
FDL’02, Marseille, France, 24-27. 09. 2002

1

Mixed-Signal Extensions for SystemC

K. Einwich Ch. Grimm

P. Schwarz K. Waldschmidt

Fraunhofer IIS/EAS Univ. Frankfurt

Zeunerstraße 38 Robert-Mayer-Straße 11-15

D-01069 Dresden, Germany D-60054 Frankfurt, Germany

Karsten.Einwich@eas.iis.fhg.de grimm@informatik.uni-frankfurt.de

Abstract

SystemC supports a wide range of Models of Computation (MoC) and is very well suited for the
design and refinement of HW/SW-systems from functional downto register transfer level.
However, for a broad range of applications the digital parts and algorithms interact with analog
parts and the continuous-time environment. Due to the complexity of this interactions and the
dominance of the analog parts in respect to the system behavior, is it essential to consider the
analog parts within the design process of an Analog and Mixed Signal System.

Therefore simulation performance is very crucial - especially for the analog parts. Thus different
and specialized analog simulators must be introduced to permit the use of the most efficient
solver for the considered application and level of abstraction. In this paper we describe possible
areas of application and formulate requirements for analog and mixed-signal extensions for
SystemC.

1. Introduction and Motivation

SystemC 2.0 [1] provides a very flexible methodology for the design and refinement of complex
digital HW/SW-systems. This methodology is strongly influenced by the communication model
introduced by Gajski [10]. In this methodology modules which consists of other modules or
algorithms implemented in methods communicates via channels. A set of methods for
communication is specified in an interface. These methods are realized in the channel. Modules
can call methods of a channel, and events in a channel can activate methods in a module
connected to the channel. This concept is generic enough to describe systems using various
models of computation, including static and dynamic multirate dataflow, Kahn process networks,
communicating sequential processes, and discrete events. We call such systems discrete systems.

However, the discrete approach to modeling and simulation is not applicable to systems, whose
behavior is specified by differential and algebraic equations. In the following, we call such
systems analog systems. Note, that the equations can also be given implicitly by a electrical
netlist, by a mechanical model description or by transfer functions, for example. For many classes
of systems, the analog parts will become more dominant in respect of performance parameters,
power consumption, silicon cost and yield. Analog systems are simulated by mathematical
methods that compute a solution for the underlying set of equations. For simulation of analog
systems, a simulator (“solver”) computes a solution of the differential and algebraic equations,

2

using linear and non-linear equation solving algorithms and numerical integration techniques to
compute signal values for a time interval. For combined analog/discrete (“mixed-signal”)
simulation, discrete event simulators are coupled and synchronized with analog solvers.

In the following, we give an overview of the analog and mixed-signal extensions for SystemC
discussed within the “SystemC-AMS working group”[5] (AMS=Analog and Mixed-Signal). First
approaches for analog extensions are described in [2,3,4]. The synchronization mechanisms
discussed in this paper are well known [6,7,8,9]. The main focus of this paper is to give an
overview of the requirements for AMS extensions for SystemC and first approaches for their
integration in SystemC:

• Which concept for AMS extensions corresponds well to the levels of abstraction, on
which SystemC is used?

• How can AMS extensions be integrated in SystemC?
In section 2, areas of application and the level of abstraction, on which AMS-extensions should
be applied is described. Section 4 gives an overview of the concept and introduces the layered
approach for the integration of the AMS extensions into SystemC.

2. SystemC-AMS: Areas of Application and Requirements

Analog and mixed-signal systems can be found in many applications. The requirements for
modeling and simulation depend both on the area of application and the level of abstraction of the
model. SystemC is used for system-level design tasks, such as the modeling and refinement of
hardware/software – systems. In such a context, analog models are used most notably for the
following tasks:

Executable Specification: Analog models are often used as an executable specification of signal
processing functions. Currently, interactive tools with a graphical or textual interface such as
Matlab/Simulink are used for such tasks.

Behavioral Modeling: In the design of analog systems, there is always a large “bottom-up”
fraction. Behavioral modeling of existing analog netlists allows the simulation of analog circuits
in a reasonable time.

Co-Simulation with Environment: On system level, the analog (continuous-time) environment is
co-simulated with the embedded system. This allows a rough validation of an executable
specification. Furthermore, many designs can only validated in such a co-simulation.

In difference to digital systems, analog systems often combine different physical domains and are
very application-specific. Therefore, on one hand, the use of analog and mixed-signal components
in concrete applications must be considered. On the other hand, the approach must still be open
for new applications and methodologies. For the discussion of application-specific requirements,
three application fields are discussed: signal processing, RF/wireless and automotive applications.
In telecommunication and multimedia applications, the modeling of signal processing functions is
dominant. These systems are mostly sampled or even over sampled using constant time steps. The
system is modeled by a block diagram with directed signal flow. The blocks are described by
linear transfer functions and weak or static non-linear functions. Often, such a system level
description is combined with linear networks, which are used for macro modeling or for modeling
the system environment.
In RF and wireless communication applications, systems are also specified by block diagrams
with directed signal flow. A necessary feature for RF applications is the ability to simulate the
baseband behaviour.

3

In the automotive domain, analog and mixed-signal systems are often non-linear systems, and
usually embrace multiple physical domains (electrial, mechanical, fluidic, etc.). In difference to
telecommunication and multimedia applications, control systems in the automotive domain are
often systems with very different time constants (“stiff systems”). Nevertheless, executable
specifications and executable prototypes are also modeled as block diagrams with directed signal
flow.

The above mentioned requirements are partially contradictory: On the one hand, rather simple
block diagrams connected with directed signal flow and some external components seem to be
sufficient for many applications on a high level of abstraction. On the other hand, some
requirements can only be fulfilled by solutions, which are specific for concrete applications and
levels of abstractions. For example, for the simulation of electronic circuits a designer might want
to use dedicated circuit simulators, such as SABER or SPICE, and for the precise simulation of
mechanical components a dedicated simulator for mechanical systems, and so on.

The situation discussed above leads us to an open approach. In such an approach, SystemC-AMS
extensions are used for the simulation of executable specifications, behavioral models and the
environment as far as possible. Furthermore, the AMS extensions provide a synchronization
mechanism that permits the easy integration of additional solvers. These additional solvers can be
specific for (maybe new) applications and levels of abstractions that are not covered by the “built-
in” solvers. The resulting scenario is shown in Figure 1.

SystemC

Coupling of simulators

Simulink,
MatrixX, ...

SystemC-AMS
„Built-in“

Saber,
Spice, ...

Piecewise
linear

simulator,...

Other
C++ Solvers

Figure 1: Use of SystemC-AMS in a heterogeneous tool-environment.

In addition to the requirements derived from the applications, AMS extensions for SystemC
depend on the design and existing features of SystemC. SystemC already provides a generic and
flexible concept for the modeling of computation and communication in discrete, heterogeneous
systems. The existing SystemC is based on a layered structure of a C++ class library. Basically,
SystemC consists of a generic discrete event simulator kernel, data types for modeling digital
hardware, and templates for modeling communication and synchronization in different discrete
models of communication (MoCs). In order to make communication and synchronization flexible,
signals and ports use (communication) interfaces. For this reason, SystemC is more than just a
discrete-event simulator. SystemC allows users to add new models of computation, as long as this
is feasible with the discrete kernel. Such additional models of computation can be provided by

4

libraries, for example, which define new classes of signals. The good object-oriented design of
SystemC even invites users to make such extensions by simple inheritance.

In this context, mixed-signal extensions for SystemC should provide a basic, object-oriented
framework, where users can integrate appropriate and domain-specific “analog MoCs” – and not
only an analog simulator which is coupled with the digital SystemC kernel. The mixed signal
extensions shall allow users the integration of new solvers or alternative synchronization schemes
in an as generic and flexible way as in the discrete domain. To allow the user this flexibility, a
well designed object oriented structure of the mixed-signal extension library will be required.

In order to meet the different requirements, the AMS extension library is structured in four
different layers. The structure of this “layered approach” is shown in Figure 2. On top of the
existing standard SystemC kernel, a synchronization layer provides methods to couple and
synchronize different analog solvers and the discrete event kernel of SystemC. All
communication between different MoCs takes place via this synchronization layer. On top of the
synchronization layer, different analog MoCs can be realized by different analog solvers (solver
layer) and the discrete event SystemC kernel. The view layer provides convenient user interfaces
for the analog solvers. The view layer converts user views, for example netlists, to a set of
differential or algebraic equations in the solver layer. The interaction of solver- and view layer
can be compared to a model/view architecture, where one object provides an abstract data
structure, another objects provide graphical views to the data structure.

SystemC layer

Solver layer

User view layer

Synchronization
layer

SystemC kernel

AMS - Synchronization

Solver 1 Solver 2

View 1.1 View 1.2 View 2.1

classical
SystemC
Layers

[1]

Figure: 2 Layered approach for SystemC-AMS extensions [5].

3. The Layered Approach in Detail

The most critical part of the AMS extensions ist the synchronization layer. The synchronization
layer encapsulates the analog solvers as far as possible, and allows the connection of blocks
simulated by different solvers or instances of the same solver for IP (intellectual property)
encapsulation. In general, the synchronization layer handles the following tasks:

• The synchronization layer determines a step width for the simulated time, respecively the
points in time, at which the solvers and the discrete event kernel are synchronized.

• The synchronization layer determines an order, in which the single solvers simulate.

• Cyclic dependencies can represent additional equations, which have to be solved. The
synchronization layer handles this.

The concrete realization of the above functionality is rather application-specific. In order to limit
the complexity, we make some restrictions:

1. For the communication via the synchronization layer, we suppose a directed signal flow. In
the considered areas of application, the signal flow between system-level components is

5

directed. Therefore, the realization of a directed signal flow on the synchronisation layer is
sufficient. Note that - if necessary - a bidirectional coupling (e. g. for a coupling on netlist-
level) can be realized by two separate signals in both directions. Furthermore, netlists or
systems that are strongly coupled can (and should!) be modeled and simulated using one
single solver without communication via the synchronization layer.

2. We do not plan to support backtracking (setting the simulated time back to the past). This
would require the ability to save a state and to restore the saved state. We cannot expect
solvers in general to support such methods. For this reason, the synchronization layer must
only increase the simulated time.

In the telecommunications or RF domain, digital signal processing functions are usually
oversampled with known and constant time steps. Therefore, a synchronization of the analog
solvers and the digital kernel in constant time steps is sufficient. The order in which the solvers
are computed is usually determined by the signal flow. This allows us to determine the order of
execution of the induvidual simulators before the simulation. The underlying synchronization
principle is the static dataflow model of computation.

In the automotive domain, systems are often nonlinear and stiff systems. The use of a constant
step width could lead either to a large error, or to a very bad simulation performance.
Furthermore, the coupling of analog and digital components is often very close. Therefore, the
step width has to be determined during simulation by the synchronisation layer, controlled by
parameters such as the local quantization error and/or synchronization requests and events of
single simulators.

In order to provide a maximum of flexibility, a generalized, abstract “coordinator interface”
provides access to the synchronization layer. This interface is by default realized by the rather
simple, but stable static data-flow approach. In order to realize more complex synchronization
schemes, the interface methods can be replaced by other, more sophisticated methods.

Simulation with the default method: Static dataflow
In order to determine an appropriate order of execution, the methods known from static dataflow
MoC can be used. In the static dataflow MoC, cyclic dependencies are transformed into a pure
linear dependency by assuming delays in each cycle as shown in Figure 3. The static dataflow
MoC defines the order, in which the analog modules are simulated (1-4).

Figure 3: Synchronization of four analog modules with the static dataflow MoC.

However, the static dataflow MoC is an untimed model - the delay introduces to break the cyclic
dependency has no numerical value. In order to simulate analog systems, time is mandantory.
Therefore, we have to determine a concrete value for the introduced delay. A simple method is to
ask each solver for the next point in the simulated time, when a synchronisation is required, and
to select the minimum of all responses for all solvers. Then this value determines the value of the
delay ∆t. Furthermore, a user can specify a minimum and a maximum step width of simulators.

∆t

1 2 3

4∆t

1 2 3

4

6

The above mentioned method for synchronisation looks very simple, but fulfills the requirements:
At runtime, no scheduling effort has to be done, which makes computation of large structures
with a large data volume possible, for example in telecommunication applications. All simulators
can define synchronisation points, and no simulator is required to support backtracking. This
allows the integration of very different solvers for the simulation of heterogeneous systems.

Possible improvements of the synchronisation methods
The default methods for synchronisation are rather general methods, that permit the integration of
nearly all solvers. Nevertheless, a user might need a faster method that reduces the number of
points for synchronisation, maybe on the cost of simulation precision or with the risk of making
errors – whatever is appropriate for his application. In order to reduce the number of
synchronisations required, a single solvers can be allowed to simulate for larger time steps than
the step width chosen by the synchronisation layer. In this case, it might be necessary to locally
do a backtracking within this solver. Note, that this backtracking is only local backtracing within
one solver.

Other possible improvements are related to the way, in which the equations introduced by the
structure of simulators are solved. When several analog models are coupled, the overall system
can be seen as a more complex analog model. The simulation of this overall analog model would
require methods that solve the overall set of equations. In a system, where very different
approaches for modeling and simulation are combined, this is not applicable. In Figure 3, we have
introduced a delay to explain the computational model used for the synchronization of the
simulators. This method can also be seen as a relaxation method that computes a solution of the
overall set of equations (The scheduling with the static dataflow approach can be seen as a sorting
of the matrix according to the dataflow dependencies). Stability and convergence can then be
improved by known methods that improve stability and convergence for relaxation, for example
by a method that extrapolates a possible future waveform from the known waveform.

In general, the synchronization layer provides an open platform for programmers and experienced
designers to include alternative solvers and maybe alternative synchronization methods.

4. Solver Layer and User View Layer

A solver provides methods that simulate an analog system, e. g. a solver for a linear DAE-system,
or another solver for a non-linear system, or a solver optimized for power electronics. A solver
must be able to interact with the synchronization layer. For interaction with the synchronisation
layer, he must provide at least methods that

• determine the next required synchronisation point, if a variable step width
synchronization is required.

• resume simulation with a given input waveform to a specified point in the simulated
time.

The restrictions made in the synchronization layer lead to the following restrictions for the
solvers:

• A solver may not set the simulated time of the overall simulation to a point in the past,
because the synchronization layer does not support backtracking.

• A solver must accept synchronisation points from other simulators the synchronisation
layer resp., because the synchronization layer determines the synchronization points.

7

Solvers simulate models, that are specified by differential and algebraic equation. Those systems
of equation are usually represented in a solver specific form, e.g. as constant or time dependent
matrices. Examples for solvers that fulfill the above requirements are presented in [2, 3].
However, usually designers do not specify systems in such rather solver-specific data structures.

A designer should describe systems using the (user) view layer. The view layer provides the
solvers with the above mentioned matrices. This representation of a system of equation can be
generated from a network using the modified nodal analysis, or from a behavioral representation
like transfer function or state space equations, for example. The same view can be useful for
different solvers (e.g. linear/nonlinear DAE’s); nevertheless, the realization must take into
account that the mapping to the solver layer is different. At least the following views should be
part of the SystemC-AMS extension library:

- Netlist view: This view should be common to all underlying solvers.

- Equation view: This view should allow a user to formulate behavioral models or
functional specifications in a direct way as a differential algebraic equation.

Further views could be a possibility to describe finite element systems, for example – in general,
the library should allow the user to add new and application specific views to a solver.

5. Conclusion

We have discussed requirements for analog and mixed-signal extensions for SystemC in a broad
range of applications, for example in telecommunication, multimedia and automotive
applications. The layered approach covers nearly all requirements for system-level design in
these applications and can be extended in an easy way. The layered approach structures the
extensions into a synchronization layer, a solver layer and a view layer.

Considering the requirements on system level, an open, general, but maybe less precise
synchronization concept is more appropriate than a complicated precise, but closed concept. With
the possibility to overload single methods of the synchronisation layer, the synchronization layer
can be changed to more efficient synchronization methods – if required. The possibility to add
solvers or external simulators in the solver layer allows us to include application-specific
simulators in an easy and convenient way.

The proposed structure and concept of an analog mixed-signal extension library can significantly
improve the generality of the SystemC approach: SystemC is currently restricted to the design of
pure discrete systems. The proposed AMS extensions can make it “open” for the design of
heterogeneous systems.

8

References

1. An Introduction to System-Level Modeling in SystemC 2.0. Technical report of the Open
SystemC Initiative, 2001. http://www.systemc.org/technical_papers.html

2. Karsten Einwich, Christoph Clauss, Gerhard Noessing, Peter Schwarz, and Herbert Zojer:
“SystemC Extensions for Mixed-Signal System Design”. Proceedings of the Forum on
Design Languages (FDL'01), Lyon, France, September 2001.

3. Christoph Grimm, Peter Oehler, Christian Meise, Klaus Waldschmidt, and Wolfgang Fey.
“AnalogSL: A Library for Modeling Analog Power Drivers with C++. In Proceedings of the
Forum on Design Languages”, Lyon, France, September 2001.

4. Thomas E. Bonnerud, Bjornar Hernes, and Trond Ytterdal: “A Mixed-Signal, Functional
Level Simulation Framework Based on SystemC System-on-a Chip Applications”.
Proceedings of the 2001 Custom Integrated Circuts Conference, San Diego, May 2001. IEEE
Computer Society Press.

5. K. Einwich, Ch. Grimm, A. Vachoux, N. Martinez-Madrid, F. R. Moreno, Ch. Meise:
“Analog Mixed Signal Extensions for SystemC”. White paper of the OSCI SystemC-AMS
Working Group.

6. L. Schwoerer, M. Lück, H. Schröder: “Integration of VHDL into a Design Environment”, in
Proc. Euro-DAC 1995, Brighton, England, September 1995.

7. M. Bechtold, T. Leyendecker, I. Wich: “A Dynamic Framework for Simulator Tool
Integration”, Proceedings of the 2nd International Workshop on Electronic Design Automation
Frameworks, Charlottesville, 1990.

8. M. Bechtold, T. Leyendecker, M. Niemeyer, A. Ocko, C. Ocko: “Das
Simulatorkopplungsprojekt”, Informatik-Fachbericht 255, Springer Verlag, Berlin .

9. G. Nössing, K. Einwich, C. Clauss, P. Schwarz: “SystemC and Mixed-Signal – Simulation
Concepts”, in Proc. 4th European SystemC Users Group Meeting, Copenhagen, Denmark,
October 2001.

10. D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao: „SpecC Specification Language and
Methodology“, Kluwer Academic Publisher 2000

