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Abstract—Appearance-based action recognition can be consid-
ered as a natural extension of appearance-based object detection
from the spatial to the spatio-temporal domain. Although this step
seems natural, most action recognition approaches are evaluated
in isolation. Towards this end the contribution of this paper is
twofold. First, a view-independent approach to action recognition
is proposed and second the sensitivity w.r.t. a combination of
person detection and action recognition is evaluated. Action
recognition is performed in a hierarchical manner: First, the
relative camera orientation in the scene is estimated and second,
the action is determined using view-dependent Hough forests. The
proposed approach is evaluated on the multi-view i3DPost dataset
[1] and its performance is compared to single-step approaches
using Hough forests. The results suggest that the recognition rate
increases, when using the proposed hierarchical method compared
to single-step approaches. Further, the performance rates of
hierarchical Hough forests on ground truth data are compared to
the results of hierarchical Hough forests in combination with a
person detector.

I. INTRODUCTION

There are various applications for human action recognition,
such as surveillance, gaming, semantic video labeling and
compression, the analysis of athletes, and human-computer-
interaction [2], [3].
Most action recognition approaches using 2D image data suffer
from one or more of the following problems:
• Localization: A precise localization of the person perform-

ing the action is required.
• Closed world assumption: Image sequences are always

classified as one of the modeled or trained actions. There
is no rejection class.

• Intra-class variations: Different body heights, clothing,
action styles, and action speeds leads to the necessity of
diverse training data and make the modeling or training
procedure expensive.

• Variation in viewpoint: Appearance-based methods for
action recognition without a preceding 3D reconstruction
need to cover all possible views of the person.

In this paper, we focus on the problem of viewpoint variation.
Using the multi-view i3DPost dataset [1], our approach classi-
fies single action sequences recorded from eight fixed cameras
which are circularly distributed in 45◦ intervals around the
person. Therefore, we propose a hierarchical approach using
Hough forests for view-independent action recognition.

The main contributions of this paper are:
• Action recognition is performed in a hierarchical manner:

First, the relative orientation between camera and person

Fig. 1: Hough forests have proven to be an effective method
for action recognition [4] and are composed of a set of random
trees. In each node the data is split according to the maximum
information gain. Each leaf node stores the class distribution
and the votes in the Hough space.

is estimated using a Hough forest. An initially created
look-up table provides the probabilities for other possible
camera orientations. These probabilities are propagated to
view-specific Hough forests which are optimized for each
camera orientation respectively.

• The impact of a preceding person detector is evaluated on
the publicly available i3DPost dataset. A comprehensive
evaluation shows the benefit of splitting the problem of
action recognition into the two steps of orientation and
action recognition.

The article is structured as follows: Recent work is reviewed in
Section II. In Section III the main procedure, including a brief
overview of Hough forests and the person detector, is described.
A comprehensive evaluation of the approach on the i3DPost
dataset can be found in Section IV and some conclusions are
finally given in Section V.

II. RELATED WORK

Vision-based action recognition can be divided into multi-
view and single-view applications [5]. In multi-view scenarios,
recordings from several viewpoints of a scene are provided
which can be used, e.g. for 3D reconstruction. Holte et al. for
example compute the optical flow from each view and combine



them in a 3D motion vector field [6]. As motion descriptor
they use the 3D Motion Context (3D-MC) and the Harmonic
Motion Context (HMC) [7]. Gkalelis et al. compute view-
independent features using the circular shift invariance property
of the discrete Fourier transform. They represent and classify
actions by fuzzy vector quantization and linear discriminant
analysis [8].
On the contrary there are single view scenarios which suffer
from view dependency, on which we will focus in this work.
There are two ways to face view-invariant action recogni-
tion: first, by a preceding view-invariant pose representation
with a subsequent action recognition and second, by a di-
rect view-invariant action representation and recognition. The
first approach attempts to remove effects caused by the view
dependency and estimates a 3D pose from a given image
sequence which serves as the input for ensuing action recogni-
tion methods [5], [7], [9]. The second variant tries to classify
actions directly on the images and can be further divided into
template-based methods and state-space approaches. Template-
based methods represent actions as features and compare
them to modeled or learned prototypes, [10]. Junejo et al.
compute features which are stable across different viewpoints.
They represent actions using temporal self-similarity matrices
(SSMs) computed from different low-level features [11]. Yan
et al. use multitask linear discriminant analysis in order to
enhance the discriminative power of SSMs [12]. State-space
approaches classify each pose as a static state and define
transition probabilities between these discrete states [13]. Each
motion is therefore represented as a sequence of states.

III. VIEW-INDEPENDENT ACTION RECOGNITION
USING HOUGH FORESTS

Our approach for action recognition is based on Hough
forests [4]. Hough forests consist of a fixed set of random
trees which are able to vote in the Hough space. For action
recognition the Hough space encodes the hypothesis for an
action position in time-space and class. An example for a
trained random tree is given in Figure 1. A tree is built
recursively by performing at each node a defined number of
binary tests

t(f ; p; q; τ) =

{
1 if If (p)− If (q) < τ
0 otherwise

where If denotes the randomly selected feature channel, τ a
randomly chosen threshold and p and q positions in the spatio-
temporal feature space. The data P is split based on the test t
achieving the maximum information gain

∆H(t) = H(P )−
∑

S∈{L,R}

|PS(t)|
|P |

×H(PS(t))

where PL and PR define the left and right subset of the
data and H the entropy. The subsets are further split until
a stopping criteria is met, e.g. the maximum depth of the
tree or the minimum number of samples per node. The leaf
nodes store the probabilities of class labels c and the features
displacement vectors v measuring the distance to the respective

Fig. 2: Probabilistic hierarchical action recognition. Unlabeled
image sequences are first processed by a person detector. Then,
Hough forests are used in two different ways. First, they are
used to determine the relative camera view in a probabilistic
manner. Second, the activated Hough forests vote for the
specific action.

action centers. They are depicted in Figure 1 as class histogram
and vectors respectively. As input 3D patches (e.g. of 16×16×5
pixels) are used which are sampled randomly in time within
the region of interest (ROI) and a randomly determined feature
channel. 48 feature channels were implemented, including the
intensity image, its first and second derivatives in x- and y-
direction, the TVL1 optical flow in x- and y-direction, a 9-
bin histogram of oriented gradients, and the minimum and
maximum filter responses of the stated feature channels. For
detection densely sampled 3D patches of an unlabeled image
sequence are passed through all trained trees. The probabilities
coming from the different leaves are averaged and all votes
are accumulated in the Hough space. Finally, the class label
is obtained by determining the maximum peak in the Hough
space.
Starting from the premise that actions recorded from similar
relative camera perspectives result in resembling features, the
concept is to split the monolithic single-step approach into a
hierarchical two-step approach. First the relative camera posi-
tion is estimated and second the action by using view-specific
Hough forests. The approach consists of a person detection
and tracking step, as well as a training and a testing phase of
the hierarchical action recognition, which are discussed in the
following sections.

A. Person detection

The images are first processed by a person detector in order
to get a spatial prior for the position of the person of interest.



Fig. 3: For person detection several feature channels are com-
puted. The detection is based on decision trees using integrals
over the different feature channels [15], [16]. A soft-cascade is
used to speed up the detection.

The motivation for an automated labeling lies in the fast gen-
eration of training data. A person detector is used to determine
the ROI aligned on the persons’ body axes. An outline of the
person detector can be seen in Figure 3. Detection is done
by a sliding window approach using a classifier consisting of
weighted decisions trees which are selected by boosting [14],
[15]. Each node of a tree uses the sum of a fixed region I
of a feature channel to make its decision [16]. Further, a soft-
cascade enables the classifier to reject an image patch after
each evaluation of a decision tree. Tracking is performed using
an online multiple instance learning tracker which learns the
appearance of the person via online boosting [17]. The person
detector provides a bounding box around the person which is
used to compute the ROI. The ROI is designed to have a fixed
ratio of h/w = 1.5 and an additional border of 20% of the
height of the determined bounding box where 10% are added
at the top and the bottom of the bounding box respectively. The
ROIs are then resized in a more manageable image format of
60× 40 px.

B. Training

In the training phase, the Hough forest for orientation
classification and the eight view-dependent Hough forests for
action recognition are built. The Hough forests were set up
with five trees with a maximum depth of 12 and a minimum
number of 15 image patches in the leafs. At each node 1000
splits were performed in order to optimally split the data.
As a split criterion the maximum information gain is used.
For each action sequence 2000 3D patches with a size of
w × h× t = 16× 16× 5 were randomly sampled. This setup
was used for all further evaluations.

0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

0◦ 42 25 0 0 4 21 4 4
45◦ 46 17 4 16 0 4 13 0
90◦ 0 17 42 0 0 0 42 0
135◦ 4 17 17 17 25 0 0 21
180◦ 21 8 0 17 37 17 0 0
225◦ 8 8 8 4 42 13 4 13
270◦ 4 0 21 12 0 0 42 21
315◦ 21 8 0 4 0 0 38 29

TABLE I: Confusion matrix of the eight different camera
orientations [in %].

1) Orientation classification:
For the orientation classification one Hough forest was trained.
For evaluation we applied the leave one out cross validation
(LOOCV) procedure, using the data of seven actors for training
and one actor for testing respectively. This procedure is used
for all evaluations shown in this paper. The results of the orien-
tation classification are shown in Table I, which summarizes the
estimated camera view probabilities for subsequent processing.
Each row represents the instances of the ground truth and each
column represents the instances of the predicted class. This
applies to all following confusion matrices.

2) Action recognition:
For the view-dependent action recognition, the data is first split
according to the relative camera view and processed by the
person detector described in Section III-A. For each set a single
Hough forest is trained on the actions.

C. Testing

An overview of the proposed hierarchical approach is de-
picted in Figure 2. The unlabeled image sequence is first
preprocessed by a person detector. The determined ROIs serve
as input for a Hough forest estimating the relative camera
orientation. Based on this estimate, unlabeled image sequences
are assigned to multiple view-specific Hough forests which are
determined by using the view probability Table I. Each Hough
forest will provide a classification of the action. Proportional
on their share of Table I each Hough forest casts a weighted
vote for the action label.

IV. EVALUATION

A. The i3DPost dataset

The publicly available i3DPost dataset is a multi-view human
action recognition dataset containing ten different actions per-
formed by eight actors [1]. There are six single actions: bend
(b), handwave (hw), jump (j), jump-in-place (jp), run (r), and
walk (w) and four combined actions: run-fall (rf), run-jump-
walk (jrw), sit-stand-up (ss), and walk-sit (ws). Furthermore,
there are two interactive actions and six facial expressions
which will not be considered in this evaluation. Each action
sequence is recorded by eight equally circular spaced cameras
covering 360◦, see Figure 4. The action sequences were neither
split into their components nor temporally labeled.



0◦ 45◦ 90◦ 135◦

180◦ 225◦ 270◦ 315◦

Fig. 4: The eight equally circular spaced camera views showing
a wave action of the i3DPost dataset.

B. Person detection

Figure 5a depicts the difference between manual annotations
(dashed red) and the ROIs provided by the person detector
(solid red). For upright standing persons the person detector
achieves similar ROIs as manual annotation. As soon as the
person bends over the person detector tracks this change and
the ROI is downscaled. As the algorithm requires input images
of equal size, the ROIs are all resized to 60×40 px. Therefore,
the person’s size in the image increases in this action sequence
although the person does not change its location. Consequently,
this generates unintended motion in the image sequence. The
top row of Figure 5b shows results of the person detector
dealing with persons entering and leaving the scene. In the
left image, the person is properly detected, but the ROI is
adjusted to the image which results in an off-centered person.
The bottom row of Figure 5b shows the results for a woman
falling onto the floor. The person detector loses the track for
the fallen woman due to her crooked pose. This results in a
reduced training set for all actions incorporating poses which
strongly diverge from standing upright. As in some sequences
of the action run-fall the person detector could not determine a
person at all, the sequences of this action were preprocessed by
the background subtraction method of Zivkovic [18], bringing
along the problem that the persons’ axes are not aligned. For
detecting people in various poses the training examples of the
person detector need to cover various poses.

C. Naı̈ve approaches

The straightforward approaches for view-independent action
recognition are either training a single Hough forest using the
data of all camera views or training all distinct action-view
pairs. These methods serve as baseline for the comparison with
the proposed hierarchical approach.

1) Action recognition using all camera views:
A Hough forest was trained on all action sequences including
all camera views. Table II shows the mean confusion matrix for
the three manually labeled action sequences bend, handwave
and sit-standup. In total a recognition rate of 88.53% was

(a) (b)

Fig. 5: Results of the person detector (yellow solid) along
with the computed ROI (red solid) and comparison to man-
ual annotation (red dashed). (a) for a bend action (b) for a
person entering or leaving the scene (top) and a run-fall action
(bottom).

achieved. Most confusion occurs between sit-standup and bend
as both actions contain a flexion of the upper body.

bend handwave sit-standup
bend 100 0 0

handwave 0 98.4 1.6
sit-standup 32.8 0 67.2

TABLE II: Confusion matrix of three actions using all camera
views [in %].

2) Action recognition using all action-view pairs:
A Hough forest was trained using all action-view pairs as
distinct classes. Table III shows the mean confusion matrix.
The overall recognition rate is only 51.57%.

bend handwave sit-standup
bend 59.4 12.5 28.1

handwave 26.6 42.2 31.2
sit-standup 20.3 26.6 53.1

TABLE III: Confusion matrix of three actions using all action-
view pairs [in %].

3) Action recognition using view-specific Hough forests:
In order to determine whether view-specific Hough forests
could outperform the naı̈ve approaches, the data was split
depending on the camera view and eight Hough forests were
trained respectively. Table IV shows the mean confusion matrix
plus one standard deviation. A mean recognition rate of 96.35%
was achieved. As can be seen using view-dependent Hough
forests the mean confusion between bend and sit-standup
reduced to only 4.7%. This result gives motivation to use
view-specific Hough forests rather than the naı̈ve approaches
described in Section IV-C.



bend handwave sit-standup
bend 95.3 ± 8.7 0 ± 0 4.7 ± 8.7

handwave 0 ± 0 100 ± 0 0 ± 0
sit-standup 6.3 ± 8.8 0 ± 0 93.8 ± 8.8

TABLE IV: Mean confusion matrix plus one standard deviation
of the view-specific Hough forests [in %].

D. Probabilistic hierarchical approach

The hierarchical approach proposed in Section III is evalu-
ated on manually labeled data and data processed by the person
detector. In total a recognition rate of 92.70% was achieved for
the manually labeled action sequences. As can be seen in Table
V there are still problems to differentiate between bend and sit-
standup. Especially in the back view of 0◦ this problem arises
which is reasonable and expected as these movements look
similar from this point of view. Using the person detector for

bend handwave sit-standup
bend 92.2 0 7.8

handwave 0 100 0
sit-standup 14.1 0 85.9

TABLE V: Confusion matrix of three manually labeled actions
determined by the hierarchical Hough forests in [in %].

preprocessing, a recognition rate of 85.21% was achieved for
the three action classes. The mean confusion matrix is given
in Table VI. Compared to the manually labeled data, this is a
decline of 7% justifying the usage of a person detector along
with the proposed method for a faster generation of training
data.

bend handwave sit-standup
bend 96.6 0 3.4

handwave 10.0 82.6 7.4
sit-standup 23.5 0 76.5

TABLE VI: Confusion matrix of the three preprocessed actions
determined by the hierarchical Hough forests [in %].

For the six single actions a recognition rate of 92.42% was
achieved. As can be seen in Table VII there is confusion
between the actions jump (j) and jump-in-place (jp). These
actions look especially similar from the front and back view.
Most confusion is caused by the actions jump and run (r). This
could be due to the fast movement and the motion of the arms
which is present in both actions.
Including the combined actions the recognition performance
drops to 74.52%. As can be seen in Table VIII, this is mainly
the consequence of the combined actions run-jump-walk (rjw),
sit-standup (ss) and walk-sit (ws). These actions are composed
of single actions which are also part of the dataset. This leads
to confusion between the single and combined actions. For
example run-jump-walk is often misclassified as one of its
containing actions jump, jump-in-place and walk (w). Also

bd hw j jp r w
bd 98.8 1.0 0 0.2 0 0
hw 2.2 93.5 0 0 0 4.3
j 0 0 76.9 10.0 13.1 0
jp 0 0 9.2 87.0 3.8 0
r 0 0 0.4 0 99.6 0
w 0 0 0 0 1.4 98.6

TABLE VII: Confusion matrix of the six actions determined
by the hierarchical Hough forests [in %].

bd hw j jp r rf rjw ss w ws
bd 96.9 0 0 0 0 0 0 3.1 0 0
hw 0.4 94.7 0 0 0 0 0 4.9 0 0
j 0 0 74.3 14.7 5.4 5.7 0 0 0 0

jp 0 0 9.5 86.7 1.9 0 1.9 0 0 0
r 0 0 0.8 0 96.4 2.6 0.2 0 0 0
rf 5.3 0 0 0 0 94.7 0 0 0 0

rjw 0 0 10.7 21.7 12.7 0.4 53.7 0 0.8 0
ss 44.5 19.9 0 0 0 0 4.3 31.3 0 0
w 0 0 0 0 2.2 0.7 0 0 97.1 0
ws 8.4 0 0 0 10.7 0 0 10.1 51.2 19.6

TABLE VIII: Confusion matrix of the ten actions determined
by the hierarchical Hough forests in [in %].

the action walk-sit was mostly classified as walk. Besides
the aforementioned problem, this high misclassification result
could be due to the fact, that the person detector works better
for upright standing people and provides better aligned input
images. Training the basic actions as done in [19] should solve
the problem for the combined actions. Splitting each image
sequence in its periodic components could further increase the
recognition rate. Figure 6 depicts two results of a view-specific
Hough forest evaluated on a bend and jump sequence. The
images show the respective Hough spaces where the horizontal
axes represent the action class and the vertical axes the elapsed
time from the start of the sequence. The brightness encodes the
certainty for a specific class and point in time. For the bend
sequence in Figure 6 (left) a distinct peak can be perceived for
the bend (b) class, whereas for the jump sequence in Figure 6
(right) no distinct peak but rather a uniform distribution with
slight peaks indicating a periodic motion can be seen in the
jump class. Splitting these sequences into their single action
cycles would effect the result in two ways: First it would
allow a more precise localization of the actions in time and
second distinct peaks in the Hough spaces would lead to higher
recognition rates.

E. Comparison with other methods

To the best of our knowledge there is no evaluation of view-
invariant action recognition approaches on the i3DPost dataset
yet. Both Holte et al. [6] and Gkalelis et al. [8] evaluate the
dataset with multi-view approaches using all camera views
for training and testing. Hierarchical Hough forests classify



Fig. 6: Two results of a Hough forest trained on six actions.
The votes in the bend sequence form a distinct peak in the
Hough space (left), whereas the votes in the jump sequence are
rather uniformly distributed (right).

actions of single camera views. Thus, their and our methods
are not easy to compare, even though we evaluated the same
dataset. The results of different subsets of the i3DPost dataset
are shown in Table IX. For the three, six, and ten chosen
actions (3 a., 6 a., 10 a.) compare Table VI, VII, and VIII
respectively. The action set 5 a. consists of the six single actions
as in Table VII excluding the handwave action, cf. [8]. The
supplements +PD and (Ha) denote a preprocessing by a person
detector or manually labeling respectively. Iofidis et al. propose
another multi-view approach and achieve a recognition rate of
94.37% on eight actions when separating all combined actions
into their components and all periodic movements into single
movement cycles [19]. As we neither split the actions into their
single components nor labeled them temporally, the achieved
recognition rate of 74.52% is reasonable.

10 a. +Pd 6 a. +Pd 5 a. +Pd 3 a. (Ha) 3 a. +Pd
Monolit. HF 71.41 92.19 89.38 88.53 81.77
Hierar. HF 74.52 92.42 92.32 92.70 85.21
3D-MC [6] 80.00 89.58 97.50 - -
HMC [6] 76.25 85.42 95.00 - -

Gkalelis [8] - - 90.00 - -

TABLE IX: Recognition results for different action sets com-
pared to multi-view approaches of Holte [6] and Gkalelis [8].

V. CONCLUSION

A novel approach towards view-independent action recog-
nition is presented. This hierarchical approach uses Hough
forests in two different ways. Initially, Hough forests are used to
estimate the relative camera orientation in the scene and subse-
quently to classify actions using view-dependent Hough forests
in a probabilistic manner. The proposed method is evaluated
on the i3DPost dataset and shows increased recognition rates
compared to single-step approaches. Further, the approach is
combined with a person detector and the sensitivity w.r.t. a com-
bination of person detection and action recognition is evaluated.
The combination allows a fast generation of training data while
still achieving convincing recognition rates. Detecting persons

in various poses will further improve the recognition rate and
is the scope of future work. As the recognition rate directly
benefits from the preceding orientation classification, future
work will further focus on enhancing the viewpoint estimation.
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