composition and adapted the
values for Jrs for the exact bandgap energy by using the method

of Wanlass with Jrs,i = βT 3e
−E g
k T , β = AeBEg [A · m−2 · K−3 ]

and A = 0.702548; B = 2.38585. The saturation currents for
the different subcells are listed in Table I. The different values
reflect material-related differences between the compounds, and
this is especially important for the performance of the indirect
Ge junction, which shows a higher dark saturation current com-
pared to direct III–V compounds in the same bandgap range.

For calculating an optimum configuration for each four-
junction solar cell, not only the absorber layers must be defined.
MgF2 /Ta2O5 with a thickness of 127 and 75 nm deposited on
a 30-nm AlInP window layer was assumed as the antireflective
coating for all solar cells. The window layer was calculated to
contribute partly to the photocurrent of the AlGaInP top junc-
tion as found from experimental results [25]. The influence of
these upmost layers was verified by comparing the modeled ab-
sorption of the GaInP top cell to measured external quantum
efficiencies. A good agreement was obtained for high-quality
solar cells. Tunnel diodes, barrier layers, and bond layers were
not included in the optimization as it may be assumed that such
layers can be chosen from high-bandgap alloys, leading to neg-
ligible absorption loss.

The results of the theoretical model for all three four-junction
solar cell designs of Fig. 1 are summarized in Table II. The
calculations were performed for 500×AM1.5d (1000 W/m2)
conditions. The thickness of each subcell in the optimized four-
junction device is chosen to ensure current matching between all
junctions, but the thickness of the bottom cell was restricted to:
75 μm for Ge, 2.5 μm for GaInAs, and 5 μm for GaSb. We as-
sumed that these are typical active layer thicknesses, which may
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Fig. 2. Calculated absorption for the optimized four-junction solar cells in
Fig. 1 using the transfer matrix method. The topmost layers were 127-nm
MgF2 , 75-nm Ta2 O5 , and 30-nm AlInP. The thickness of the lowest absorber
was restricted to 75-μm Ge, 2.5-μm GaInAs, and 5-μm GaSb. All other subcell
thicknesses were chosen to reach current matching under AM1.5d conditions.

contribute to the photocurrent. From these calculations, we find
that the InP-based GaInP/GaAs//GaInAsP/GaInAs cell structure
has the highest potential and may reach efficiencies up to 53.8%,
followed by the antimonide-based GaInP/GaAs/GaInAs//GaSb
cell with a maximum efficiency of 51.5% and the Ge-based
GaInP/GaAs//GaInAs/Ge cell with 49.5%. The absorption of
each of these solar cell devices is plotted in Fig. 2. The most
pronounced differences are observed in the wavelength range of
the lowest junction. Germanium (0.67 eV) is an indirect semi-
conductor, and the absorption, therefore, has a long tail between
1600 and 1900 nm. GaSb (0.73 eV) and GaInAs (0.71 eV)
are direct semiconductors, and the absorption is abrupt close to
the bandgap. The absorption of GaInAs is extended 62 nm into
the infrared compared with GaSb. It will be seen later that such a
large difference is not necessarily found experimentally but ob-
viously depends on the exact composition and lattice matching
of the ternary GaInAs cell to the InP substrate.

The second subcell with a bandgap of 1.08 eV was adjusted
in thickness to match the current of the bottom subcell, and
consequently, the thicknesses of the GaAs cell with 1.42 eV
and the AlGaInP cell with 1.92 eV were chosen accordingly to
balance the photocurrents of all junctions. The differences in
the absorption of the lowest subcell control the overall Jsc of
the cell and the current consequently increases from the indirect
Ge-based cell to the GaSb-based cell and to the InP-based cell.
The voltage and fill factor (FF) on the other hand are strongly
influenced by the dark saturation current, and again Ge has a
significantly lower Voc because of the high dark current, whereas
the GaSb cell benefits both from low dark current and high
bandgap of the bottom cell.

The theoretical model may be extended in the future to model
also four-junction devices using a GaInAsSb bottom cell be-
tween 0.5 and 0.73 eV, which may allow even higher efficien-
cies. However, material constraints may lead to a higher dark
saturation current, which has been shown to be of major im-
portance for reaching the highest performance levels. In sum-
mary, assuming materials with sufficient diffusion length, the

modeling results suggest that four-junction solar cell with >50%
efficiency at 500 suns are, in fact, possible.

II. EXPERIMENTAL DETAILS

All four-junction solar cells in Fig. 1 were realized experi-
mentally. The III–V compound semiconductor layer structures
were grown at Fraunhofer ISE by metal–organic vapor phase
epitaxy using an AIX2800-G4 reactor (8 × 100 mm substrate
configuration) for arsenides and phosphides and a CRIUS closed
coupled showerhead reactor (7× 100 mm configuration) for gal-
lium antimonide. The substrates for InP, GaAs, and Ge had a
diameter of 100 mm, whereas GaSb was grown on 2-in wafers
placed in the middle of a 100-mm recess. Some of the InP-based
solar cells were realized on InP-on-GaAs engineered substrates
with a diameter of also 100 mm. These special wafers are a
product of SOITEC and enabled by transfer of a thin (<1 μm)
InP layer from a bulk substrate to a GaAs wafer using SmartCut
technology [26].

Typical growth temperatures were between 530 and 700 °C,
V/III ratios between 1 and 40. Arsine, phosphine and trimethy-
lantimony were used as group-V precursors and trimethylgal-
lium, trimethylindium, trimethylaluminium as group-III precur-
sors. Further details are published in [9], [12], and [27]. All top
tandem cell structures were grown in an inverted manner on a
GaAs substrate, whereas all bottom cell structures were grown
upright on Ge, InP, InP-on-GaAs, or GaSb.

All solar cell wafers were polished after the epitaxial growth
to obtain a low surface roughness of <1 nm. Wafer bond-
ing for InP-based solar cells was performed at SOITEC, us-
ing a proprietary process developed with CEA-LETI. All other
wafers were bonded at Fraunhofer ISE using a single-wafer
Ayumi SAB100 high vacuum tool, offering the possibility to
remove surface oxides by a fast atom beam of Argon before
joining the wafers at a bond force of 10 kN. This allowed
high bond stability and low bond resistance in the range of
1–5 mΩ·cm2. The bond interface for the InP-based cell (a) was
formed between InP and GaAs, for the Ge-based cell (b) between
GaAs and Ga0.33 In0.67P and for the GaSb-based cell (c) between
GaSb and Ga0.23In0.77P.

The GaAs substrate on the top tandem cell was removed by
chemical etching, and concentrator solar cell devices were pro-
cessed using standard metal contacts and dielectric coatings.
75-nm Ta2O5 and 127-nm MgF2 were evaporated onto the Al-
InP window layer as the antireflective coating. Solar cell devices
had an area of typically 5.3 mm2 with etched trenches of at least
10-μm depth separating the p-n junctions. Electrical characteri-
zation was carried out in the Fraunhofer ISE CalLab using a grat-
ing monochromator setup for the quantum efficiency [28], [29];
a multisource solar simulator [30] for 1-sun I–V characteristics;
and a flash simulator for measurements under concentration.
Both single-flash simulators, as well as a four-flash simulator
(QuadFlash) with spectrum control, have recently been used
[31], [32].

III. RESULTS AND DISCUSSION

The following section summarizes characterization results
for three different four-junction solar cell devices (according to
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Fig. 3. I–V characteristics of a wafer-bonded GaInP/GaAs//GaInAsP/GaInAs
four-junction cell measured at AIST/Japan under 508-fold concentration of the
AM1.5d spectrum.

Fig. 1) using wafer bonding to join compounds with significant
difference in lattice constant.

A. Four-Junction Solar Cell on InP

A more detailed discussion of the wafer-bonded GaInP/
GaAs//GaInAsP/GaInAs four-junction solar cell was already
published previously in [9], [10], [12], and [13] with a cali-
brated efficiency of 44.7% measured under 297×AM1.5d con-
ditions. These devices were further developed in the meantime
following an engineering approach and resulting in improved
characteristics in respect to

1) current balance between subcells;
2) series resistance of emitter;
3) shading of metal contacts;
4) current collection and voltage of the GaInP top cell;
5) edge definition by steep mesa etch.
The best solar cell was sent for external validation to the

Japanese Calibration Laboratory AIST. I–V characteristics were
measured under the AM1.5d spectrum at 508-fold concentra-
tion, and an efficiency of 46.0% was confirmed for this concen-
trator cell with an area of 5.2 mm2 (see Fig. 3). It should be
mentioned that the cell was measured under spectrally matched
conditions of a T-HIPPS solar simulator, leading to nearly identi-
cal irradiation conditions of 50.9, 50.8, 50.0, and 50.9 W/cm2 for
the first, second, third, and fourth subcell from the top, respec-
tively. The same cell had been measured before at Fraunhofer
ISE CalLab, obtaining an efficiency of 46.5% with a single-
flash simulator leading to a surplus in current generation of
30% in the GaInAsP cell compared with AM1.5d conditions. It
is known that this spectral mismatch of this simulator spectrum
may lead to an overestimation of the FF, as discussed in [31],
which was accounted for by a higher error bar. It is important
for a proper calibration of multijunction solar cells to keep the
spectral mismatch for each subcell under the simulator spectrum
small.

Fig. 4 shows an external quantum efficiency of a solar cell,
which was grown on InP-on-GaAs engineered substrate [26].
The use of an engineered substrate reduces manufacturing costs

Fig. 4. External quantum efficiency of a GaInP/GaAs// GaInAsP/GaInAs
four-junction solar cell grown on InP-on-GaAs engineered substrate. Numbers
represent the calculated current densities for each junction under the AM1.5d
ASTMG173-3 spectrum at 1000 W/m2.

Fig. 5. I–V parameters of a wafer-bonded GaInP/GaAs// GaInAsP/GaInAs
four-junction solar cell on InP-on-GaAs engineered substrate at different con-
centration levels, measured at Fraunhofer ISE CalLab under a single flash and
the QuadFlash simulator. Additionally, the I–V parameters of the 1-sun mea-
surement from the multisource simulator is shown. The QuadFlash allows us to
match individually the spectrum incident on each subcell to the respective cur-
rent generation under the AM1.5d ASTM G173-03 spectrum. A peak efficiency
of 46.1% at 312-sun concentration was obtained for the QuadFlash simulator,
compared with 47.4% at 389 suns with the single flash.

by replacing a 500-μm-thick InP bulk crystal by a <1-μm-thin
seed layer transferred to GaAs. The cell is processed identi-
cal to a solar cell on an InP bulk wafer. The external quantum
efficiency of all junctions reaches above 90%, and the subcell
currents are matched within ±2%. I–V characteristics have been
plotted as a function of concentration in Fig. 5 for two measure-
ments: one under a single-source flash simulator, resulting in a
higher spectral mismatch, and one under a QuadFlash simulator
with precise spectrum control. While an efficiency of 47.4%
is measured under the single flash, the measurement shows an
efficiency of 46.1% at 312-sun concentration using the Quad-
Flash simulator. The influence of the spectrum is seen in the FF,
which is significantly increased under the single flash due to a
higher current mismatch between the junctions. The QuadFlash
result of η = 46.1% presents a new record for any solar cell
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device and proves the outstanding material quality, which has
been obtained for these devices.

B. Four-Junction Solar Cell on Ge

Four-junction solar cells were also realized by a combina-
tion of an inverted GaInP/AlGaAs top tandem solar cell with
an upright metamorphic grown GaInAs/Ge bottom tandem cell.
Both solar cell structures were joined by surface activated direct
wafer bonding at Fraunhofer ISE. The diffusion of the lowest Ge
junction was performed in the epitaxy reactor followed by the
growth of a Ga1-x InxAs metamorphic buffer, a tunnel diode,
and the Ga0.82In0.18As subcell. After bonding the tandem cells
together, the GaAs substrate was removed and the solar cells
processed. The material quality of the Ga0.82In0.18As cell de-
pends strongly on the threading dislocation density, which can
be achieved on top of the metamorphic buffer. This has been
measured by cathodoluminescence to be less than 106 cm−2.
At this low level of dislocation density, no significant effect on
the device characteristics is expected. Quantum efficiencies and
I–V characteristics versus concentration are shown in Fig. 6. The
photogenerated current densities in each subcell are approxi-
mately 1 mA/cm2 lower compared with the InP-based structure.
In addition, the device efficiency peaks already at 188-sun con-
centration due to a high resistance originating from the lower
tunnel diode or the bond interface. Further optimization of the
cell structure will improve the efficiency in the future.

C. Four-Junction Solar Cell on GaSb

Finally, first experimental results are presented for an anti-
monide based four-junction solar cell device. An inverted meta-
morphic GaInP/GaAs/GaInAs structure with Ga1-x InxP lattice
grading between the GaAs and Ga0.76In0.24As subcell was re-
alized and bonded to a simple n-on-p GaSb cell. The latter one
was formed by epitaxy growth of a Te-doped emitter layer on a
Si-doped base. This cell structure did not yet include any passi-
vation layers on the front or back side of the device. The wafers
were joined using the surface activated bonding at Fraunhofer
ISE and low bond resistances <5 mΩ·cm2 were confirmed with
test samples.

The external quantum efficiency in Fig. 7 shows good per-
formance for the upper three subcells, whereas the lowest GaSb
junction still suffers from significant recombination losses.
These losses are explained by the missing front surface pas-
sivation layer of the GaSb cell. Carriers that are diffusing to
the front surface of the GaSb cell are likely to recombine in the
vicinity of the bond interface, which is formed between n-GaInP
and the n-GaSb emitter. The region around the bond interface
is characterized by a high defect density, which originates from
the surface activation with Argon atoms prior to the bonding.
It was found for GaAs and Si that the fast atom beam treat-
ment results in an amorphous layer with a thickness between
2 and 5 nm [33]–[35], which is likely to suffer from high nonra-
diative recombination. Further improvement of the GaSb-based
cell design requires the introduction of a transparent front sur-
face passivation layer to prevent minority carriers from reaching
the bond interface. Overall, the cell structure reaches already

Fig. 6. External quantum efficiency of a GaInP/AlGaAs//GaInAs/Ge four-
junction solar cell with calculated current densities for each junction under the
AM1.5d ASTMG173-3 spectrum at 1000 W/m2 (top) and I–V parameters versus
concentration using a single flash solar simulator (bottom). The efficiency of
38.5% has, therefore, a higher uncertainty of 7% relative.

open-circuit voltages up to 3.9 V under concentration and an
efficiency of approximately 29.1% at 194 suns.

IV. SUMMARY AND CONCLUSION

Multijunction solar cells with four or more junctions will
be necessary to reach conversion efficiencies above 50% under
concentrated sunlight in the future. Detailed balance calcula-
tions suggest that 65% efficiency is obtainable at 500× con-
centration using a combination of absorbers with 1.9, 1.4, 1.0,
and 0.5 eV. In reality, optical losses by front surface reflection,
parasitic absorption in barrier layers, grid shading and elec-
tric losses by recombination and various resistances will keep
real efficiencies well below this number. We have developed a
more realistic model starting from measured material data and
calculating absorption by the transfer matrix method. Current–
voltage characteristics are obtained from a simple single-diode
model for each junction. Three architectures for four-junction
devices based on InP, Ge, and GaSb were discussed, and the
model predicts that efficiencies up to 53.8% are achievable. Of
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Fig. 7. External quantum efficiency of a GaInP/GaAs/GaInAs//GaSb four-
junction solar cell with calculated current densities for each junction under the
AM1.5d ASTMG173-3 spectrum at 1000 W/m2 (top) and I–V characteristics
versus concentration using the QuadFlash solar simulator (bottom), resulting in
a peak efficiency of 29.1% at 194×AM1.5d.

course, this requires excellent material quality of all junctions
to ensure that every absorbed photon contributes to photocur-
rent. However, experimental results are not far from there. We
have demonstrated external quantum efficiencies above 90%
and efficiencies up to 46.1% (at 312×AM1.5d) for a wafer-
bonded GaInP/GaAs//GaInAsP/GaInAs solar cell grown on
InP-engineered substrate. Other four-junction devices based on
GaInP/GaAs//GaInAs/Ge and GaInP/GaAs/GaInAs//GaSb are
still in the early development phase, but encouraging charac-
teristics have also been obtained. This paper shows that wafer
bonding is a viable method to combine III–V compound ma-
terials with significant lattice mismatch and, therefore, en-
ables material combinations that benefit from the best possible
material properties for multijunction cells.
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