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Abstract 

SystemC supports a wide range of Models of Computation (MoC) and is very well suited for the 
design and refinement of HW/SW-systems from functional downto register transfer level. 
However, for a broad range of applications the digital parts and algorithms interact with analog 
parts and the continuous-time environment. Due to the complexity of this interactions and the 
dominance of the analog parts in respect to the system behavior, is it essential to consider the 
analog parts within the design process of an Analog and Mixed Signal System.  

Therefore simulation performance is very crucial - especially for the analog parts. Thus different 
and specialized analog simulators must be introduced to permit the use of the most efficient 
solver for the considered application and level of abstraction. In this paper we describe possible 
areas of application and formulate requirements for analog and mixed-signal extensions for 
SystemC. 

1. Introduction and Motivation 

SystemC 2.0 [1] provides a very flexible methodology for the design and refinement of complex 
digital HW/SW-systems. This methodology is strongly influenced by the communication model 
introduced by Gajski [10]. In this methodology modules which consists of other modules or 
algorithms implemented in methods communicates via channels. A set of methods for 
communication is specified in an interface. These methods are realized in the channel. Modules 
can call methods of a channel, and events in a channel can activate methods in a module 
connected to the channel. This concept is generic enough to describe systems using various 
models of computation, including static and dynamic multirate dataflow, Kahn process networks, 
communicating sequential processes, and discrete events. We call such systems discrete systems. 

However, the discrete approach to modeling and simulation is not applicable to systems, whose 
behavior is specified by differential and algebraic equations. In the following, we call such 
systems analog systems. Note, that the equations can also be given implicitly by a electrical 
netlist, by a mechanical model description or by transfer functions, for example. For many classes 
of systems, the analog parts will become more dominant in respect of performance parameters, 
power consumption, silicon cost and yield. Analog systems are simulated by mathematical 
methods that compute a solution for the underlying set of equations. For simulation of analog 
systems, a simulator (“solver”) computes a solution of the differential and algebraic equations, 
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using linear and non-linear equation solving algorithms and numerical integration techniques to 
compute signal values for a time interval. For combined analog/discrete (“mixed-signal”) 
simulation, discrete event simulators are coupled and synchronized with analog solvers.  

In the following, we give an overview of the analog and mixed-signal extensions for SystemC 
discussed within the “SystemC-AMS working group”[5] (AMS=Analog and Mixed-Signal). First 
approaches for analog extensions are described in [2,3,4]. The synchronization mechanisms 
discussed in this paper are well known [6,7,8,9]. The main focus of this paper is to give an 
overview of the requirements for AMS extensions for SystemC and first approaches for their 
integration in SystemC:  

• Which concept for AMS extensions corresponds well to the levels of abstraction, on 
which SystemC is used?  

• How can AMS extensions be integrated in SystemC? 
In section 2, areas of application and the level of abstraction, on which AMS-extensions should 
be applied is described. Section 4 gives an overview of the concept and introduces the layered 
approach for the integration of the AMS extensions into SystemC.  

2. SystemC-AMS: Areas of Application and Requirements 

Analog and mixed-signal systems can be found in many applications. The requirements for 
modeling and simulation depend both on the area of application and the level of abstraction of the 
model. SystemC is used for system-level design tasks, such as the modeling and refinement of  
hardware/software – systems. In such a context, analog models are used most notably for the 
following tasks: 

Executable Specification: Analog models are often used as an executable specification of signal 
processing functions. Currently, interactive tools with a graphical or textual interface such as 
Matlab/Simulink are used for such tasks.  

Behavioral Modeling: In the design of analog systems, there is always a large “bottom-up” 
fraction. Behavioral modeling of existing analog netlists allows the simulation of analog circuits 
in a reasonable time. 

Co-Simulation with Environment: On system level, the analog (continuous-time) environment is 
co-simulated with the  embedded system. This allows a rough validation of an executable 
specification. Furthermore, many designs can only validated in such a co-simulation. 

In difference to digital systems, analog systems often combine different physical domains and are 
very application-specific. Therefore, on one hand, the use of analog and mixed-signal components 
in concrete applications must be considered. On the other hand, the approach must still be open 
for new applications and methodologies. For the discussion of application-specific requirements, 
three application fields are discussed: signal processing, RF/wireless and automotive applications.  
In telecommunication and multimedia applications, the modeling of signal processing functions is 
dominant. These systems are mostly sampled or even over sampled using constant time steps. The 
system is modeled by a block diagram with directed signal flow. The blocks are described by 
linear transfer functions and weak or static non-linear functions. Often, such a system level 
description is combined with linear networks, which are used for macro modeling or for modeling 
the system environment. 
In RF and wireless communication applications, systems are also specified by block diagrams 
with directed signal flow. A necessary feature for RF applications is the ability to simulate the 
baseband behaviour.  
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In the automotive domain, analog and mixed-signal systems are often non-linear systems, and 
usually embrace multiple physical domains (electrial, mechanical, fluidic, etc.). In difference to 
telecommunication and multimedia applications, control systems in the automotive domain are 
often systems with very different time constants (“stiff systems”). Nevertheless, executable 
specifications and executable prototypes are also modeled as block diagrams with directed signal 
flow.  

The above mentioned requirements are partially contradictory: On the one hand, rather simple 
block diagrams connected with directed signal flow and some external components seem to be 
sufficient for many applications on a high level of abstraction. On the other hand, some 
requirements can only be fulfilled by solutions, which are specific for concrete applications and 
levels of abstractions. For example, for the simulation of electronic circuits a designer might want 
to use dedicated circuit simulators, such as SABER or SPICE, and for the precise simulation of 
mechanical components a dedicated simulator for mechanical systems, and so on. 

The situation discussed above leads us to an open approach. In such an approach, SystemC-AMS 
extensions are used for the simulation of executable specifications, behavioral models and the 
environment as far as possible. Furthermore, the AMS extensions provide a synchronization 
mechanism that permits the easy integration of additional solvers. These additional solvers can be 
specific for (maybe new) applications and levels of abstractions that are not covered by the “built-
in” solvers. The resulting scenario is shown in Figure 1.  
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Figure 1: Use of SystemC-AMS in a heterogeneous tool-environment. 
 
In addition to the requirements derived from the applications, AMS extensions for SystemC 
depend on the design and existing features of SystemC. SystemC already provides a generic and 
flexible concept for the modeling of  computation and communication in discrete, heterogeneous 
systems. The existing  SystemC is based on a layered structure of a C++ class library. Basically, 
SystemC consists of a generic discrete event simulator kernel, data types for modeling digital 
hardware, and templates for modeling communication and synchronization in different discrete 
models of communication (MoCs). In order to make communication and synchronization flexible, 
signals and ports use (communication) interfaces. For this reason, SystemC is more than just a 
discrete-event simulator. SystemC allows users to add new models of computation, as long as this 
is feasible with the discrete kernel. Such additional models of computation can be provided by 
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libraries, for example, which define new classes of signals. The good object-oriented design of 
SystemC even invites users to make such extensions by simple inheritance.  

In this context, mixed-signal extensions for SystemC should provide a basic, object-oriented 
framework, where users can integrate appropriate and domain-specific “analog MoCs” – and not 
only an analog simulator which is coupled with the digital SystemC kernel. The mixed signal 
extensions shall allow users the integration of new solvers or alternative synchronization schemes 
in an as generic and flexible way as in the discrete domain. To allow the user this flexibility, a 
well designed object oriented structure of the mixed-signal extension library will be required.  

In order to meet the different requirements, the AMS extension library is structured in four 
different layers. The structure of this “layered approach” is shown in Figure 2. On top of the 
existing standard SystemC kernel, a synchronization layer provides methods to couple and 
synchronize different analog solvers and the discrete event kernel of SystemC. All 
communication between different MoCs takes place via this synchronization layer. On top of the 
synchronization layer, different analog MoCs can be realized by different analog solvers (solver 
layer) and the discrete event SystemC kernel. The view layer provides convenient user interfaces 
for the analog solvers. The view layer converts user views, for example netlists, to a set of 
differential or algebraic equations in the solver layer. The interaction of solver- and view layer 
can be compared to a model/view architecture, where one object provides an abstract data 
structure, another objects provide graphical views to the data structure.  
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SystemC kernel
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classical
SystemC
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Figure: 2 Layered approach for SystemC-AMS extensions [5]. 

3. The Layered Approach in Detail 

The most critical part of the AMS extensions ist the synchronization layer. The synchronization 
layer encapsulates the analog solvers as far as possible, and allows the connection of blocks 
simulated by different solvers or instances of the same solver for IP (intellectual property) 
encapsulation. In general, the synchronization layer handles the following tasks: 

• The synchronization layer determines a step width for the simulated time, respecively the 
points in time, at which the solvers and the discrete event kernel are synchronized. 

• The synchronization layer determines an order, in which the single solvers simulate.  

• Cyclic dependencies can represent additional equations, which have to be solved. The 
synchronization layer handles this.  

The concrete realization of the above functionality is rather application-specific. In order to limit 
the complexity, we make some restrictions: 

1. For the communication via the synchronization layer, we suppose a directed signal flow. In 
the considered areas of application, the signal flow between system-level components is 
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directed. Therefore, the realization of a directed signal flow on the synchronisation layer is 
sufficient. Note that - if necessary - a bidirectional coupling (e. g. for a coupling on netlist-
level) can be realized by two separate signals in both directions. Furthermore, netlists or 
systems that are strongly coupled can (and should!) be modeled and simulated using one 
single solver without communication via the synchronization layer. 

2. We do not plan to support backtracking (setting the simulated time back to the past). This 
would require the ability to save a state and to restore the saved state. We cannot expect 
solvers in general to support such methods. For this reason, the synchronization layer must 
only increase the simulated time.  

In the telecommunications or RF domain, digital signal processing functions are usually 
oversampled with known and constant time steps. Therefore, a synchronization of the analog 
solvers and the digital kernel in constant time steps is sufficient. The order in which the solvers 
are computed is usually determined by the signal flow. This allows us to determine the order of 
execution of the induvidual simulators before the simulation. The underlying synchronization 
principle is the static dataflow model of computation.  

In the automotive domain, systems are often nonlinear and stiff systems. The use of a constant 
step width could lead either to a large error, or to a very bad simulation performance. 
Furthermore, the coupling of analog and digital components is often very close.  Therefore, the 
step width has to be determined during simulation by the synchronisation layer, controlled by 
parameters such as the local quantization error and/or synchronization requests and events of 
single simulators. 

In order to provide a maximum of flexibility, a generalized, abstract “coordinator interface” 
provides access to the synchronization layer. This interface is by default realized by the rather 
simple, but stable static data-flow approach. In order to realize more complex synchronization 
schemes, the interface methods can be replaced by other, more sophisticated methods.  

Simulation with the default method: Static dataflow 
In order to determine an appropriate order of execution, the methods known from static dataflow 
MoC can be used. In the static dataflow MoC, cyclic dependencies are transformed into a pure 
linear dependency by assuming delays in each cycle as shown in Figure 3. The static dataflow 
MoC defines the order, in which the analog modules are simulated (1-4). 

Figure 3: Synchronization of four analog modules with the static dataflow MoC. 

However, the static dataflow MoC is an untimed model - the delay introduces to break the cyclic 
dependency has no numerical value. In order to simulate analog systems, time is mandantory. 
Therefore, we have to determine a concrete value for the introduced delay. A simple method is to 
ask each solver for the next point in the simulated time, when a  synchronisation is required, and 
to select the minimum of all responses for all solvers. Then this value determines the value of the 
delay ∆t. Furthermore, a user can specify a minimum and a maximum step width of simulators. 
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The above mentioned method for synchronisation looks very simple, but fulfills the requirements: 
At runtime, no scheduling effort has to be done, which makes computation of large structures 
with a large data volume possible, for example in telecommunication applications. All simulators 
can define synchronisation points, and no simulator is required to support backtracking. This 
allows the integration of very different solvers for the simulation of heterogeneous systems.  

Possible improvements of the synchronisation methods 
The default methods for synchronisation are rather general methods, that permit the integration of 
nearly all solvers. Nevertheless, a user might need a faster method that reduces the number of 
points for synchronisation, maybe on the cost of simulation precision or with the risk of making 
errors – whatever is appropriate for his application. In order to reduce the number of 
synchronisations required, a single solvers can be allowed to simulate for larger time steps than 
the step width chosen by the synchronisation layer. In this case, it might be necessary to locally 
do a backtracking within this solver. Note, that this backtracking is only local backtracing within 
one solver. 

Other possible improvements are related to the way, in which the equations introduced by the 
structure of simulators are solved. When several analog models are coupled, the overall system 
can be seen as a more complex analog model. The simulation of this overall analog model would 
require methods that solve the overall set of equations. In a system, where very different 
approaches for modeling and simulation are combined, this is not applicable. In Figure 3, we have 
introduced a delay to explain the computational model used for the synchronization of the 
simulators. This method can also be seen as a relaxation method that computes a solution of the 
overall set of equations (The scheduling with the static dataflow approach can be seen as a sorting 
of the matrix according to the dataflow dependencies). Stability and convergence can then be 
improved by known methods that improve stability and convergence for relaxation, for example 
by a method that extrapolates a possible future waveform from the known waveform.  

In general, the synchronization layer provides an open platform for programmers and experienced 
designers to include alternative solvers and maybe alternative synchronization methods.  

4. Solver Layer and User View Layer 

A solver provides methods that simulate an analog system, e. g. a solver for a linear DAE-system, 
or another solver for a non-linear system, or a solver optimized for power electronics. A solver 
must be able to interact with the synchronization layer. For interaction with the synchronisation 
layer, he must provide at least methods that 

• determine the next required synchronisation point, if a variable step width 
synchronization is required. 

• resume simulation with a given input waveform to a specified point in the simulated 
time.  

The restrictions made in the synchronization layer lead to the following restrictions for the 
solvers:  

• A solver may not set the simulated time of the overall simulation to a point in the past, 
because the synchronization layer does not support backtracking. 

• A solver must accept synchronisation points from other simulators the synchronisation 
layer resp., because the synchronization layer determines the synchronization points.  
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Solvers simulate models, that are specified by differential and algebraic equation. Those systems 
of equation are usually represented in a solver specific form, e.g. as constant or time dependent 
matrices. Examples for solvers that fulfill the above requirements are presented in [2, 3]. 
However, usually designers do not specify systems in such rather solver-specific data structures.  

A designer should describe systems using the (user) view layer. The view layer provides the 
solvers with the above mentioned matrices. This representation of a system of equation can be 
generated from a network using the modified nodal analysis, or from a behavioral representation 
like transfer function or state space equations, for example. The same view can be useful for 
different solvers (e.g. linear/nonlinear DAE’s); nevertheless, the realization must take into 
account that the mapping to the solver layer is different. At least the following views should be 
part of the SystemC-AMS extension library: 

- Netlist view: This view should be common to all underlying solvers.  

- Equation view: This view should allow a user to formulate behavioral models or 
functional specifications in a direct way as a differential algebraic equation. 

Further views could be a possibility to describe finite element systems, for example – in general, 
the library should allow the user to add new and application specific views to a solver.  

5. Conclusion 

We have discussed requirements for analog and mixed-signal extensions for SystemC in a broad 
range of applications, for example in telecommunication, multimedia and automotive 
applications. The layered  approach covers nearly all requirements for system-level design in 
these applications and can be extended in an easy way. The layered approach structures the 
extensions into a synchronization layer, a solver layer and a view layer.  

Considering the requirements on system level, an open, general, but maybe less precise 
synchronization concept is more appropriate than a complicated precise, but closed concept. With 
the possibility to overload single methods of the synchronisation layer, the synchronization layer 
can be changed to more efficient synchronization methods – if required. The possibility to add 
solvers or external simulators in the solver layer allows us to include application-specific 
simulators in an easy and convenient way.  

The proposed structure and concept of an analog mixed-signal extension library can significantly 
improve the generality of the SystemC approach: SystemC is currently restricted to the design of 
pure discrete systems. The proposed AMS extensions can make it “open” for the design of 
heterogeneous systems.   
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