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Abstract—Industrial espionage through complex cyber attacks
such as Advanced Persistent Threats (APT) is an increasing risk
in any business segment. Combining any available attack vector
professional attackers infiltrate their targets progressively, e.g.
through combining social engineering with technical hacking. The
most relevant targets of APT are internal enterprise and produc-
tion networks, providing access to top-secret information. This
work focuses on preventing Pass-the-Hash, one of the biggest and
most long-standing security flaws present in enterprise domain
networks. The introduced approach can be applied further to
make password theft pointless for attackers in general, and is
capable of extending network protocols, that are unprotected by
themselves, with approved security mechanisms. The protocols
do not need to be modified and already existing network services
can stay untouched when integrating the solution into enterprise
infrastructures.

Index Terms—Enterprise security, single sign-on, APT,
Pass-the-Hash, Pass-the-Ticket, vulnerability, password theft, au-
thentication, mitigation, prevention, protection, proof of identity

I. INTRODUCTION

Economic and industrial espionage is one of the biggest

threats for companies, organizations, public institutions and

big players. In the ISMG’s recent APT survey of 2014 [1],

“22 percent of companies know they experienced a security
incident as a result of APT in the past year”. The survey

goes on to say that “53 percent give themselves a C or worse
when assessing their ability to defend against APT”. As one

conclusion the survey argues that in reality more than every

fourth company should be affected, the majority just does not

know.

With respect to APT, attackers prepare the infiltration

of espionage targets well in advance. This type of attack

includes the manipulation of inter-personal relationships (social

engineering), for example to gain access to login passwords.

Particularly coveted goals are internal networks that transport

and process company data and secrets, as well as production and

industrial plants. Information from local networks is valuable.

Typically, access control protects local networks against the

outside, while often completely neglecting internal network

protection. If an attacker succeeds in gaining access to a

network, or is already part of it (infiltration by insiders), he

can possibly collect sensitive data such as internal secrets

or passwords for lateral movement and thus can gain further

access, or he might even be able to take down the network from

a single entry point and cause widespread economic damage.

This work focuses on preventing one of the most popular

attacks, called Pass-the-Hash (PtH) [2], which has been used

for lateral movement and data exfiltration in Microsoft (MS)

domain networks for more than 15 years [3]. The approach to

be introduced will address the PtH problem at its root so that

lateral movement and gathering access to sensitive information

will be consequently prevented in the network.

Chapter II introduces the background of this work and PtH

at a glance. The solution to prevent PtH network attacks is

subsequently presented in Chapter III. With focus on usability

the integration into enterprise networks is given in Chapter IV.

Summarized in Chapter V, a proof of concept is integrated

into a network appliance that is utilized to evaluate a first

application-related prototype. Chapter VI concludes this applied

research work and gives an overview about the necessary next

steps to establish a flexible solution in practice.

II. BACKGROUND

Existing single sign-on (SSO) authentication mechanisms

in MS Windows are lacking in conceptual identity protection

so that stolen credentials can be reused [2], [3]. When a user

logs into his client computer that is connected to a Windows-

based network domain he typically has to enter his user name

and password. After successful authentication towards the

Domain Controller (DC), a hash value from the password

is stored locally in the client’s memory. In case that the user

requests a service involving a remote network resource (such as

a file server), the client sends an access request to the respective

resource. In order to verify the user authentication for accessing

the resource, the server forwards a login challenge request to

the client. The client solves the challenge by using its saved

password hash. Upon receipt, the server forwards both the

original challenge and the client’s response to the DC, which

verifies the response to the challenge and the related password

hash used by the client. In the case that the hash and the user’s

password hash match, the DC notifies the server which in turn
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grants access to the client. The client’s password hash itself

has not been available to the server and is not stored there

throughout the basic authentication process.

The basic challenge that exists in Windows domain networks

is the possibility to reuse stolen passwords or password hashes

and thus taking over the identity of a valid user. Related to

SSO domain networks, this threat is known as Pass-the-Hash.

PtH is still the first choice for espionage and lateral movement

in most enterprise networks for the following reasons. The

password hashes in MS Windows domain networks are not tied

to an authentication request by design, thus an attacker can

continuously re-use any stolen credentials. This is somewhat

mitigated by using Kerberos Tickets which expire after a certain

time, but this does merely force an attacker to act quicker,

usually in a matter of several hours.

A. Pass-the-Hash at a glance

Pass-the-Hash attempts are usually based on injecting stolen

credentials into the memory of an attacker controlled computer.

These credentials are usually the user name and the hash

value of the corresponding password or Kerberos Tickets that

were gathered illegally beforehand [2], [3]. Afterwards, the

normal service authentication mechanism takes place using

the injected credentials. The goal of a PtH attack is to obtain

access to a network resource (such as a file share) in MS

Windows domains without being authorized. This attack can

remain undetectable when accessing network resources until the

original password is changed by the user or administrator since

no invalid logins occur. PtH attacks are typically accomplished

by taking advantage of the following circumstances and facts:

• Theft of valid credentials (password hash, user name,

ticket), e.g. through malware and memory dumps,

• Access to an appropriate network component in the

network infrastructure of the attack target (no SSO

authentication needed beforehand),

• Ability to inject or otherwise use stolen credentials in the

service authentication process towards network resources.

B. Windows smartcard authentication

The problem of misusing a password or password hash is

often addressed by using a second factor when authenticating.

To avoid any misunderstanding, these Two Factor authentica-
tion mechanisms (e.g. by smartcard or SMS) are generally only

applied to the initial DC domain SSO authentication, missing

the 2nd Factor to be further evidenced when authenticating

towards services and servers in DC-managed domain networks.

The following section briefly introduces the basic Windows

smartcard Two Factor authentication to resolve the erroneous

belief of being able to mitigate the PtH vulnerability.

Microsoft Windows domain authentication innately supports

smartcard tokens as an additional factor in authentication. In

Windows domains, smartcard based login mechanisms may be

configured in a number of different ways. Standard Windows

login systems use smartcard authentication as a direct alterna-

tive to password-based logins, i.e. the user is authenticated as

soon as the smartcard successfully authenticates against the

DC. The smartcard proves to the DC that it is aware of its

private key and that the smartcard is actually present. As a

result, a password hash, which is validated in further service

authentications against the DC’s database, is stored in the

client’s memory once again. If the password authentication is

disabled in the default domain policy and there is no password

hash stored on the DC, a unique random number is used

for each client. Note that this random number can also be

misused by an attacker in the same way, since it is not updated

on subsequent logins and never expires by default. Likewise,

password-based and smartcard-based procedures can be used

for login, but replaying already gathered password hashes

remains a possible attack risk, since the hashes will still be

accepted for proof of authentication for services and servers. In

summary, the default smartcard authentication does not provide

an advantage over password-based login for mitigating or even

preventing PtH attacks.

III. SOLUTION DESIGN

In order to mitigate the PtH vulnerability, a

correlating 2nd Factor token authentication is designed

and introduced in the following. The additional authentication

can be applied to any vulnerable authentication mechanism

in general, or even to protocols without authentication at all.

There only has to be a possibility to identify the requesting

party that is trying to access. If authentication is given, it

is essential to identify the client while the authentication

session takes place and before any other sensitive data is

transferred. Access to the target service must then only be

allowed when the extracted identity matches the one of the

2nd Factor authentication, which must have been successfully

validated first.

A. Generalised application & definitions

The mitigation scenario is defined to enhance the security

level when the client starts to authenticate towards a server

or service, further called SRV AuthN. This is at the time the

identity information (legitimate or not) is already in use by a

client, thus after the usual SSO domain authentication.

Identification & Correlation: The most important aspect

on the server side is to identify the client while the original

SRV AuthN takes place, and to subsequently correlate his

identity that is used to access the service with the extended

2nd Factor token authentication. The identity of the SRV AuthN

is further called Requester Identity (RID). The approach to be

introduced, which is controlling the entire improved service ac-

cess, is further called Correlating Authentication Service (CAS).

The RID of the SRV AuthN is identified by the CAS and

bound to the 2nd Factor token authentication, further called

CAS AuthN.

Basic requirement for client & server: The CAS facing the

client must be verifiable (e.g. by using certificates). The client

must be assignable to a unique RID and be provided with the

private token (matching its unique RID) so that it is able to
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fulfil the additional CAS AuthN. The CAS therefore needs the

public verification data correlated to the RID and the possibility

to identify the client explicitly by its RID before challenging

the client to evidence the presence of its private token.

Objective and benefit: Even if the attacker owns a legitimate

token, it is unusable with stolen login information not matching

the respective 2nd Factor, CAS AuthN token. Thus, the

introduced solution even prevents insider attacks.

B. Correlating Authentication Service

This section gives an abstract overview on how the CAS

that is controlling SRV and CAS AuthN has to be designed to

prevent the PtH replay attack successfully.

Sequence chart 1 illustrates the fundamental integration as

well as the different parties: client and service, the original ser-

vice authentication (SRV AuthN), the CAS as a superordinate

service within its additional token authentication, CAS AuthN.

The existing SSO domain authentication does not affect the

introduced solution and is not shown in Figure 1. Furthermore

it is assumed that the client side is already in possession

of the password hash that is needed to authenticate towards

the untouched SRV AuthN and related services, and that the

identity of the CAS has already been verified successfully,

for example by using server certificates when establishing the

connection to it. The CAS is responsible for controlling the

entire authentication process as follows:

1. A service access request (AREQ) is sent by the client.

2. When this request is received by CAS, the RID will be

extracted from the AREQ.

3. CAS generates a fresh, unique challenge.

4. CAS is challenging the client.

5. The client solves the challenge thus evidencing the

presence of its CAS AuthN token, which is correlated

on the CAS to the RID.

6. The client sends the challenge solution to CAS.

7. CAS verifies the client’s evidence of the CAS AuthN

token’s presence, correlated to the extracted RID. Ver-

ify tokenRID might be equal to auth tokenRID (cf.

step 5) in case symmetric cryptography is used.

8. After successful CAS AuthN, the access request AREQ

of step 1 is forwarded from CAS to the SRV AuthN

back end.

9. The resulting ARESP of the SRV AuthN is returned

from the back end to CAS.

10. The ARESP of the SRV AuthN is forwarded from CAS

to the client.

11. After successful SRV AuthN, confirmed by a valid

ARESP, the client sends data requests REQ.

12. CAS ensures that this data request is forwarded only if

CAS AuthN and SRV AuthN succeed as well, on the

basis of the RID as described before.

13. The service processes the REQ.

14. The response is forwarded to CAS.

15. CAS forwards the response to the client and the service

is established.

Client CAS & CAS AuthN SRV AuthN Service

1.AREQ

2. Identify( AREQ )

RID

3. Challenge()

C

4. C

5.
Authenticate( C,

auth tokenRID )

ResponseRID

6. ResponseRID

7.
Verify(Resp.RID ,

verify tokenRID )

2nd Factor

authenticated !

Correlating 2nd Factor Authentication, CAS AuthNCorrelating 2nd Factor Authentication, CAS AuthN

8. AREQ

9. ARESP

10. ARESP

11. REQ

12. REQ

(only forwarded if step 7 succeeded)

13. Process

(REQ)

RESP

14. RESP

15. RESP

Extended Authentication, SRV AuthN + CAS AuthNExtended Authentication, SRV AuthN + CAS AuthN

Fig. 1. CAS-secured service authentication

Notes on the original SRV AuthN: The existing SRV AuthN

is initiated by the client in step 1, Figure 1. The unmodified

but controlled steps of SRV AuthN, cf. step 8 to 10, can be

processed in parallel with CAS AuthN. Thus these steps may

take place before, during, or after the CAS AuthN process. It

is vital that both, the SRV and CAS AuthN processes finish

successfully before granting service requests any access to the

service after step 11 et seqq. It is therefore essential that the

superordinate CAS delays or blocks any access that may read

or write non-authentication data on the target service before

the full correlating authentication process is completed. To

give an attacker the lowest possible surface to interact with

a possibly insecure service authentication (SRV AuthN), it is

recommended to process the CAS AuthN before the existing

SRV AuthN as shown in Figure 1.
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IV. INTEGRATION OF CAS INTO ENTERPRISE NETWORKS

A CAS can be realized in different ways. A brief introduction

will be given in the next sections. The crucial parts will

be discussed and compared to each other and a generalized

solution will be introduced in the form of an abstract as well.

A. CAS as server side extension vs. network appliance

Two main focuses on how to realize the solution practically

emerge: a decentralized and a centralized approach. If choosing

to extend the server side, it is possible to integrate a CAS as

a kind of a fire walling service directly on the affected target

server (CAS-S). In contrast, the application of an intermediary

CAS appliance (CAS-A/V) introduces a centralized solution

instead of an extension on each service host. Realizing the

centralized CAS-A/V alternative results in additional require-

ments to form a complete secure infrastructure, but server side

modification is no longer required.

Additional requirements on the centralized approach:
The CAS-A/V centralized integration into the infrastructure

results in additional security policy requirements related to

the infrastructure. Depending on services and components

of an infrastructure, the resulting security policies may have

to be designed individually, but they can be outlined as a

fundamental security requirement. To reach a security level

that is comparable to the decentralized approach, the following

fundamental policies must be considered:

• CAS-A/V has to be verifiable by any client in the network

• Accurate network separation between client and the secure

service zone, which is hosting the CAS-A/V protected

services and servers

• No possibility for lateral movement inside the protected

service zone (e.g. disabling remote execution services,

disallowing communication between services)

• Protection mechanisms against attacks beyond PtH like

Man-in-the-middle (MITM) and address spoofing must

be in place

• Redundancy to avoid a single point of failure and for

optimizing performance in large scale networks

Obviously, several security policies have to be applied to

protect the resulting infrastructure against further threats. This

speaks for the decentralized approach (CAS-S) which is easier

to protect but harder to integrate into an existing network.

B. Securing beyond PtH

Confidentiality and integrity protection is needed that will

prevent attackers from falsifying messages or taking over

sessions of the underlying protocols, and thus protects against

attacks that may take place beyond PtH attempts. Additionally

required protection against MITM attacks can be implemented

by separating the networks virtually. It may be accomplished

by routing the connections via the CAS over an IPsec/TLS

connection [4], [5], [6] or VPN-based tunnels to the secure

service zone as well. These tunnels can further be used

to establish a CAS AuthN directly, e.g. by a connection

establishment with smartcard authentication.

Thus, the vulnerable SRV AuthN is executed inside the

established secure channel and the identified RID is correlated

to the transporting tunnel that was established securely before-

hand by the user’s token. This extended approach covers bright

prospects and is presumed to be the recommended solution.

Without this additional security measure, only the authentication

mechanism is secure while other vulnerabilities may still exist

on underlying session and transport layers.

C. Choice of tokens

The choice of tokens can be matched to the infrastructural

requirement. The CAS AuthN token is recommended to be

backed by a hardware token such as a smartcard (e.g. RSA

[7] based Windows compatible PKI cards, or similar public

key cryptography tokens), which must be present at the

requesting machine during the normal (and possibly vulnerable)

authentication cycle. Note that losing hardware tokens can be

detected quickly and creating copies of them is not trivial,

whereas a password theft usually takes place invisibly. If tokens

such as smartcards are impractical, any other identification that

is hard to duplicate can be used, like USB security tokens,

biometric scanners etc. Those tokens can be directly integrated

in the hardware of a network component, so that the private

key is protected without any need of user interaction.
Periodical attestation of token presence: It is recommended

that the presence of the client’s CAS AuthN token is proven

periodically towards the CAS. This time intervals may be

configurable at the CAS for individual use cases. Since the

challenge to be signed by the client’s token is newly generated,

thereby re-authenticating the client, the CAS directly verifies

the continued physical presence of the client’s token while

processing the protected services at the same time. When using

the recommended smartcard solution, the user PIN unlocks

the smartcard at the initial SSO login, so that no further user

interaction is needed, but the physical presence of the smartcard.
Machine-to-Machine: The approach stays compatible with

Machine-to-Machine (M2M) interaction, since the most impor-

tant aspect is to protect the private key, so that the authentication

data for CAS AuthN can not be stolen from the participating

machine. If pluggable tokens such as smartcards cannot be ap-

plied securely to M2M scenarios (e.g. unlocked rooms and the

risk of anyone stealing the token that is permanently connected

to the machine), integrated hardware chips and trust anchors

may be taken as a basis for protecting the private key for

CAS AuthN. To manage high security areas, additional concepts

can be combined to the introduced approach in this work.

Using an integrated hardware module like a Trusted Platform

Module, mechanisms to prove the trustworthiness of the client’s

operating system can be used to augment the CAS functionality,

cf. Trust Establishment and Authentication, TEA Protocol [8].

D. Multi-user and identity management

The CAS solution can be very flexible when managing

user access and multiple accounts. For example this approach

can allow administrators, who have multiple accounts, to

authenticate themselves with a single smartcard for both their
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standard user account for day-to-day work and their privileged

account for administrative work. Furthermore, group accounts

(e.g. admin@admin, cf. Figure 2) can be associated to and

shared amongst multiple smartcards, which has the advantage

of being able to identify the real users by their smartcard

identity. This also allows to easily integrate new credentials

once a smartcard certificate expires: The Admin can simply

mark both tokens as valid for the transition period.

In addition, it allows to detect insider attacks. If a legitimate

user’s workstation, that has already established CAS AuthN, is

trying to execute a PtH attack by injecting stolen credentials

into a protected session, the access is denied and the attack

source can be identified by the smartcard used. Without a

valid smartcard an attacker is not even able to establish a

communication channel towards a CAS and subsequently to a

target service. An example of possible identity management is

illustrated in Figure 2.
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Fig. 2. Exemplification and benefits of the CAS identity management

E. Operating system integration and usability aspects

In order to create an easily usable security solution it shall

not require any undesired or incomprehensible tasks from a user.

The presented approach can be integrated into an operating

system’s existing login mechanisms, so that the users cannot

even detect it’s presence in day to day use. The only difference

from an unprotected environment is the fact that access is

impossible when the token is being removed from the machine.

An additional benefit from this solution is that users will

regain control of their credentials and can invalidate all

their sessions by simply removing the token in case of a

suspected attack or infection. This was previously impossible

since password hashes and tickets could remain on the local

machine or even on some remote services after logout. The

fact that credentials stay on a single physical device also

makes quarantining an ongoing attack much easier for domain

operators.

V. CAS IMPLEMENTATION AND EVALUATION

In this section a CAS implementation focusing on the Server
Message Block (SMB) [9] protocol in version 2, with common

NT LAN Manager Security Support Provider (NTLMSSP) [10]

authentication is described. This proof of concept (PoC) has

been implemented and subsequently optimized for performance

to verify the general feasibility, functionality and delay-free

usability of the CAS engine. It is realized in the programming

language C with the library libevent [11], which provides proxy

functionality based on callbacks on network socket events. As

soon as the CAS proxy engine receives SMB traffic it is handed

over to it’s parser module. The parser extracts the RID from

the NTLMSSP authentication protocol messages inside the

SMB data stream. Upon identifying the client the lookup to the

back end is performed to correlate the identity to a smartcard.

The PoC’s back end is a simple file based database that can be

created with a setup tool. The PoC performance is evaluated

with focus on comparing the RID parser and correlation lookup,

both in user and in kernel mode. These measurements are

focusing on the number of SMB/NTLMSSP authentications

versus CPU workload and throughput without encryption of

the protocol data channel. Thus the SMB service connection

is established between client and CAS for evaluation and

measurement issues separately from the 2nd Factor CAS AuthN

authentication protocol. CAS AuthN was realized by using

standard TLS 1.2 with client certificate extension [5], [6] and

is not examined further. The SMB protocol is configured to use

the default plain-text mode to obtain accurate measurements

without encryption overhead.

A. Exemplification & analysis based on SMB with NTLMSSP

SMB with NTLMSSP is applied widely and, besides

Kerberos [12], one of the most used protocols and mechanisms

in Windows based enterprise domains. Still, other affected

mechanisms and services are deployed practically, so that it

becomes clear that a full-featured CAS needs to understand

various affected communication and authentication protocols.

To ensure that both client and server use the same protocol

while exchanging data, the service dialect is negotiated at the

beginning of the handshake. When the server receives the

list, it responds with a chosen dialect revision, in this work

SMB version 2.1. As soon as the dialect is negotiated, the

client starts the authentication handshake by sending a list of

supported authentication mechanisms (step 3). The server will

reply with the chosen mechanism, in this work NTLMSSP,

and a challenge (step 4, NTLMSSP CHALLENGE), which

has to be solved by the client. Afterwards, the client sends

its response containing the solved NTLMSSP authentication

challenge and data (step 5, NTLMSSP AUTH). After verifying

the response received (step 6 and 7) the server replies if the

authentication was successful or not (step 8, NT statuscodes).

Extraction of the RID: When securing the NTLMSSP

authentication relevant authentication packets contain the zero-

byte-delimited string “NTLMSSP”, which is the marker to start

offset calculation. The required data is found in the NTLMSSP

structure of step 5, defined as NTLMSSP AUTH. Note that

any length and offset values in the NTLMSSP structure are

not in network byte order, but in little-endian. The NTLMSSP

messages contain user name, host name and domain name

encoded in UTF-16LE format. They have to be converted

to the CAS character encoding and a lookup in a connected

credential database is started to evaluate if a user is allowed

to access the requested service or not. These three identifiers
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Client SMB-Server Auth-Back-end

1. SMB Negotiate Request

2. SMB Negotiate Response

3. SMB Session Setup Request, NTLMSSP

4. SMB Session Setup Request, NTLMSSP CHALLENGE

5. SMB Session Setup Request, NTLMSSP AUTH

6. Authentication on Back-end

7. Positive Authentication verification

8. SMB Session Setup Response, NT statuscode

NegotiationNegotiation

Fig. 3. NTLMSSP authentication process

form the RID. Offset positions based on the starting byte of

the string “NTLMSSP” are:

• Bytes 32-35: offset for ’domain name’

• Bytes 40-43: offset for ’user name’

• Bytes 48-51: offset for ’host name’

These offset positions and the corresponding length value,

which starts 4 bytes earlier and is 2 bytes long, have to be

read. The essentials of the NTLMSSP message for extracting

the RID are illustrated in Figure 4.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|N T L M S S P 0| Type | | | | | | |dl | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|dl_off |ul | |ul_off |hl | |hl_off | | | | | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

dl = domain length
dl_off = domain offset
ul = username length
ul_off = username offset
hl = hostname length
hl_off = hostname offset

Fig. 4. NTLMSSP authentication message & offsets for extracting the RID

Analysing the protocol a bit more in detail shows some pitfalls

when parsing the NTLMSSP structure for this information.

In Windows there are two contradictory ways of formatting

log-on names:

• User Principal Names,

in the form: username@domain
• Down-Level Log-on Names,

in the form: DOMAIN\username
It is important to note that there are even two different ways

Windows handles these names in NTLMSSP messages, which

requires the CAS engine to carefully distinguish these cases:

1) User Principal Names will be sent entirely in the user

name field of the NTLMSSP message while the domain

field contains an empty string.

2) Down-Level Log-on Names will be split correctly so that

the domain field contains the domain name and the user

name field contains the user name.

This inconsistent behavior allows an attacker to build mal-

formed combinations of both formats:

DOMAIN1\username@domain2
When entering such malformed combinations, Windows fails

to establish SMB sessions and falls back to the WebDAV

protocol [13] that tries to establish a connection via HTTP.

The NTLMSSP structure constructed in this case contains two

domain names: One in the domain field, and one integrated into

the user name. It is not defined and probably implementation-

dependent how these malformed structures are interpreted

at the server. Thus the obvious countermeasure is to detect

such malformed combinations and block them at the CAS.

Moreover, there are further fall-backs like NetBIOS [14]. It is

important to deactivate all possible fall-backs by the CAS, so

that only implemented and known protocols are processed while

unknown mechanisms have to be blocked by default (whitelist
design). Another NTLMSSP issue is that the protocol uses

offset and length fields, and thus pointers into the authentication

message, which are prone to buffer overflow attacks. The CAS

must thus verify the pointers and make sure they do not point

outside the received message while parsing the RID. To all

intents and purposes, CAS has to parse all fields of all messages

accurately so that other attack vectors like segmentation attacks,

buffer overflows etc. are considered and disabled by design.

B. Performance evaluation - User vs. kernel mode

The PoC redirects incoming connection attempts to its

sockets, it thus works as a transparent proxy. In the second

version of the CAS this user space proxy was ported to kernel

mode. The CAS engine was expected to gain a significant

performance improvement if the network I/O operations would

be handled in kernel space, so that the expensive context

switching, which is needed when transferring the network data

to user space, can be omitted completely when operating on the

incoming TCP streams directly. In this case only the identity

management and correlation is handled in user space. The

results are presented in the following by comparing the user

space implementation with the kernel mode version.

A Stormshield SN500 appliance [15] is connected in between

two gigabit network ports of a Spirent Avalanche [16] Packet

Generator as a test-setup. SN500 is based on FreeBSD version

9.2 and runs the introduced CAS PoC and configuration as

described before. SN500 is equipped with a VIA Nano U3100
1.3Ghz and provides 1 GB RAM. The benchmark is done by

finding the point where there are close to no unused CPU

cycles left (99-100% work load) to handle new connections.

The CPU is then running at maximum workload for 2 minutes.

The following benchmarks are averaged from the results.

Auth per second: The first benchmark is based on minimal

SMB/NTLMSSP sequences. After the authentication request

has been sent, the RID is being identified and after the required

identity lookup has been carried out, the session will be closed

immediately. This benchmark illustrates the worst case where

all connections are trying a bad password in a loop. This

simulates a distributed login brute force attack.
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Throughput & latency: The second benchmark simulates a

normal user session with some data transfer. The measurement

contains a successful authentication followed by a download

of a 1 MB file. Latency is measured during the benchmark.
CAS in proxy mode: The kernel that runs on the SN500 has

a Network Address Translation (NAT) rule set to divert the

traffic to the CAS. It receives these connections on the loop-

back interface, a lookup into the NAT table is done to retrieve

the original destination. The CAS is responsible to decode,

analyze and copy all network data between the sockets in

user space. Moreover, a performance evaluation with Callgrind
[17] was performed, which showed that most of the CPU cost

resides in sending, receiving and forwarding the TCP segments

on the libevent buffers. Only 2.2% of the time is spent in

the implemented code of the CAS parser, thus performance

improvements were suspected when moving buffer management

to kernel space.
CAS in kernel mode: In this PoC version, the code to decode

and analyze the SMB traffic is running in kernel space, being

able to handle network data without context switching. As

soon as the NTLMSSP authentication is detected and the user

is identified, the connection is paused and the kernel engine

simply asks the CAS user space engine to fulfill the correlation

lookup. The result is returned to the kernel and on success the

paused connection is continued by the kernel engine.
Table I shows the comparison between the reference mea-

surement where the CAS was not enabled, the user space proxy,

and the kernel mode PoC running on the SN500.

Reference Proxy Kernel

Auth./sec 2300 500 2200

Throughput (Mbit/s) 670 250 670

Latency (ms) <1 5 <1

TABLE I
COMPARISON OF THE CAS ENGINE IN USER AND KERNEL MODE

Summarizing, Table I emphasizes the benefits when porting

the approach from user to kernel space resulting in much better

performance of the CAS approach with regards to possible

authentication amount, throughput and latency. Therefore, pars-

ing proves to be very efficient as only certain SMB/NTLMSSP

header fields need to be evaluated. Moreover, the CAS PoC

uses a hash table for the identity lookups in order to correlate

the NTLMSSP identity with the TLS connection identity. The

hash table provides add/find/delete operations in constant time

complexity O(1). Thus no additional penalty is expected when

the number of concurrent users is increasing.

VI. CONCLUSION AND FUTURE ALIGNMENTS

This work addresses the Pass-the-Hash problem at its root

and offers the proper authentication mechanism, which is

missing in MS domain networks. The important functionality

of the CAS is access management and the integrated CAS

AuthN, which protects the insecure SSO service authentica-

tion SRV AuthN with verifiable token authentication, e.g. by

smartcard.

In the previously introduced scenarios the user simply enters

the PIN when logging onto the SSO system. No further

steps are needed if the client-side CAS extension is started

by the initial smartcard SSO login. Moreover, an attacker

has no possibility to execute a PtH attack without matching

CAS AuthN credentials, that is without the correct user’s

smartcard. The described identity correlation also results in

a strong protection mechanism against insider attacks. In

conclusion, inside and outside attackers would have to steal

or duplicate each single smartcard including all PINs of each

target user to gain access to protected services with a foreign

identity. Thus lateral movement is consequently impossible.
Furthermore, it becomes clear that the CAS has to process

requests with whitelist principle, so that all known and unknown

types of fall-backs, dialects of transport protocols, (yet)

unsupported authentication mechanisms and remote services

are blocked by the CAS engine by default.
With other affected services in mind, which are offering

an additionally encrypted version of their protocol, the RID

extraction from the protocol’s session is complicated. Here,

a CAS needs to inspect the encrypted traffic so that further

key deployment may be required, that enables intercepting a

connection on-the-fly with the help of a trusted Certification

Authority (CA). Another promising strategy would be to simply

disable any Microsoft encryption as a default policy, because

encryption keys for their mechanisms are derived from the

insecure password hashes the attacker already possesses. The

connections are already secured by the the smartcard channels

of CAS, which encrypts the connection by the 2nd Factor token.

Handling encryption as supported by SMB version 3, or other

SSL/TLS protected service protocols, are a focus for further

research.
To establish a flexible solution in practice, most of the

commonly used and affected Microsoft protocols must be

supported by the CAS and they will have to be identified and

evaluated in the next steps. Besides SMB this includes HTTP,

Exchange (DCE/RPC), IMAP, POP, SMTP etc., which can

also be configured to use both NTLMSSP and the Kerberos

authentication [12]. As sometimes falsely assumed, Kerberos

offers no protection against the PtH problem [18], [19]. In

general, Kerberos just replaces the password hashes with tickets.

There are two kinds of tickets, the domain’s Key Distribution

Center (KDC) issues the Ticket Granting Ticket (TGT) upon

successful user login. The TGT allows users in subsequent

requests to obtain Session Tickets (ST) for service sessions

from the KDC. Similar to a PtH attack, these tickets can be

copied and authenticate the user as the NTLM hash does. The

shown CAS approach can be aligned to support the Kerberos

mechanism. A brief analysis of the Kerberos protocol tracking

the tickets without decrypting them shows a promising approach

in correlating the ticket to the legitimate owner. In this case

the CAS needs to execute the following steps:

1. CAS identifies the client on SSO login and extracts the

identity from the request of the initial TGT issuance.

2. Afterwards CAS tracks when the client requests an ST

by a known TGT, to which the RID has already been

806



correlated in step 1. The RID is thus handed over from

the TGT to the ST, issued by the KDC for further service

access.

3. CAS is now in possession of the RID correlated to both

TGT and ST, so that the client can be forced to show

its CAS AuthN token before access with a ST will be

granted.

Further studies will identify the best solution that will be able to

handle Kerberos authentication controlled by the CAS engine.

Besides the already mentioned benefits with regards to

security, simple integration and usability, the existing and

insecure service protocols and authentication mechanisms can

remain untouched and do not have to be modified. Moreover,

other vulnerable protocols besides those affected by PtH can be

secured by a CAS implementation, which is able to authenticate

any user if it is possible to extract any RID by related service

requests. As far as a RID can be defined to be correlatable

to a unique requesting machine’s characteristic, the approach

can be aligned for different use cases to improve different

authentication mechanisms. Further studies have to be executed

to generalize this solution in order to protect against common

password theft and identity misuse in high security areas of

enterprise networks and SSO domains.
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