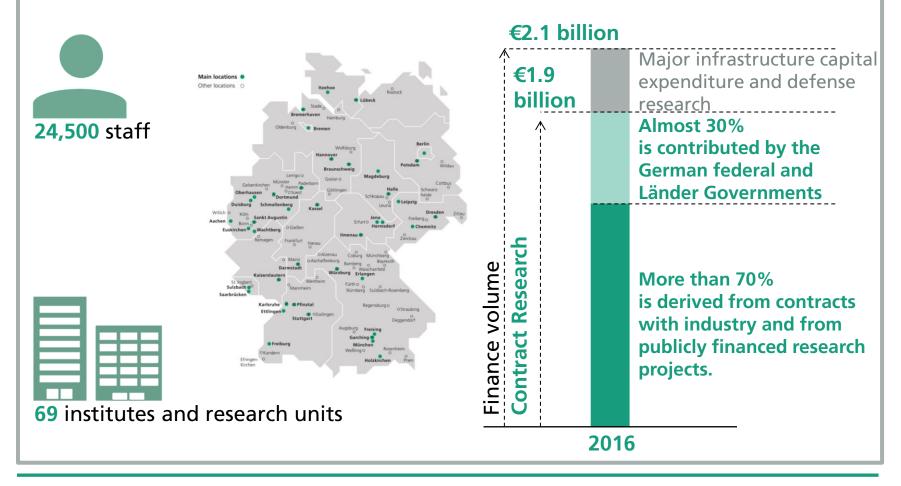
Building up the Future Transformations in Additive Manufacturing

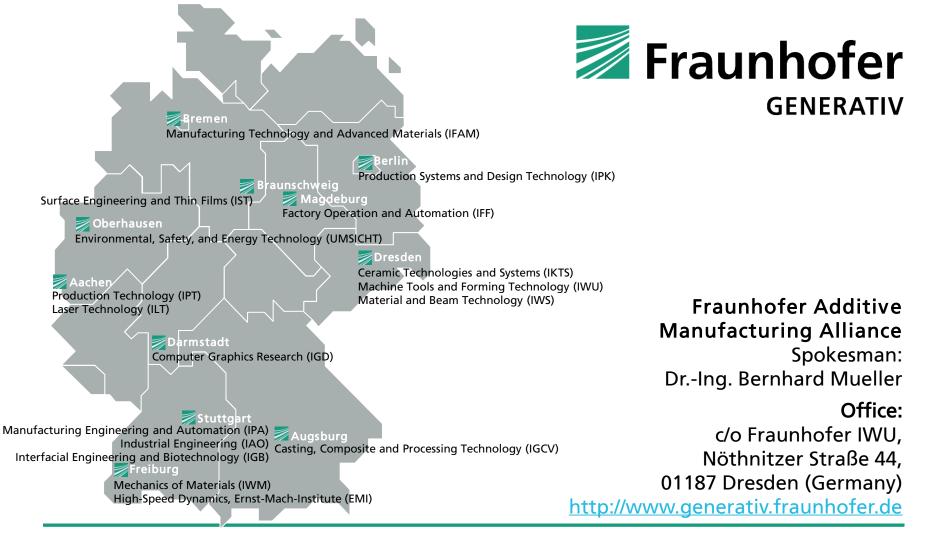
Dr.-Ing. Bernhard Müller

Head of Department "Additive Manufacturing" Fraunhofer Institute for Machine Tools and Forming Technology IWU

Manufacturing Leadership Forum Europe, Munich (Germany), June 7-9, 2017


Agenda

- Introduction
 - The Fraunhofer-Gesellschaft
 - The Fraunhofer IWU
 - Additive Manufacturing at Fraunhofer and at IWU
- Industrial Application Potentials of Additive Manufacturing
 - Light weight design
 - Functionalisation
 - Examples from applied research
- Status quo of industrial application of Additive Manufacturing
 - Medical and dental technology
 - Aerospace
 - Automotive
 - Tool and die making
- Challenges with Additive Manufacturing for series production


The Fraunhofer-Gesellschaft at a Glance

Additive Manufacturing at Fraunhofer One topic – seventeen institutes – one alliance

Fraunhofer Additive Manufacturing Alliance Research areas

Engineering

to invent and design new products and develop suitable process chains

Materials

to adapt new materials

Technologies

to achieve (cost-)efficient processes

Quality

to control and ensure manufacturing reproducibility and product quality

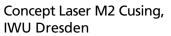
The Fraunhofer IWU in Profile

- founded in 1991
- about 620 employees
- €41.5 million annual budget
- Iocations in Chemnitz, Dresden and Zittau

Research under the heading "Resource-efficient Production"

Scientific fields

- Mechatronics and lightweight structures
- Machine tools, production systems and machining
- Forming technology and joining


Additive Manufacturing at Fraunhofer IWU Equipment

Metal

Laser Beam Melting

Realizer SLM 100, IWU Dresden

SLM Solutions SLM 250HL TU Chemnitz (SLK)

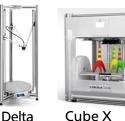
Laser / plasma / arc deposition welding

Laser deposition welding DepositionLine + TruDisk 6002 (Trumpf), IWU Chemnitz

MAG / plasma welding equipment Phoenix 500 coldarc, TransPuls Synergie 5000 CMT, Tetrix 400, IWU Chemnitz

Polymers

3D-Printing



ZPrinter 310 + Zprinter 450 (3D Systems / Z Corp.), TU Chemnitz (IWP, RP-Labor)

Fused Layer Modeling (FLM/FDM)

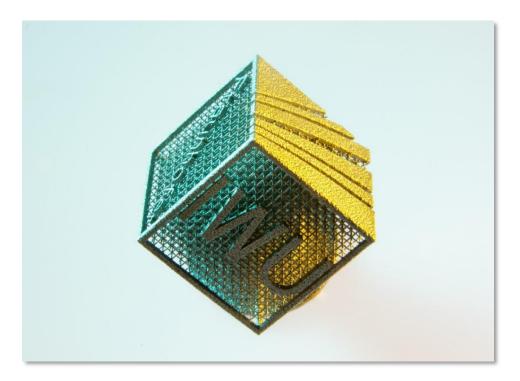
FORTUS 900mc (Stratasys), IWU Zittau

1200es (Stratasys), Tower

TU Chemnitz (IWP, RP-Labor)

(3D Systems), IWU Chemnitz

Selective Laser Sintering (SLS)



sPro[™]60 HD-HS High Speed SLS® Center (3D Systems) IWU Zittau

© Fraunhofer IWU

Industrial Application Potentials

Industrial Application Potentials of Additive Manufacturing

Lightweight Design

- omit all volume/mass without function (biomimicry, topology optimisation)
- miniaturisation/downsizing
- Iattice structures

Freedom of design

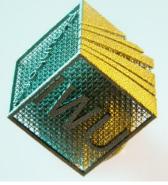
- design to function
- → manufacturing the impossible
- individualisation/flexibilisation
- Functionalisation
 - → geometrical
 - → in terms of material
 - → integrative

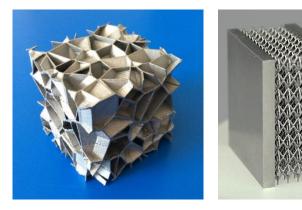
Added value in product or equipment

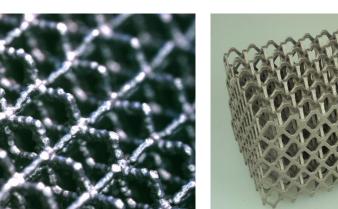
- → enhanced efficiency
- conserved ressources
- increased performance
- completely new product features

Industrial Application Potentials of Additive Manufacturing Lightweight Design through Topology Optimisation

- improved functionality
- optimised stress distribution
- ✓ weight reduction (up to 30 %)
- ✓ ressource efficiency






Industrial Application Potentials of Additive Manufacturing Lightweight Design through Lattice Structures

Lattice structure integration in parts for specific properties

- extreme weight reduction
- ✓ graded structures
- locally varying properties
- "fit to function"

- material behaviour
- mechanical properties
- stiffness and absorptivity

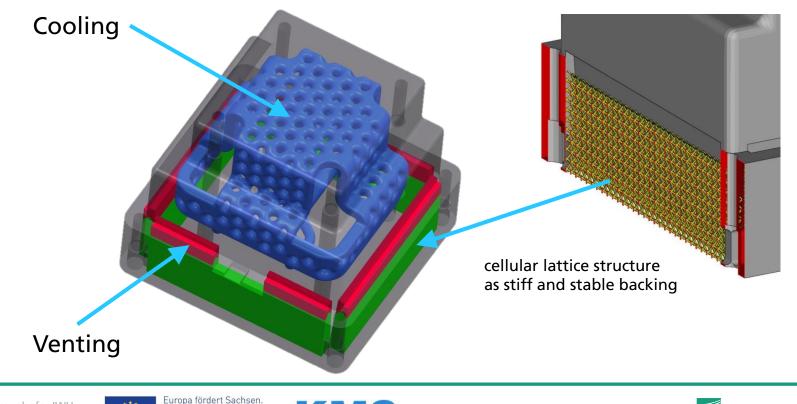
Industrial Application Potentials of Additive Manufacturing Functionalisation

geometrical

→ functional channels and cavities

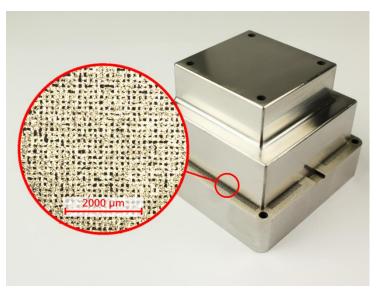
- → temperature management (e.g. conformal cooling)
- heat exchangers & coolers
- → media supply & disposal, e.g. (compressed) air, fluids, drugs, ...
- in terms of material
 - → high performance materials (e.g. Scalmalloy®, high strength steels, ...)
 - functional materials (smart materials, magnetic materials)
 - → multi-material parts (metal-metal, metal-ceramics, ...)
 - adaptronic parts and products
 - complex assemblies & products "from one print job"

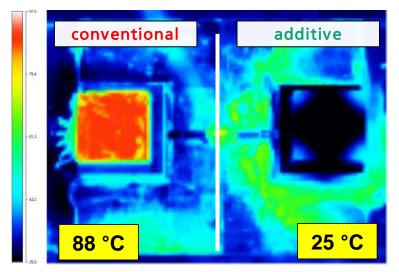
integrative


- integration of functional elements & parts
- → sensors and actuators
- electrical/electronic function

© Fraunhofer IWU

Industrial Application Potentials of Additive Manufacturing Geometrical Functionalisation: Cooling/Venting

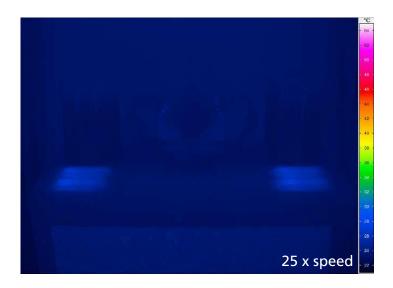

Tooling insert with innovative <u>surface cooling</u> and <u>porous venting structures</u> in **integral design**

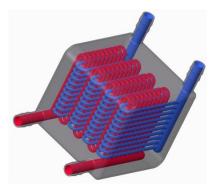

KMS

Industrial Application Potentials of Additive Manufacturing Geometrical Functionalisation: Cooling/Venting

Additively manufactured tooling insert (demonstrator tooling) with porous venting structure and surface cooling

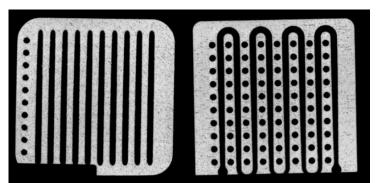
Thermographic image of pre-heated tool (90 °C) 5 s after switching in the cooling (15 °C) – conventional tooling insert (left), additively manufactured tooling insert (right)


- Reduction of cooling time (holding time) by 33,3% (from 18 to 12 s)
- Reduction of cycle time by 19,4% (from 31.4 to 25.3 s)
- Reduced injection time and specific injection pressure by approx. 5 %



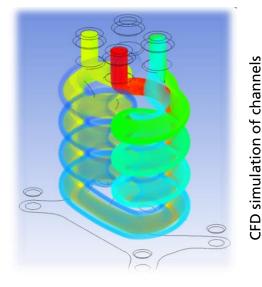
Industrial Application Potentials of Additive Manufacturing Geometrical Functionalisation: Heat exchangers

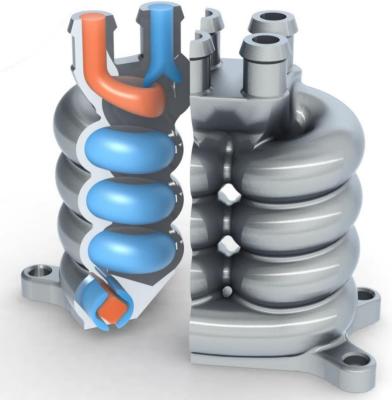
- Development of components and assemblies for thermal management, e.g. power electronics (e-mobility)
- Development of complex components for process engineering



3D CAD model of innovative AM heat exchanger

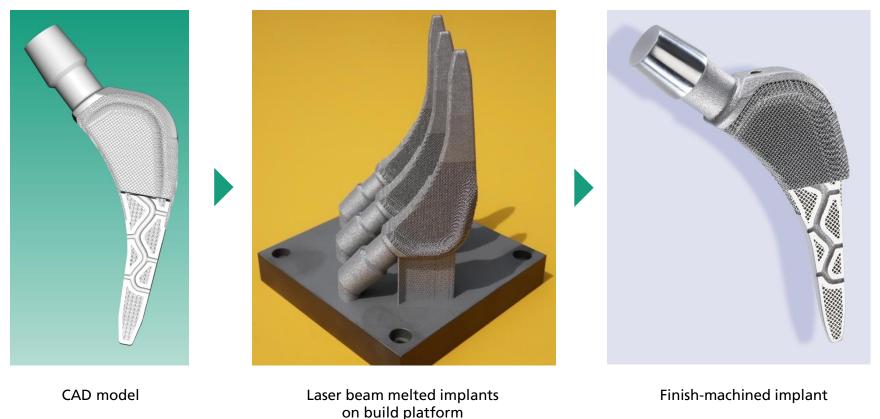
Additively manufactured innovative heat exchanger


Evaluation / inspection by µCT scan


Industrial Application Potentials of Additive Manufacturing Geometrical Functionalisation: Heat exchangers

Structurally optimized heat exchanger

- Designed for Laser Beam Melting: no support structure, no post-processing, flexible design
- Special design features: max compact design, low pressure loss, optimal heat transfer, no heat loss to environment



Industrial Application Potentials of Additive Manufacturing Geometrical Functionalisation: Drug depot

MUGETO® implant with functional channels and cavities

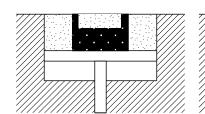
Orug depot within the implant for post-surgery treatment

Industrial Application Potentials of Additive Manufacturing Range of materials (Laser Beam Melting)

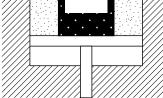
Material	Condition	Tensile strength R _m [MPa]	Yield strength R _{p0,2} [MPa]	Elonga- tion A [%]	Hardness	Modulus of elasticity [GPa]
Tool steel ¹ 1.2709 X3NiCoMoTi 18 9 5	heat treated (490 °C)	2,040 - 2,180	1,870 - 1,940	3 - 5	54 - 56 [HRC]	
Tool steel (stainless) Corrax®	heat treated (525 °C)	1,700	1,600	> 2	48 - 50 [HRC]	
stainless steel 1.4404 X2CrNiMo 17-12-2	as build	640	500	> 15	20 [HRC]	
Titanium ⁴ 3.7165 TiAl6V4	heat treated	950 - 1,250	800 - 1,100	10 - 20	32 - 36 [HRC]	
Aluminium ² 3.2381 AlSi10Mg	as build annealed T6 heat treated	353 - 482 221 - 260 281 - 320	210 - 295 126 - 160 222 - 262	2 - 7 10 - 18 5 - 10	95 - 119 [HB] 63 - 74 [HB] 85 - 101 [HB]	67 - 78 57 - 73 69 - 80
Inconel 718 ³ 2.4668 NiCr19NbMo	as build annealed T6 heat treated	929 - 1,308 896 - 1,080 1,334 - 1,545	583 - 945 549 - 922 924 - 1,278	20.2 - 32.7 31.9 - 42.2 6.6 - 19.4	280 - 395 [HV 10] 273 - 320 [HV 10] 453 - 485 [HV 10]	128 - 232 142 - 257 149 - 242

More available Materials : CoCr, 17-4 PH, AlSi12, Hastelloy X Characteristic values acc. to:

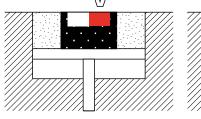
¹ VDI 3405 sheet 2


³ VDI 3405 sheet 2.2

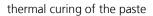
²VDI 3405 sheet 2.1 ⁴VDI 3405 sheet 2.4 in prep.



Industrial Application Potentials of Additive Manufact **Functionalisation in terms of material: Multi-material**


Combination of Laser Beam Melting with Dispensing of Paste

producing a cavity in LBM process



removing powder in the cavity

Inserting pasty secondary

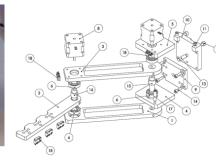
component with dispenser

Lase


000000

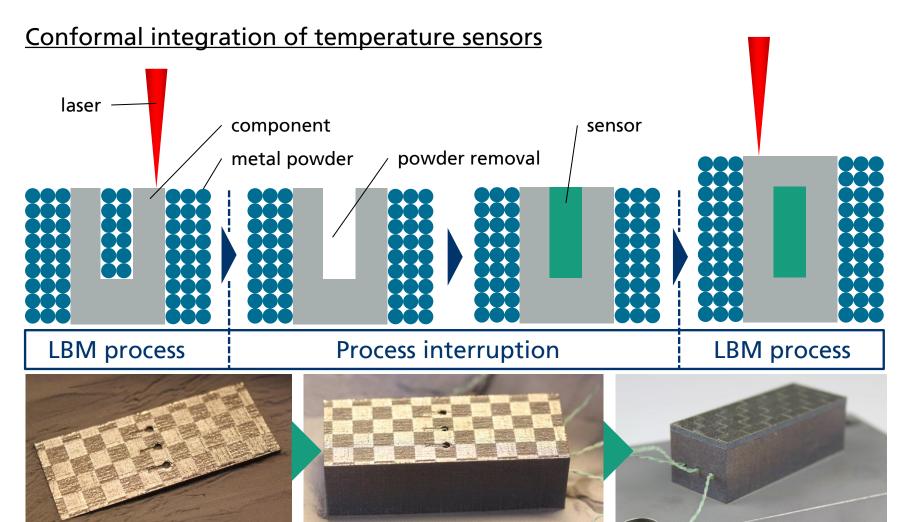
proceeding the LBM process

- utilisation of industrial screen printing pastes
- equipment set-up at IWU (integration in Realizer SLM 100)

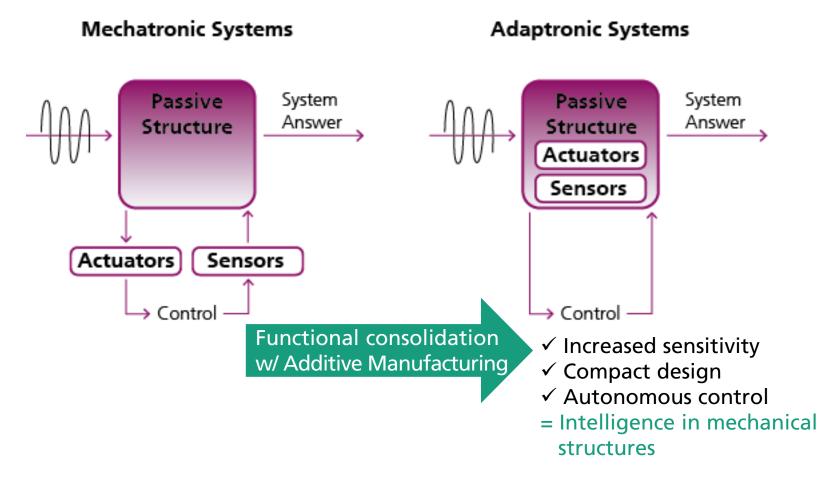

layer thickness of copper paste Top: 0.25 mm, Bottom: 0.75 mm

Realizer SLM 100 – process chamber with first dispenser system prototype

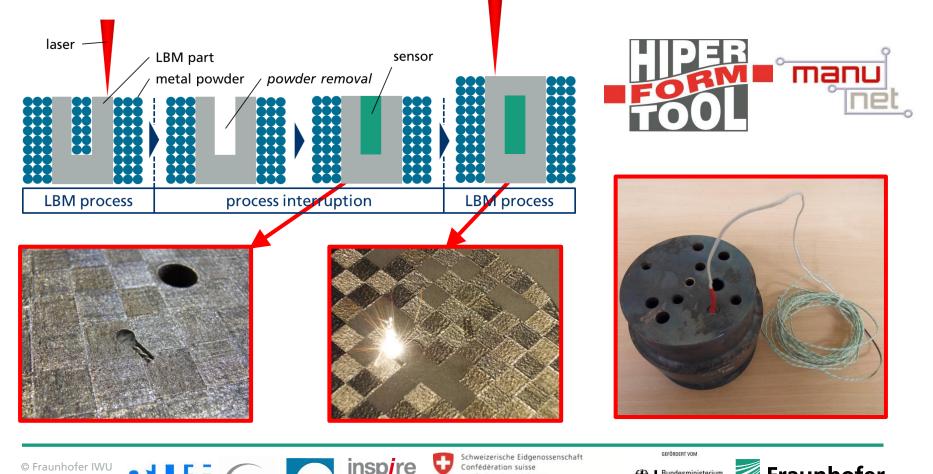
successful printing test, considering the visco-elastic behavior of paste



robot arm – exploded view drawing



custom control software



W.-G. Drossel, H. Kunze, A. Bucht, L. Weisheit, and K. Pagel, "Smart³ - Smart Materials for Smart Applications," Procedia CIRP, vol. 36, 2015, pp. 211-216.

Approach:

Integration during AM process \rightarrow metallurgical bonding for precise real-time measurement

© Fraunhofer IWU

Kommission für Technologie und Innovation KTI

💹 Fraunhofer

IWU

Bundesministerium

für Bildung

und Forschung

Confédération suisse

Confederaziun svizra

nstitute f

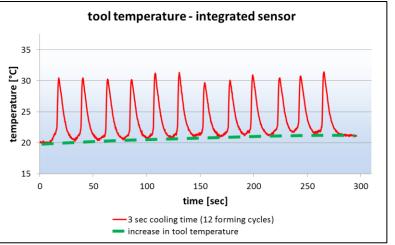
Confederazione Svizzera

Approach:

- Integration of a thermocouple into the punch
- Only 3 mm distance to the surface, close to inlet and oulet

Results:

Successful integration of thermocouple in the die \rightarrow proof of concept


inspire

nstitute fr

Significant reduction of cooling/holding time from 10 s to 3 s

Temperature profile over 12 forming cycles at 3 seconds holding/cooling time

Confederaziun svizra Kommission für Technologie und Innovation KTI

Schweizerische Eidgenossenschaft

Confédération suisse

Confederazione Svizzera

GEEÖRDERT VOM

Implants with integrated shape memory actuators

- ✓ homogeneous and stable fixation of cement-less hip stems
- improvement of primary stability through optimal load distribution at the implantat-bone interface by means of shape memory actuators

Status quo in industrial application

Status quo in industrial application of Additive Manufacturing Medical technology: Implant manufacturing

Pioneer applications for series production

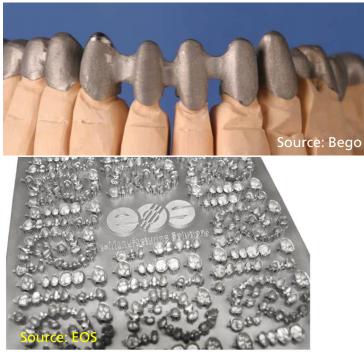
Acetabular cups (source: Arcam AB) Manufactured by Electron Beam Melting in titanium

Trabecular surface structures

Numbers (as of 2011)

- > 30,000 manufactured
- > 10,000 implanted

Cost benefits!


- 16 cups (size 48) in 12 h
 → < 50 €/cup
 - \rightarrow conventional tantalum

coating already 30 - 60 €/cup

Status quo in industrial application of Additive Manufacturing Dental technology: Mass customisation

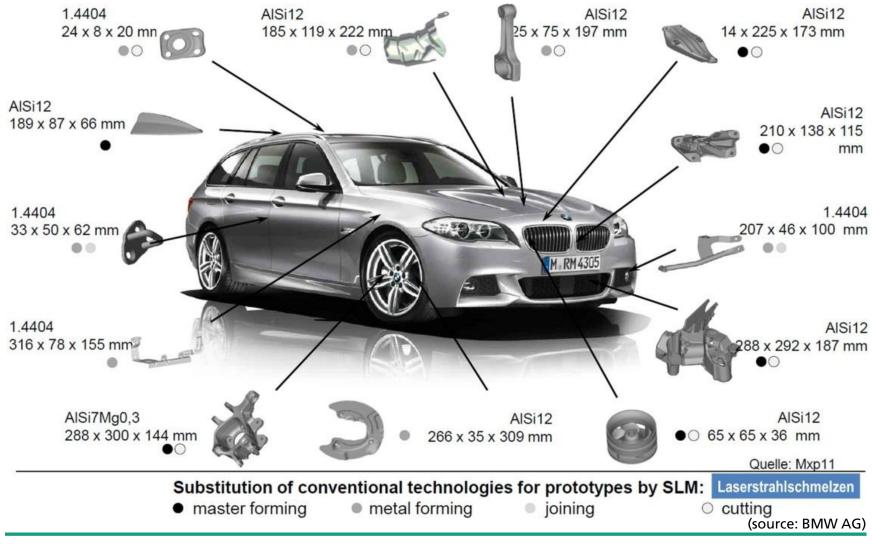
Pioneer applications for series production

Dental crowns and bridges

- Manufactured by Laser Beam Melting in CoCr
- Numbers (as of 2012):
 - 40 EOS DMLS machines for dental production worldwide
- Cost benefits:
 - up to 450 crowns and bridges in 24 h

Status quo in industrial application of Additive Manufacturing Aerospace: Series production

Pioneer applications for series production



Fuel injection nozzle (source: GE Aviation)

- Manufactured by Laser Beam Melting
- Part of the new GE LEAP jet engine
- 19 nozzles per engine
- By 2020 more than 100,000 parts
- Technical benefits!
 - 25 percent lighter
 - Once 18 parts \rightarrow with AM one
 - 5 times more durable due to an improved cooling system

Status quo in industrial application of Additive Manufacturing Automotive: Product development

🖉 Fraunhofer

IWU

Status quo in industrial application of Additive Manufacturing Tooling: High pressure die casting

Motivation:

critical porosity at oil filter housing of a bed plate (V8 engine)

tooling insert with conformal coolng

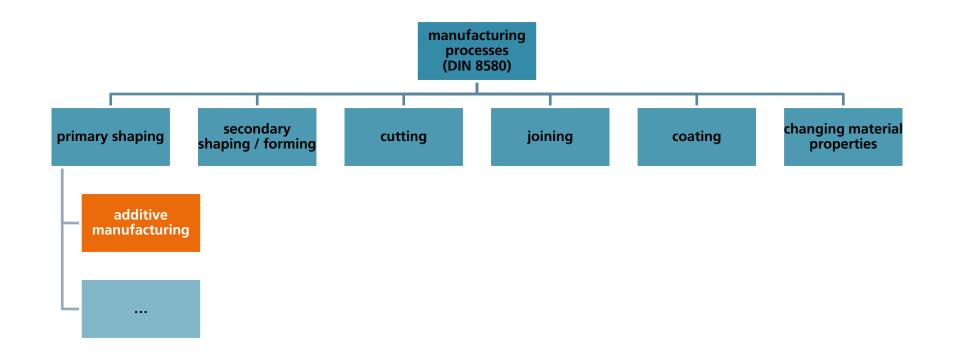
Finished part

Solution:

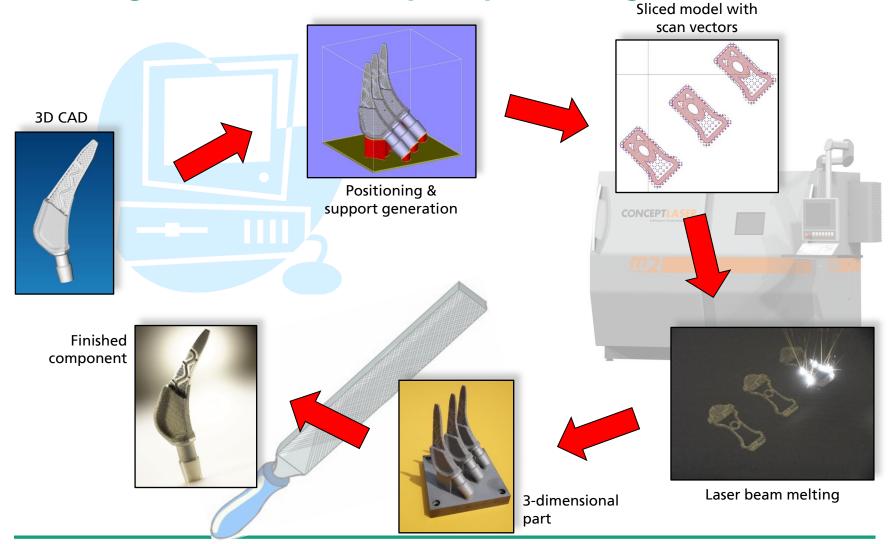
laser beam melted tooling insert with conformal cooling in hybrid design

<u>Results:</u>

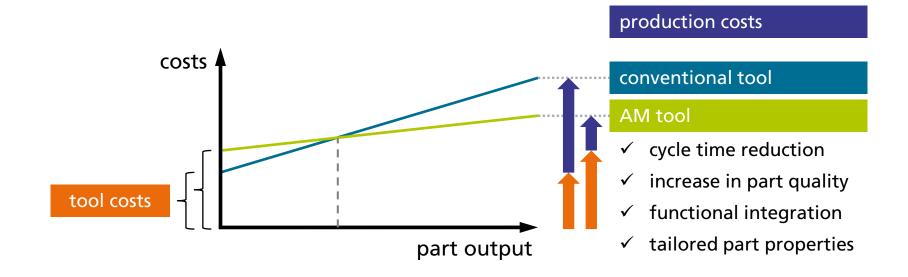
- less hotspots \rightarrow less porosity (- 50 %) \rightarrow less scrap \rightarrow less cost
- reduction of cycle time \rightarrow higher productivity



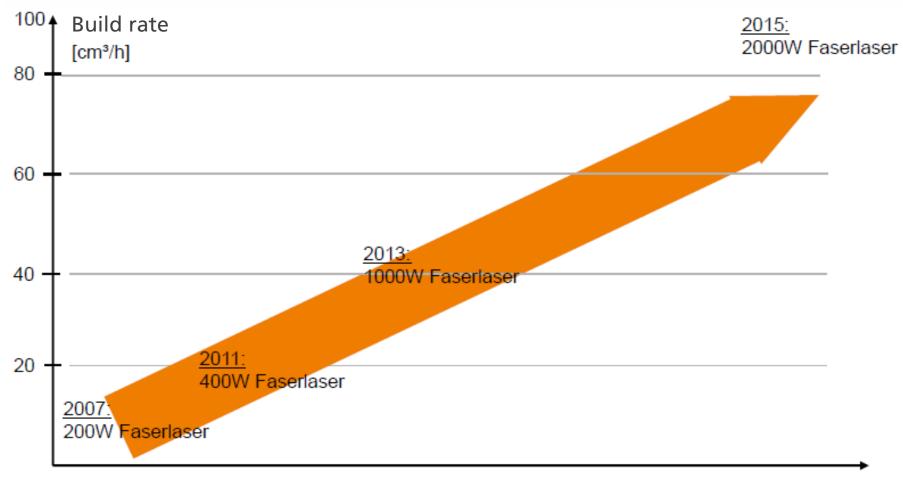
Challenges



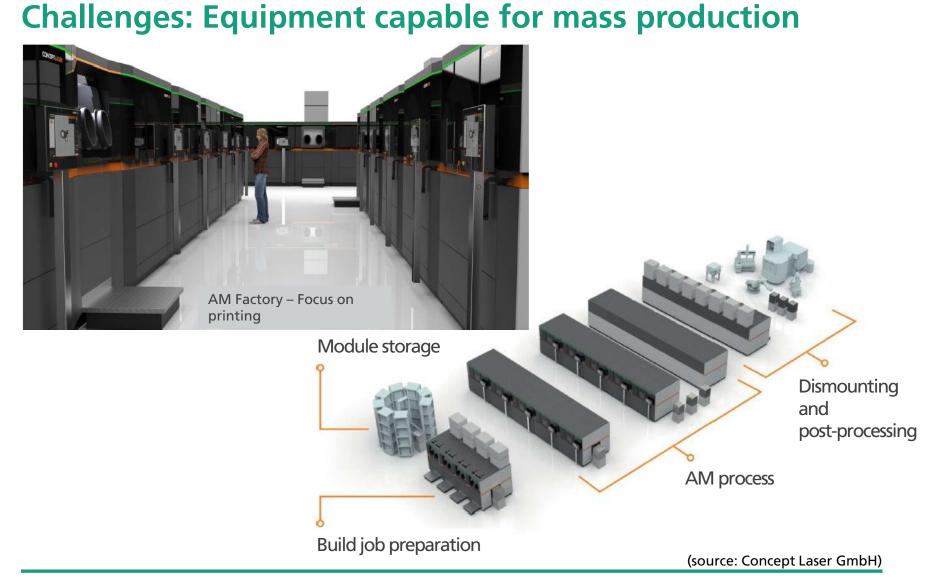
Additive mass production Challenges: classification/establishment



Additive mass production Challenges: Process chain/post-processing



Additive mass production Challenges: Cost/Economic viability


Additive mass production Challenges: Productivity

(source: Concept Laser GmbH)

Additive mass production

Fraunhofer Direct Digital Manufacturing Conference DDMC Berlin, March 14-15, 2018

Range of topics:

- Product Development
- Technologies
- Materials
- Quality

Save the date!

Next conference: MARCH 14-15, 2018

Call For Papers

Abstract Submission: JUNE 30, 2017

CALL FOR PAPERS – FRAUNHOFER

WWW.DDMC-FRAUNHOFER.DE

© Fraunhofer IWU

Questions?

Dr.-Ing. Bernhard Mueller

Head of Department »Additive Manufacturing«

Fraunhofer Institute for Machine Tools and Forming Technology IWU

 Noethnitzer Strasse 44 I 01187 Dresden (Germany)

 Phone:
 + 49 351 / 47 72-21 36

 Fax:
 + 49 351 / 47 72-23 03

 E-Mail:
 bernhard.mueller@iwu.fraunhofer.de

