
Organic Electronics and Organic Photodiodes

Fraunhofer Institute for Electron Beam, Plasma Technology and COMEDD FEP

VERSION 2014-03-17

© Fraunhofer FEP

Core Competencies

ELECTRON BEAM TECHNOLOGY

PLASMA-ACTIVATED HIGH-RATE DEPOSITION

SPUTTERING TECHNOLOGY

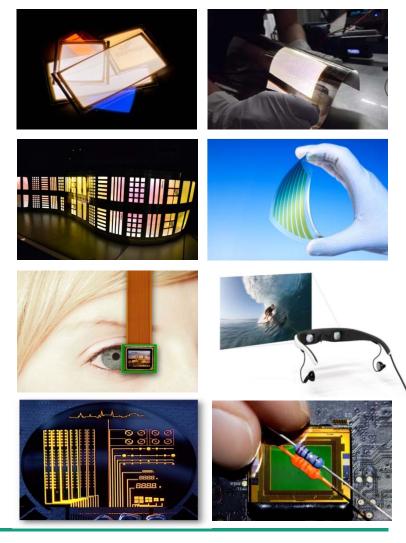
HIGH-RATE PECVD

TECHNOLOGIES FOR ORGANIC ELECTRONICS

IC AND SYSTEM DESIGN

page 2

© Fraunhofer FEP


Organic-electronic Devices

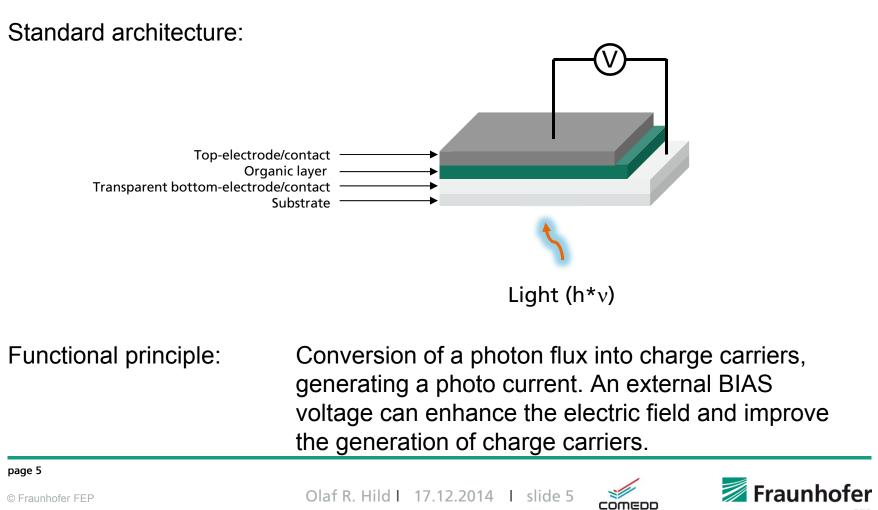
Customer specific R&D on novel device concepts and manufacturing methods for Organic Electronics (mostly small molecule)

- Flexible Organic Electronics
 - Manufacturing- and integration- technologies for novel large area (OLED-) lighting solutions
 - Flexible foil substrates (esp. Roll-to-Roll-technology) for flexible applications
 - Organic photovoltaics (OPV) for org. solar cells

Microdisplays & Sensors

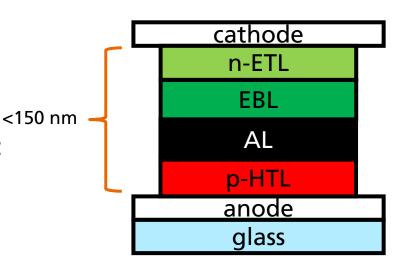
- OLED-on-Silicon technol. & device development
- Bi-directional microdisplay for e.g. data glasses
- Microstructured OLED for e.g. microscopes
- Organic photodiodes (OPD, OTFT)
- Customer specific R&D, product-development and prototyping / pilot-fabrication

page 3


Highlight: Organic Photodiodes (OPD)

COMEDD

Organic Photodiodes - Basics

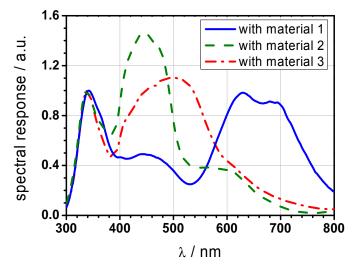


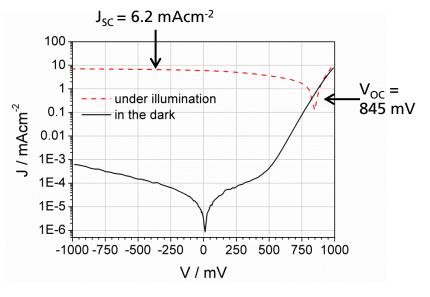
Organic Photodiodes at COMEDD - Introduction

- Thickness of the organic layers: < 150 nm \rightarrow low absorption cross section of particle irradiation
- simple sensitivity adjustment from 300 to 800 nm, or even more
- low dark current with proper stack modification: $< 10^{-4} \text{ mA/cm}^2$
- Linear behaviour between signal and light intensity over more than 3 magnitudes
- Capacitance lower than 500 pF/mm²

Rectification of 10^4 or higher (from -1 to +1 V)

General stack architecture


ETL – electron transport layer EBL – exciton blocking layer AL – absorption layer HTL – hole transport layer

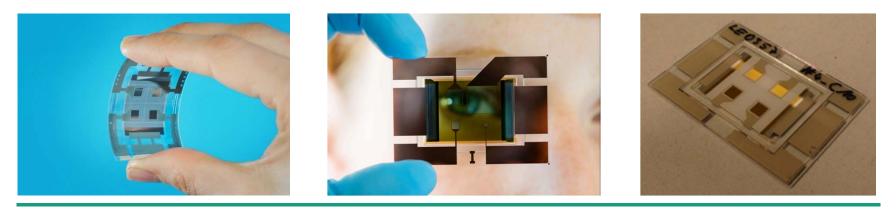

page 6

Organic Photodiodes - properties

Spectral sensitivity in dependence on the material composition.

J-V curve of an organic photodiode

- Properties such as spectral sensitivity, capacitance and dark current can be adjusted
- OPDs show better sensitivity values in blue and UV than Si based photodiodes


page 7

Properties of Organic Photodiodes (OPD)


- Spectral sensitivity is tunable toward application requirements
- High freedom in device shape and size
- Devices can be flexible
- Devices can be transparent
- Devices can be thin (<100 µm is possible) and lightweight
- Arrays of photodiodes are possible

© Fraunhofer FEP

Conclusion: Research Topics in Organic Electronics

- Fraunhofer FEP is doing research on organic devices like OLED, OPD and OSC
 - Hot research topics: OLED patterning by photolithography and (N)IR-OPD
- Fraunhofer FEP is using flexible (polymer foils, metal band, thin glass) and rigid substrates (glass, 200 mm silicon wafer)
- Fraunhofer FEP applies thin film encapsulation techniques like ALD or Vitex
- Fraunhofer FEP addresses applications like OLED Microdisplays for video googles and data glasses, photonic sensing units, OLED based reticles, lighting and signage, photonic medical devices
- We are looking for partners for application driven joint developments either in public funded projects or on contract base.

© Fraunhofer FEP

- For further information and device demonstration please visit our booth 1032
- Contact
 - Dr. Olaf R. Hild (Fraunhofer FEP)
 - olaf.hild@comedd.fraunhofer.de
 - Phone:+49-351-8823-450
 - www.fep.fraunhofer.de

