GMD -
Forschungszentrum

Informationstechnik
GmbH

GMD Report
26

Gernot Richter

Counting Interfaces for
Discrete Time Modeling

July 1998

© GMD 1998

GMD -

Forschungszentrum Informationstechnik GmbH
Schlol} Birlinghoven

D-53754 Sankt Augustin

Germany

Telefon +49 -2241 -14 -0

Telefax +49 -2241 -14 -2618
http://www.gmd.de

In der Reihe GMD Report werden Forschungs- und Entwicklungs-
ergebnisse aus der GMD zum wissenschaftlichen, nicht-

kommerziellen Gebrauch veroffentlicht. Jegliche Inhaltsénderung
des Dokuments sowie die entgeltliche Weitergabe sind verboten.

The purpose of the GMD Report is the dissemination of research
work for scientific non-commercial use. The commercial
distribution of this document is prohibited, as is any modification
of its content.

Anschrift des Verfassers/Address of the author:

Dr. Gernot Richter

Institut fur Systementwurfstechnik

GMD - Forschungszentrum Informationstechnik GmbH
D-53754 Sankt Augustin

E-mail: Gernot.Richter@gmd.de

ISSN 1435-2702

Abstract

A class of interfaces is introduced that are designed to model time relations between events of
a system in terms of occurrences of a reference event. The reference event generates a discrete
time scale in that each occurrence produces a next graduation on the scale. It is shown how
various kinds of causal connection between the “timed system” and one or several reference
events or “timers” can be achieved by counting the occurrences of the reference event(s). Since
reference events belong to the considered system, their scopes as timers for other events can
be chosen as needed and are visible in the model. Requirements referring to a local time or
several independent times in the same system can thus be specified without making assumptions
which are foreign to the model and are of possibly opaque consequences for implementation.
Elementary and high-level Petri nets are used for modeling counting interfaces.

Keywords: systems modeling, interfaces, time modeling, global vs local time, distributed sys-
tems, timed Petri nets

CONTENTS 5

Contents

1 Introduction
1.1 Related work L
1.2 Structure of the report

2 Interface design 9
2.1 Clock-like interfaces e 10
2.2 Counting requestso 12
2.3 Interaction requirements e e 12
2.4 Elements of counting interfaceso oo oL 13

3 Elementary counting interfaces 14
3.1 Submitting and handling a counting request 15
3.2 Canceling a counting request L Lo 17
3.3 Deferring an acknowledgement Lo Lo 20

4 High-level counting interfaces 20
4.1 Multiple counters with complete counting interface 21
4.2 Multiple counters with counting interface for measurement 22

5 Time modeling applications 26
5.1 Defining the duration of a process, 26
5.2 Limiting the duration of a process L. 26
5.3 Determining the duration of a process 28
5.4 Expecting response within a period of time (time-out) 29
5.5 Timing with suspend/resume oo oL 30

6 Conclusion 34

1 Introduction

Time relations between events can sometimes be specified as distances on a discrete scale gen-
erated by a reference event: each occurrence of the reference event produces a next graduation
on the scale. This report proposes a quite general pattern for counting interfaces and their
abstract implementations called event counters to be used for producing such scales by counting
the occurrences of the reference event. An event counter models a causal connection between the
reference event and the events to be related to it. Several event counters can refer to the same
reference event, and a system model can contain several reference events. Since a reference event
is part of the considered system, its scope as a timer for other events can be chosen as needed
and made visible in the model. Requirements referring to a local time or several independent
times in the same system can thus be specified without making assumptions which are foreign to
the model and are of possibly opaque consequences for implementation. We use elementary and
high-level Petri nets for modeling event counters, because they allow us to model concurrency
and non-global time in a single conceptual framework.

The idea that “time” is basically defined by observable event occurrences is well established.
In computer systems, time is in general understood as being generated by a simulator or a
hardware clock. In organizational systems or in our everyday life, time scales are also defined
by physical events whose regular occurrences are recorded. In system models, time as a sys-
tem feature is not always visible. System implementation will usually fill the gap using proven
constructs and conventions with respect to time aspects. In other cases, as for example in dis-
tributed real-time or reactive systems, the accuracy of the model can be critical since the results
obtained from analyzing the formal model influence implementation decisions. In particular, a
careful modeling is absolutely necessary if time relationships between events are critical and can
be within the order of magnitude of the time units.

Event counters aim above all at modeling discrete time by means of causal structures. That
in most time modeling problems time dependence amounts to causal relationships, is the central
thesis of this work. Therefore, the main objective is to identify abstract conditions and events
that in some way form part of any specific system with time measurements and time dependencies
or with other usage of event counting. Although we use elementary and high-level Petri nets with
the usual condition/event interpretation, that is, without any time extension, we do not regard
time modeling as a “Petri net problem”, but as a general systems modeling problem which due
to its very nature can best be dealt with in terms of causal dependence and independence. Since
these are the fundamental concepts of Petri nets, we chose to pursue this research on the basis
of this conceptual framework.

Originally, this research was stimulated by the commonly held opinion that Petri nets cannot
deal with time. Several authors considered extensions of Petri nets to be necessary to overcome
their restriction to “pure” causal relationships even if this affected fundamental rules of system
behavior. The following discusses in brief some approaches towards extending Petri nets by
description means for modeling time relationships. It is argued that such extensions are not
required or that, if suitably interpreted, they can be regarded as abbreviations with a standard
Petri net semantics and not necessarily as extensions in the sense of modifications.

1.1 Related work

The earliest approaches towards time modeling in Petri nets were developed more than twenty
years ago: time Petri nets (Merlin, 1974, Merlin and Farber, 1976) and timed Petri nets (Ram-
chandani, 1974). They are outlined, for example, in [5, 12, 4, 30, 2]. In time Petri nets, the
transitions are assigned time intervals (minimum time which must elapse / maximum time which
can elapse until the transition fires). As soon as all input tokens of a transition are available,

8 1 INTRODUCTION

the countdown towards the beginning of the time interval begins on the basis of a global time
scale. Within this interval the transition must occur unless it is disabled before the end of the
interval. The occurrence itself takes no time (“the time needed to fire a transition is equal to
0”). Time Petri nets are defined in [3] and are used for verifying time-dependent systems.

In timed Petri nets, the transitions are assigned a firing duration (“every transition takes a
bounded, non-zero amount of time to fire”) during which the tokens are no longer available at
the input places and not yet at the output places. A variant (Sifakis, 1980) is to label the places
of a net with a dwell time for tokens. In [10], where this variant is called place latency nets, it
is shown that such timed Petri nets can be interpreted in terms of elementary net systems.

A modified Petri net model for the specification of timing requirements is proposed in [14,
15, 5]. The model called environment/relationship nets (ER nets) is based on coloured Petri nets
with a single global time scale. It allows one to include passing of time into the model but not to
refer to global points in time. An environment (high-level token) can contain a standard variable
called time (or chronos) whose value indicates the time at which the environment appeared at the
place (timestamp of the token). In the transition expression, passing of time can be formulated
by means of the variable time in the environments of the input places and output places. A
firing of a transition is always done with duration 0.

Time modeling with ER nets introduces a global course of time for the entire model although
the authors deny the existence of a global clock: “Within ER nets, time is therefore a distributed
concept: each environment has its local private time. There is no clock-on-the-wall whose time
shows the instant reached by the global evolution of the net. The only link among the time values
within the environments is that they refer to the same time scale, i.e. the same origin and the
same time units; it is clear that such link is by no means a global unique time for the whole net.”
[5, p. 267]. But what else is to be understood by a global time? To count the (assumed) global
time pulses individually for each transition is not a local private time, but rather a local private
counting (such as the “local time” of a time zone).

Another time modeling approach for high-level nets is proposed in [32]. The Interval Timed
Coloured Petri Nets (ITCPN) are coloured Petri nets where transitions are assigned firing delays
(intervals) and tokens carry timestamps. When a transition fires it produces tokens with times-
tamps. The value of the timestamp is the firing time plus an arbitrary value from the firing
delay (interval) of the transition. The firing time is given by the current enabling situation:
The enabling time of a transition is defined as the maximum timestamp of the tokens to be
consumed. The earliest enabling time under the current marking defines the global model time.
This is the time taken as the firing time of a transition. A transition always fires at its enabling
time if it fires. If several transitions have the same enabling time, they fire in arbitrary order.

Coloured Petri Nets (CPN) [19] support time modeling based on a global clock. In a CPN
model with time simulation, a global model time is counted and recorded, and the tokens (of
a time-dependent colour set) show a time stamp affixed by the simulator. Transition delays
and arc delays can be defined to assign the production of tokens an individual duration by
postdating the time of their availability for subsequent transitions. To enable an occurrence
element to occur it must be both color enabled on account of the marking and time enabled on
account of the current model time. Time-independent tokens are immediately available when
they appear in a place. The occurrence of an occurrence element takes no time itself. As in
other time modeling approaches, untimed transitions are not really time-free, but always occur
immediately (zero time) when they become enabled.

In order to describe synchronization schemes for multimedia systems, Time stream Petri
nets are proposed in [8]. Their input arcs (outgoing from places) are labeled with time intervals
referring to a global time. This entails a set of new, complex firing rules based on timers local
to each outgoing arc of the places.

1.2 Structure of the report 9

There are still other efforts to come to terms with time in net-based system models. For
instance, in [31] a relationship between time and processes is established in that time information
is added to the places of the occurrence net. Continuous Petri nets are introduced in [6]. They
associate firing speeds with transitions which are obtained from a timed discrete Petri net.

These and many other proposals of bringing time into Petri nets give evidence that there is
a need not only to include time aspects into net models, but also to find out their time-related
properties through formal analysis. Where a global timer can be assumed to underly the model,
a clear semantics for the combination of net model and timer seems rather straightforward.
However, in these cases it is not always clear whether it is the simulation environment or the
real system that is being modeled. In other words, the question arises as to which extent the
model reflects reality and how model and reality are interconnected.

A way of integrating the course of time into a system model without extending Petri net
theory by an additional time concept and, in particular, without modifying the firing rule for
Petri nets, is proposed in [25]. Via functional units called clocks, any part of a system model can
be linked to the time pulse of a timer, other parts can remain free from any time dependence.
If required, a global system time can be introduced (alone or together with local times). In the
present report, this approach is taken further by providing uniform and more general interfaces
along with considerably simplified and elaborated net models. In order to emphasize that time
modeling is not the only, albeit the most obvious area of application we chose the term event
counters instead of clocks.

1.2 Structure of the report

This report presents a quite general pattern for counting interfaces with application-specific
protocols and a first set of self-contained and executable models that can be applied to the
analysis and specification of timed systems. Section 2 describes the basic concepts and principles
of this approach. Sections 3 and 4 contain elaborated models of event counters for use in typical
applications. They can be used as components in system models either immediately or after
some adaptation to the problem at hand. This is shown in Section 5 with examples of frequently
occurring time modeling problems. Section 6 presents some conclusions.

While the basic principle of event counting can best be demonstrated with elementary Petri
nets for a constant built-in counting distance (see Section 3), high-level Petri nets are preferred
for the practical use of event counters in systems modeling since they make possible compact
modeling of interfaces and counter readings (see Section 4). What is more, high-level Petri nets
allow different variants of event counters to be modeled in a largely uniform way!.

2 Interface design

Where parts of a given system, in the following referred to as subsystems, depend on each other
they either interact directly or relate their behavior to occurrences of a distinguished event that
is observable by all of them (e.g. the pulse of a clock, the beat of a metronome, the sunrise
at a given place). Each subsystem counts the occurrences of the reference event and links its
behavior with the sequence of consecutive occurrences. The term ‘subsystem’ is used without
definition in an intuitive way, which seems acceptable in the present context.

'We use well-known basic concepts of Petri nets: condition refers to an elementary local state, event to an
elementary local state transition, i.e., a coincident change of conditions. Conditions are modeled with S-elements
or places, represented with circles. Events are modeled with T-elements that are connected with one or more
places. They are represented with boxes and arrows. The marking of a place models whether the condition holds
or not and, in the case of high-level nets, which conditions hold.

10 2 INTERFACE DESIGN

2.1 Clock-like interfaces

Any event can serve as reference event. From a mere modeling point of view, it is irrelevant
what is taken as a reference event. This is in general not true for a technical or organizational
implementation of the modeled system. There, a natural or artificial device produces the occur-
rences that are regarded as “ticks” for counting purposes. Two conditions which alternatingly
begin and cease to hold suffice: one condition holds always after an occurrence of the reference
event, the other holds after counting the occurrence and before the reference event occurs again.
We want to refer to each individual occurrence of the reference event as a pulse (e.g., a clock
tick). The two conditions are therefore called AP (after pulse) and BP (before pulse). A pulse
is thus a unique, unrepeatable transition from marked to unmarked BP and from unmarked to
marked AP.

If one or several subsystems are connected to the common pulse generator (the “implemen-
tation” of the reference event), two conditions AP; and BP; constitute the interface between the
pulse generator and subsystem . When the reference event occurs, all conditions BP; ceased
to hold and all conditions AP; begin to hold. When a subsystem ¢ completes the counting of
this pulse, condition AP; ceased to hold and condition BP; begins to hold. Depending on the
context, the interface of an individual subsystem or that of all subsystems taken together is
referred to as the pulse interface. The left part of Figure 1 shows a Petri net that illustrates the
position of the pulse interface.

requester 1

counting
subsystem 1 interface D O e

‘ event counter 1

/—(@/ pulseinterface\Qﬁ /—(J pulseinterface
AP1

AP1 BP1
requester 2

-
_______ %
o

counting
interface

subsystem 2

event counter 2

/—J pulse interface%ﬁ /—@/ pulseinterface
AP2

AP2 BP2

L

“—1 referenceevent S— j— reference event

Figure 1: Interfaces for coordination via a reference event

Aiming at a systematic description of various applications and types of event counting it is
useful to further distinguish the actual counting and recording from the other functions of the
subsystem. A functional unit specialized in counting shall be referred to as an event counter.
Its interface to the remaining subsystem is the counting interface. This subdivision is shown
with the right part of Figure 1.

2.1 Clock-like interfaces 11

Thus, an event counter has two interfaces: the pulse interface where the interaction with
the pulse generator occurs and the counting interface where the pulses, e.g. in a time modeling
application, define “points in time” and “time distances”. The remaining subsystem can be
regarded as the requester of the counter that submits a counting request to the counter as the
provider, e.g., to deliver a signal after 5 pulses from receipt of the counting request. The intro-
duction of two interfaces has an obvious analogy in a usual clock: the swing system (oscillator,
pendulum etc.) has a pulse interface to the clockwork and the latter has a display as a counting
interface to the user or to a technical device whose behavior relates to the clock.

The following terminology (illustrated in Figure 2) makes it easier to talk about event count-
ing. A seemingly obvious concept is the interval. It is obvious if we consider the sequence of
pulses: Each pulse coincidently terminates the current interval and begins the next one. We call
each individual state between two consecutive pulses one pulse interval.

counting seguence of length 3

(counting counting W
interval transitional interval
i phase i+1
event e
counter: | 1 | g
s EN 7 N
/ count i AN / count i+1 AN ,
BP pulse AP BP pulse AP BP pulse AP
) i (i) (i+1) i+1 (i+2) @i+2) i+2 (i+2)
. pulseinterval i T pulseinterval i+1
interpre-
tation: point [ﬁ point ? point

intime elementary time interval intime elementary time interval intime

Figure 2: An occurrence graph illustrating terminology

In order for the pulses to become a means of relating different subsystems they need to be
monitored by a counter. Thus it is not the pulses themselves but their being realized and enabled
that is visible at the counting interface. Here, we need a notion of interval that allows us to say
that something happens in the same interval as something else, or that something happens in
every interval, in the current interval, etc. In these cases we refer to a counting interval rather
than to a pulse interval.

A counting interval begins when AP ceases to hold and ends when BP begins to hold. With
this definition we introduce an additional transitional phase between counting intervals where
the “current counting interval” is undefined (an alternative view is discussed in the Conclusion).
Since counting intervals are included in pulse intervals, we can sometimes ignore the difference
and use the word ‘interval’ alone. The process running in a counter during a pulse interval is
referred to as a count.

We adopt the following numbering rules. Pulse ¢ begins pulse interval ¢ and precedes counting
interval i. Pulse i+ 1 succeeds counting interval ¢ and ends pulse interval i. A counting sequence
of length d is a sequence of d consecutive pulses recorded by the counter or, what is the same,
of d — 1 consecutive intervals. This sequence defines what is called a counting distance d. The
pulses of a counting sequence are numbered in a way that depends on the counting mode of the
event counter (see 2.2).

An obvious application of event counting is to interpret the occurrences of the reference event
as the advancement of time (or of a local time if there are several reference events). This enables

12 2 INTERFACE DESIGN

time dependence to be modeled such as: delay by e units of time (in the sense of time intervals
or, alternatively, of points in time), waking up after e units of time (alarm) unless a specific
event occurs before, measuring a period of time (stopwatch) or delivering a signal regularly after
e time units (chime). Faced with the variety of possible counting requests, this report can only
propose some few basic constructions for event counters. If required, further counters can be
derived from them or larger functional units can be composed by combining them.

A counting request normally entails to keep count of the reference event, starting with the
receipt of the request, and to signal fulfilment of the counting request when a particular number
of pulses has occurred. The number can be given as a distance from the counting request
submission (“as soon as the reference event has occurred d-times from now on”) or explicitly as
a target (“as soon as pulse number ¢ has occurred”).

2.2 Counting requests

We distinguish between counting that is done for each request individually, i.e., relatively to the
receipt of the counting request (like a stopwatch), and counting that begins from the system
start, i.e., absolutely in a single, consecutive counting sequence (like ordinary time). In both
cases, we can distinguish between forward counting and backward counting.

With relative counting, the next pulse after having received the submitted request is given
the number 1 (forward counting) or d (backward counting). Counting is done individually for
the request until d pulses are recorded relative to request submission. Absolute counting makes
all requesters share a common scale. After each pulse, the pulse number is increased (forward
counting) or decreased (backward counting) by 1. Upon starting the counter, 1 or the maximum
pulse number x, respectively, is taken as the initial value of the serial pulse number.

Another distinction refers to whether one counts linearly or cyclically. When the limit of
linear counting is reached (after pulse x or 1), the counter stops counting and (depending on
the type of counter) gets ready for new requests or stops completely (no next pulse will occur or
be counted, depending on the problem). For cyclic counting, x is at the same time the length
of the cycle (individual cycle lengths are not considered). Upon transition from one cycle to the
next, the pulse number changes from x to 1 or from 1 to x.

Finally, it is useful to distinguish between a counting distance and a counting target given
with the counting request. A counting distance (e.g., a time distance) is specified as a number
d. To carry out the request means to set a condition or to pass a signal to the requester as soon
as d consecutive pulses are recorded. A counting target (e.g., a point in time) is specified as a
serial number ¢. To carry out the request means to set a condition or to pass a signal to the
requester as soon as a pulse with number ¢ (target pulse) is recorded. Since pulse numbers and
counting distances have limits in any real counter implementation, an upper bound z (mazimum
pulse number) is defined as a model parameter for each counter.

2.3 Interaction requirements

Where event counting is used for time modeling an issue arises that is often considered difficult
or even confusing and against intuition. The reader may have noticed that there is no priority
among the events: all events are regarded as of “equal rank”. Even the reference event in its
role as a “pacemaker” is dependent on the other events, since its occurrence must have been
recorded before it occurs again. If it were not guaranteed that the event counter kept pace
with the pulse sequence, the reference event could not be used for determining (measuring) or
defining “occurrence distances” (e.g. a duration).

At first sight, this mutual dependence might seem implausible and provoke contradiction,

2.4 Elements of counting interfaces 13

in particular if the reference event means the advancement of real time. However, we should
realize here that a model itself is merely the representation of a perceived or imagined reality. It
is only within a pragmatic context, that the model either becomes a documentation of observed
behavior or a specification of desired or required behavior. This is also known as descriptive
modeling (the observed reality behaves like this) versus prescriptive modeling (the reality to be
created should or must behave like this).

To put it in concrete terms: Each piece of reality which is to fulfill a system specification
with a reference event must be constructed such that the count be always completed before the
next occurrence of the reference event or, equally, such that the reference event occurs only after
the completion of the count. Especially for the modeling of time with event counters, the equal
treatment of the events from a causal viewpoint can lead to apparent paradoxies (“time cannot
be stopped”). Answers to some questions which might be asked in this context are given in [9)].

In a similar way, the interaction between requester and provider (event counter) requires
a “guaranteed mutual attention”. If the counter can continue without being noticed by the
requester, a reliable coordination between subsystems is not guaranteed in specific cases. There
are situations where the requester is required to monitor every signal of the counter and to
produce an explicit signal even after a “mere reading” in order to say that in this moment (i) a
first count is explicitly not enabled or (ii) the next count is explicitly not disabled or (iii) the last
count is explicitly not acknowledged (see Section 2.4). At such a moment, the requester is aware
of an opportunity to place a request, to cancel a running counting process or to acknowledge
execution of a request, but explicitly causes the counter to proceed with the current activity.

2.4 Elements of counting interfaces

It turns out that a general counting interface can be defined by means of nine conditions. In
the diagrams, the interface elements are arranged in three groups as shown in Figure 3:

the group F-... (“First count ...”) for request submission,
the group N-... (“Next count ...”) for request cancelation,
the group L-... (“Last count ...”) for acknowledgement of request fulfilment.
first count ... next count ... last count ...
not enable enable not disable disable not acknowledge acknowledge
F- JCE NE TE N- JCD ND 7D L- JCA NA TA
event counter

Figure 3: Basic structure of the counting interface and its use

As explained above, submission, cancelation and acknowledgement include also to explicitly
refuse to submit, cancel or acknowledge a request. The conditions resulting from explicit non-
submission, explicit non-cancelation or explicit non-acknowledgment have an “...-N...” in
their names. Table 1 summarizes the nine places of a (basic) counting interface and the two
places of a pulse interface.

14 3 ELEMENTARY COUNTING INTERFACES

Table 1. Interface elements of an event counter

counting interface

holding of

condition ... means ...

F-CE First count Can be Enabled, i.e., counting process can be started

F-NE First count was explicitly Not Enabled, i.e., counting process was not started

F-FE First count was Enabled, i.e., counting process was started

N-CD Next count Can be Disabled, i.e., counting process can be discontinued

N-ND Next count was explicitly Not Disabled, i.e., counting process was not discontinued
N-D Next count was Disabled, i.e., counting process was discontinued

L-CA Last count Can be Acknowledged, i.e., counting process can be finished

L-NA Last count was explicitly Not Acknowledged, i.e., counting process was not finished
L-A Last count was Acknowledged, i.e., counting process was finished

pulse interface

holding of

condition ... means ...

BP Before Pulse, i.e., current pulse interval can be finished
AP After Pulse, i.e., current pulse interval was started

The nine conditions are expected to be used as outlined in Figure 3. Complete specifications
of counting interface behavior are provided in Sections 3 and 4. This is a rough description of
the interface behavior: Initially, when the event counter is without a request, condition F-CFE
holds after every pulse. In this case, the requester decides whether a counting process is to be
started (event first count enable) or not. If the requester sets condition F-E, a counting process
(depending on the request and/or on the type of counter) starts, otherwise (condition F-NE)
the counter returns to condition F-CE. In every interval the requester can decide to discontinue
the execution of the request (event next count disable) or not. In the former case, the counter
returns to condition F-CE. In the latter one, the counting process continues until the last pulse
has been counted.

Eventually, condition L-CA is set and the requester decides whether to acknowledge fulfil-
ment of the request (event last count acknowledge) or not. If the last count is not acknowledged,
the counter sets L-CA after every pulse until condition L-A is set by the requester. Then the
counter returns to F-CFE.

Thus, a typical sequence of condition holdings at the counting interface is F-CE,F-E,{N-
CD,N-ND,}*{ L-CA,L-NA,}*L-A,F-CE. Depending on the modeling problem, a particular count-
ing interface can differ from the outline given above. Examples of such variants (missing or
merged places, additional places, other modifications) are given in the subsequent sections.

3 Elementary counting interfaces

The concept of interface includes a defined behavior, i.e., an organized interaction (protocol)
between provider (event counter) and one or several requesters. The following subsections briefly
describe the interface behavior of event counters for a fixed counting distance of 3 pulses that
can handle a single request. They are considered the smallest illustrative examples and are
modeled with elementary Petri nets?. Their functionality differs with respect to whether or not

2Drawing and annotation conventions are described in the Appendix.

3.1 Submitting and handling a counting request 15

cancelation is possible and whether or not acknowledgement can be deferred. Short descriptions
of the internal S-elements (places) and T-elements of the models are listed in Table 2. The
diagrams also specify (see hidden arc expr, hidden colour set expr) that all places can carry a single
token only.

Table 2. S- and T-elements of elementary event counters
for 3 pulses (see Figures 4, 5, 6)

S-elements:

holding of

condition ... means ...

NDX= N-ND expected in the current interval (but N-D possible)
WP1 waiting for pulse 1 of the counting sequence

WP2 waiting for pulse 2 of the counting sequence

WLP waiting for the last pulse of the counting sequence

AX= L-A expected in the current interval (but L-NA possible)
AX> L-A expected in a subsequent interval (but L-NA possible)

T-elements:
occurrence of

event ... means ...

RNE to react to F-NE

RE to react to F-E

REX= to react to F-F and expect confirmation in the current interval
RND= to react to N-ND in the current interval

RD= to react to N-D in the current interval

RP1 to react to pulse 1 of the counting sequence

RPIND to react to pulse 1 of the counting sequence under N-ND
RP1D to react to pulse 1 of the counting sequence under N-D

RP2 to react to pulse 2 of the counting sequence

RP2ND to react to pulse 2 of the counting sequence under N-ND
RP2D to react to pulse 2 of the counting sequence under N-D

RLP to react to the last pulse of the counting sequence

RLPND to react to the last pulse of the counting sequence under N-ND
RLPD to react to the last pulse of the counting sequence under N-D
RNA= to react to L-NA in the current interval

RNA> to react to L-NA in a subsequent interval

RA= to react to L-A in the current interval

RA> to react to L-A in a subsequent interval

3.1 Submitting and handling a counting request

A simple event counter is modeled in Figure 4. The marking shown in the diagram models the
state immediately before a pulse and before a decision of the requester. After the first pulse and
later, whenever the requester explicitly did not submit a request (transition F-CE — F-NE),
the counter returns into the state F-CFE. This is called the idle loop of the counter.

If the explicit non-submission of a request should not be modeled, an event that explicitly
does not submit a request can be dropped at the requester, and the two places F-CFE and F-NFE
are merged to a new place F-CE/NE. The resulting place models a side-condition of the event
RNE. Thus, a conflict between counter and requester may arise in each interval—mamely in
the case where a request is going to be submitted. In such a case, the model does not tell us

16 3 ELEMENTARY COUNTING INTERFACES

whether the prerequisites for a request submission existing at the requester will ever lead to the
submission of a request.

F- L-
CE NE E CA A
® O O O
RNE
AP BP
?k\
AP BP
WP1
N
AP BP
WP2
N
AP BP
WLP hidden arc expr: () ... token
hidden colour set expr: Token
RLP[|
AP AX=
RA=
- /

? AP AP BP S@
1

reference event

Figure 4: Event counter for 3 pulses: cancelation is not possible, ac-
knowledgement cannot be deferred

If condition F-CE holds, a counting request can be submitted (transition F-CE — F-F).
Notice that request submission (like non-submission) is not linked to the current state at the
pulse interface. However, holding of either F-NE or F-F is required to enable the next pulse.
The reaction of the counter to F-NE (event RNE) or F-E (event RE) leads to the holding of
condition BP. If a counting request has been submitted, the first pulse in the current request

processing is pending. After each pulse the counter moves on by 1 until it waits for pulse 3 as
the last pulse (condition WLP holds).

After the last pulse, the final interaction starts via the interface elements L-. ... The counter
signals via L-CA that the number of pulses to be counted has occurred; the fulfilment of the
request can now be acknowledged. The acknowledgment is due “immediately”, i.e., in the current
interval (condition AX= holds). Reacting to the acknowledgement (event RA=) the possibility
of submitting another request is provided still in the current interval. For this purpose, the
event counter sets AP and F-CFE which is the same state as immediately after a pulse before
the requester has decided between F-NFE and F-E.

3.2 Canceling a counting request 17

3.2 Canceling a counting request

If the event counter described in 3.1 is extended by the option of canceling a counting process in
progress, we obtain the model shown in Figure 5. This adds a facility of discontinuing counting
before the first pulse (after occurrence of event REX=) and “around” the subsequent pulses of
a counting sequence. For this purpose, the counting interface includes an additional group of
places whose names begin with “N-" (for next count ..., see Table 1). With a transition N-CD
— N-D the requester cancels the current counting request, i.e., initiates the discontinuation of
the counting process. The four additional events RD=, RP1D, RP2D and RLPD model the
possible reactions to a cancelation?.

The operation without submitted request (idle loop) and the submission of a request work
as described in 3.1. Request handling begins with the event REX=. The counter reacts to
F-E and, still in the currrent interval, requires the requester via condition N-CD to issue either
an explicit confirmation of the counting request (N-ND) or a cancelation (N-D)—an immediate
cancelation in this case. If the request is confirmed (N-ND), the counter proceeds (event RND=)
by reproducing condition N-CD and by enabling the first pulse of the just started counting
sequence (transition AP — BP). In the case of discontinuation (condition N-D), the counter
returns (event RD=) to condition F-CE.

If an application does not require a confirmation and cancelation option before the first pulse,
it suffices to discard the following components: REX=, NDX=, RD= and the connector from
N-ND to RND=, and to add a connector from F-E to RND=, instead.

Whenever condition N-CD holds, the requester can confirm the continuation of request
handling or require its discontinuation. Reacting to the continuation signal (N-ND), the counter
moves on by 1 after each pulse. Even after the penultimate pulse and the counter’s reaction
to it (in the present example event RP2ND), request handling can still be discontinued (which
enables event RLPD in the counter). Notice that the reaction to a discontinuation signal occurs
independently of whether the pulse has already occurred or not.

Cancelation can be summarized as follows: A submitted request can be canceled immediately
after its receipt—still before the first pulse to be counted—till immediately before its fulfilment.
To model what elsewhere is called an “immediate transition” [2] one can use an event counter
for 0 pulses. Obviously, for such a counter it would not make sense to allow a request to be
canceled. Any cancelation allows another request to be submitted in the same interval, that is,
before the first or next pulse to be originally counted for the canceled request. A cancelation is
done concurrently with a pulse or, so to speak, “around” a pulse. A cancelation is responded
even if request processing is just about to be terminated. That is, even then it leads to the
discontinuation of request processing since the counter does not check anyhow whether the last
counting pulse has already occurred or not.

Like with request submission and explicit non-submission, we can do without the explicit
continuation signal (N-ND) at the cancelation part of the interface by merging the two places N-
CD and N-ND to a single place N-CD/ND and thereby turning it into a side-condition of event
RND= and the three events R...ND. As with condition F-CE/NE, a conflict between event
counter and requester may arise after each pulse—namely in the case of a desired cancelation.
In such a case, the model does not tell us whether an enabled cancelation at the requester will
ever lead to cancelation.

3The subnet REX=, NDX=, RD= and RND= was developed from RE in Figure 4, while RP1, RP2 and RLP
of Figure 4 became RPIND, RP2ND and RLPND in Figure 5.

18 3 ELEMENTARY COUNTING INTERFACES

F- CE NE E N- CD ND D L- CA A
® O O O O Q Q
RNE
AP BP
REX=[| =
NDX=
N é W
RD=
RN?T] y
AP \ BP
WP1
y
RP1D
RPlyT = y
AP \ BP
WP2
N é P
RP2D
szyT =4
AP \ BP
i WLP
RLPD
RLPND [| = J
AP AX=
hidden arc expr: () ... token
RA= hidden colour set expr: Token
A\ J

? AP AP
]

il

reference event

Figure 5: Event counter for 3 pulses: cancelation is possible, acknowl-

edgement cannot be deferred

3.2 Canceling a counting request

CE NE E N- CD ND D L- CA NA A
® O Q O O O O O
RNE
AP BP rexe n
NDX=
N é y
RD=
RN?T
AP \ BP
WP1
RP1D
RplyT = y
AP \ BP
f -
RP2D
szyT =4
AP \ BP
]— WLP
RLPD
RLPND [= / A
AP AX= RNA=
RA=
Y
f J BP
AX>
AP
. RNA>
hidden arc expr: () ... token
hidden colour set expr: Token
RA> AP BP)
L]
(3 AP BP S@
[
L
reference event

Figure 6: Event counter for 3 pulses: cancelation is possible, acknowl-

edgement can be deferred

19

20 4 HIGH-LEVEL COUNTING INTERFACES

3.3 Deferring an acknowledgement

In specific cases (“at the earliest after ...”) it might be useful to admit an acknowledgement
by the requester later than immediately after the last pulse. This is achieved by the additional
place L-NA as shown in Figure 6.

The requester is expected to refrain explicitly from giving the acknowledgment via condition
L-NA or to give it explicitly via L-A in the current interval. In the latter case, event RA=
provides the facility of another request submission still in the current interval. However, if the
requester refrains explicitly from giving an acknowledgement (transition L-CA— L-NA), this
generates a loop until acknowledgement actually occurs. Eventually, condition L-A is set and
event RA> enables a further request submission. It is to be noted that, in contrast to RA=,
it is sufficient to set only the condition F-CF, since the holding of condition AP after the last
pulse has not yet been used.

If an explicit non-acknowledgment should not be modeled, like with the other groups of
interface elements, the two places L-CA and L-NA can be merged to one place L-CA/NA and
can be turned into a side-condition of events RA= and RNA> (with analog consequences as
above).

For applications of event counting where cancelation or other interface elements are not
used, the model can be correspondingly simplified by discarding components of the net. Such
variations of the basic model are used in the examples of Section 5.

4 High-level counting interfaces

To simplify matters, we have considered so far event counters which can only handle one request
with a single fixed counting distance. Practical systems modeling requires counting interfaces for
handling several and different requests simultaneously. High-level Petri nets suggest themselves
for modeling such counters. In terms of Petri nets, the transition from elementary event counter
models to high-level ones results from a folding in two respects:

1) For each distance d€ {0, 1,2,...,z} (z ... mazimum pulse number), there is an elementary
counter model of the same type. Folding them on top of each other, we obtain a single (strict)
PrT-net for all counting distances d. Since d is now part of the request description, it appears
as a parameter of the request in F-E.

2) Several counters folded in this way are stacked and distinguished by an identifier ¢ € @
(q ... request slot). From the viewpoint of the resulting counter, ¢ is the number of a slot for
submittiﬁg a request. In the net models, the request identifier ¢ now appears at the high-level
places of the counting interface instead of the elementary places marked with a token. @) is the
set of request slots, n = |@| the number of counting requests that can be handled simultaneously.

In order to keep the pulse interface in unmodified form, merging and separating the counting
processes is modeled by adding an S- and a T-element before the place BP and after the place
AP (see bottom of Figures 7 and 8). A condition AC' (after count) models the end of the count
at all request slots. As soon as all counts are terminated, an event FANIN sets the condition
BP. Accordingly, when condition AP holds, an event FANOUT sets the condition BC (before
count) for each request slot and thus enables each counter to continue with the next count.

Table 3 lists the internal S- and T-elements of the high-level models presented in the following
sections.

4.1 Multiple counters with complete counting interface 21

Table 3. S- and T-elements of high-level event counters
for 0 to x pulses with several request slots (see Figures 7, 8, 9)

S-elements:

holding of

condition ... means ...

NDX= N-ND expected in the current interval (but N-D possible)

WNP waiting for the next (also last) pulse of the counting sequence
AX= L-A expected in the current interval (but L-NA possible)

AX> L-A expected in a subsequent interval (but L-NA possible)

AC after count, i.e., current count ended

BC before count, i.e., current count started

M memory, holds the common current pulse number during a pulse

T-elements:
occurrence of

event ... means ...

RNE to react to F-NE

REZ to react to F-E for a distance of zero pulses

T to transform a request with a distance into a request with a target

REGZ to react to F-F for a distance of > 0 pulses

REGZX= to react to F-F for a distance of > 0 pulses and expect confirmation in the current
interval

REX= to react to F-E and expect confirmation in the current interval

RND= to react to N-ND in the current interval

RD= to react to N-D in the current interval

RNP to react to the next pulse of the counting sequence

RNPND to react to the next pulse of the counting sequence under N-ND

RNPD to react to the next (also last) pulse of the counting sequence under N-D

RLP to react to the last pulse of the counting sequence

RLPND to react to the last pulse of the counting sequence under N-ND

RLPD — subsumed within RNPD —

RNA= to react to L-NA in the current interval

RNA> to react to L-NA in a subsequent interval

RA= to react to L-A in the current interval

RA> to react to L-A in a subsequent interval

FANIN to enable pulse after all counts (to “fan in”)

FANOUT to enable all counts after pulse (to “fan out”)

4.1 Multiple counters with complete counting interface

An event counter with |@Q| request slots for counting 0 to = pulses is shown in Figure 7. The
model specifies a linear counter for relative forward counting with variable counting distances®.
A request for this counter is specified by a pair (g, d): ¢ denotes the slot occupied by the request,

d is the request’s counting distance (< z). While handling a request, ¢ (current pulse number)

“The new elements (compared with the elementary counters) are as follows:
e the internal S-element WNP (resulting from WP1 , WP2 , ..., WLP),
e the internal T-elements REZ (for d = 0) and REGZX= (for d > 0) for request receipt (REGZX= corresponds
to REX=),
o the internal T-elements RNPD (resulting from RP1D, RP2D, ..., RLPD) and RNPND (resulting from RPIND,
RP2ND, ..., but without RLPND).

The T-element RLPND which models the final phase of request handling (last pulse of the counting sequence has
been recorded) retains its special position.

22 4 HIGH-LEVEL COUNTING INTERFACES

is added as a further variable, namely the request-specific current pulse number starting with 1.
Two parameters appear in the place annotations: @, the set of request slots, and P, the set of
pulse numbers (P = {1,2,...,2}). The set of counting distances is {0} U P. A consistent initial
marking is {AP} U ({F-NE} x Q), i.e., place F-NFE is marked with all elements of @ (all slots
idle), AP is marked (token), all other places of the counter are unmarked.

From the model shown in Figure 7, counters for absolute counting can be derived without
great modifications. Figure 8 shows an example: an event counter for absolute forward cyclic
counting where a central variable ¢ for the common current pulse number is updated and used
for distance or target checking (recall that each pulse is counted in the case of absolute counting
even if there is no counting request at all). The place M (memory) saves the value of ¢ from
one interval to the next.

A space-saving notation had to be introduced to keep the diagram within the limits of a
page: y, Y and ¢’ should be considered as textual abbreviations for the terms (¢, q), P x @ and
1+ ¢ sign(x — ¢), respectively. The function sign(z) returns +1if z > 0, —1if 2 < 0, 0 if z = 0.

The place F-E has been split into two places: F-Fd for requests with a counting distance,
F-Et for requests with a counting target. Requests (¢, q,d) with a distance are transformed into
requests (¢, q,t) with a target pulse number ¢ (annotation of T had to be shifted to the right).

A consistent initial marking is ({F-NE} x {1} x Q) U ({BC} x {1} x Q), i.e., places F-NE
and BC are marked with all elements of @ (all slots idle), starting with pulse number 1. All
other places of the counter are unmarked. Notice that a counting distance 0 can be specified
either with d = 0 or with t = ¢. REZ includes both cases and treats them in the same way.

4.2 Multiple counters with counting interface for measurement

As an example of a variant of the basic counter (Figure 7), a high-level counter for determining
(measuring) counting distances is described. Figure 9 shows such a “high-level linear stopwatch”.
This counter is devised for counting requests of the type “count until further notice” (the notice
being the transition N-CD— N-D). The interface elements F-CE and F-NE are merged to one
place F-CE/NE. The elements L-CA, L-NA and L-A are not needed.

At the place F-E, this model requires the start of counting without specifying a counting
distance or counting target (simply “press the button ¢”: transition F-CE/NE—F-FE). Still in
the current interval, counting is either discontinued (N-D) or not (N-ND). The requester makes
this decision concurrently to each pulse. As soon as the counter reaches the maximum pulse
number z, the request slot ¢ is released again (¢ appears in F-CE/NFE). Since this requires
holding of N-ND, it is secured that the counter does not reach the value & without the requester
noticing it (the pair (g, x) appears last in N-CD after RNPND occurred with ¢ + 1 = z).

4.2 Multiple counters with counting interface for measurement

F- N- L-
CE NE E CcD ND D CA NA A
Q0 Q Qx {{0} UP} 0Q Q0 O OQ Q0 QO
RNE
a—49g
q q
BC AC
initial Y
mar ki ng
of F-NE Q
REGZX= |(q, d)
[d>0] [—1
(g, d)
kP NDX=
(g, d)
q q)
RD= (q, d)
RND= [4 y y
q
o AT
(g,d, 1)
Q<PxP WNP
(g,d,c)
q q J
RNPD
1
(g, d, c+l)))
(g,d,c)
[d>c] [== / J
qq a
RNPND A
RA= {4 | q
A a alg y
q q AC
BC /14
Q
AX>
RNA>
q q q
RA> BC ;q q; AC
a — q
BC 0 0 e
O Q [] ®) Token Token [Q O
Q FANOUT AP reference event BP FANIN Q
[]
L

Figure 7: Event counter with |@Q| request slots for relative forward count-
ing of 0 to x pulses: cancelation is possible, acknowledgement can be
deferred

24

4 HIGH-LEVEL COUNTING INTERFACES

F- N- L-
CE NE Et Ed CcD ND D C NA A
YO Y YO YO Oy YO YO
RNE
y y)
annot ati on
7y of T
BC AC
[d >0,
initial marking thc] [d=0] y Jt=c +d -
of F-NE: {1}xQ VN if ctd > x
Q/y(REZ then x
REGZX= |(c,q,t) BC el se 0]
[tec] [} /
(c,q,t)
PxQxP NDX=
(c,q,t)
y y
RD= (c.a.t)
RND= Y Y
\y
BC /Y |Y \ AC
(c,q,t)
PxQ<P WNP
(c,q,t)
y y
RNPD
(c,q,t) Y
(c,q,t)
y J
tzc][|
WES
yy Y
BC AC AX= y
RNPND RNA
RA= 1Y Y y
N 1 Yy y
y y AC
_ BCY
abbrev. notation: AX>
y ... (c,q)
Y... PxQ
c'... l+c.sign(x-c) y RNA> 5 (a,q)
N RA> BC./Y Y\, AC
S . y Sy
initial marking
of BC {1}xQ c P c
BC | v gj AC
O {c }XQu 0 Token Token 0 [] {C}XQQ
Y FANOUT AP reference event BP FANIN Y
[]
LT

Figure 8: Event counter with |@Q| request slots for absolute forward cyclic

counting of 0 to = pulses: cancelation is possible, acknowledgement can
be deferred

4.2 Multiple counters with counting interface for measurement

F- N-
CE/NE E CD ND D
Q 0Q Qx {{o} UP O Q0 QO
initial RNE
mar ki ng of q q
F- CE/ NE:
Q q q
BC AC
q
rex= [(949 /)
(g,0)
{0} NDX=
(g, 0)
q q)
RD (9,0)
1
leij (g) /| p
BC 9|9\, AC
1
) P WNP
(g, c)
q q
RNPD
(a, eI\ [x=c]
q ¥
q LT
(g, c+1) RLPND
(g, c)
,c+l
RNPND [x>c][|= (g c+1) / J
4 q
BC AC
BC AC
O QD 0 ® Token Token 0 (] Q O
Q FANOUT AP reference event BP FANIN Q
[
LT

Figure 9: Event counter (stopwatch) with |@Q| request slots for relative
forward counting of 0 to z pulses: cancelation (stopping) is expected,
no acknowledgement

26 5 TIME MODELING APPLICATIONS

5 Time modeling applications

5.1 Defining the duration of a process

Figure 10 shows how to model duration of a process by means of an elementary event counter for
d pulses (cf. Figure 4): exactly d pulses (i.e., d — 1 intervals) are between the initial event A and
the final event E of the considered process (requester). In this case, it is not relevant that the
requesting process begins immediately after A has been enabled (therefore no such conditions
are displayed in the model). What is important and thus represented in the model is that time
counting starts with the beginning of the process.

After d pulses and before the d 4+ 1st pulse, E occurs, that is, the process terminates. In
the figure, the “process” consists only of events A and E and the condition in progress which
holds until the end of the counting distance (delay). In a more complex application, additional
conditions and events would appear between A and E.

A in progress E
CE/NE E CA A
F-... L-..
AP event counter for d pulses (see Figure 4) BP

C.i reference event SJ
™
LT

Figure 10: Process and counting terminate with lapse of time

5.2 Limiting the duration of a process

The duration of a process is limited to d pulses means that the process terminates before pulse
d + 1, counted from the initial event A. However, this does not tell everything. The following
shows three different ways of specifying and monitoring deadlines.

The simplest model (Figure 11) says that pulse d+ 1 always occurs only after E. The process
therefore remains within the specified period of time, there is no other possibility.

Another interpretation of period of time or deadline is shown in Figures 12 and 13. Exceeding
a deadline is not excluded or, in the language of the model: E has not yet occurred (the condition
in progress does still hold) when L-CA has begun to hold.

In the one model, shown in Figure 12, the above is interpreted as follows: Depending on
whether F has already occurred or not, it is stated that the deadline was met or exceeded.
That a conflict may arise between the latter and FE, is quite natural. It can, however, not be
concluded from L-A whether such a conflict really existed or not. In the theory of Petri nets
this is called a confusion. The model tells that the deadline can even be met if E occurs “a long
time” after L-CA started to hold. However, this intuitive style is illegal here: There is no short
or long duration between event occurrences in the system unless with respect to the time scale
defined by the pulses. Thus, it is not relevant and cannot be determined when F occurs. But
it is relevant whether, after L-CA started to hold, meeting or exceeding is stated (in any case,
pulse d 4+ 1 will occur only afterwards).

5.2 Limiting the duration of a process 27

A in progress E
process terminated
to state meeting of 14 M
deadline
CE/NE E CA A
E-... L-...
AP event counter for d pulses (see Figure 4) BP
? reference event ﬁ)
1
L

Figure 11: Process terminates with lapse of time at the latest (E), count-
ing terminates with lapse of time, deadline cannot be exceeded

A in progress E
\[@ process terminated
to state meeting of to state exceeding of
deadline deadline
CE/NE E CA A
F-... L-...
AP event counter for d pulses (see Figure 4) BP

C? reference event ?
1
L]

Figure 12: Process can be aborted before the end (E), counting termi-
nates with lapse of time, deadline can be exceeded

A in progress E
\t %t‘ to state meeting of deadline

F G to state

exceeding of

deadline
CE/NE E CD ND D CA A

F-... N-... L-...

AP event counter for d pulses (see Figure 5) BP

(? reference event 3)
1
LT

Figure 13: Process can be aborted before the end (E), counting termi-
nates with end of process, deadline can be exceeded

28 5 TIME MODELING APPLICATIONS

The other model, shown in Figure 13, represents a variant which, like in the preceding
example, does not exclude exceeding the deadline. However, if E occurs in due time, counting
is not continued until the end of the period of time, but is discontinued immediately (condition
N-D). A conflict between E and to state exceeding of deadline cannot arise here, since the
conditions N-CD and L-CA will never hold together. With the continuation event F', counting
is “kept in motion” as long as the process runs. In Figure 13, events E and F are in conflict
again and again; in a real application one would expect that either £ or F' is enabled whenever
N-CD holds.

In both examples, the process is terminated not later than at the deadline. A model allowing
the process to terminate after having reached the deadline, though in a different way, is discussed
in Section 5.4 (time-out).

5.3 Determining the duration of a process

Let an unspecified process be limited by an initial event A and a final event E. Whenever the
counter is in a defined state (condition F-CE/NE holds), the process can begin. Like in 5.1
and 5.2, the separation of F-CE and F-NF is not important in this case since the process is
analyzed from its actual beginning (event A) without considering when A was enabled.

A in progress

q

q q
(9. ¢)
CE/NE E
F-... N-...
AP event counter as a linear stopwatch (see Figure 9) BP
% reference event ?
[

L=

Figure 14: Counting terminates with end of process

A counter as shown in Figure 9 is used for timekeeping®. It counts up like a stopwatch, but
linearly in this case. Unlike during the counter’s idle loop, it is required during the process that
the counter does not advance without the requester’s involvement: the conflict between stopping
(E) and going on (F) is therefore completely with the requester and not between requester and
counter. Figure 14 shows the model of timekeeping with a single request slot (¢ = 1).

The counting request submitted at the beginning of the process (event A) can only be
discontinued (stopped). The current pulse number ¢ appears at the place N-CD after each pulse.
It is this pulse number which specifies the duration of the process (since event A) when E occurs.
Of course, process duration can only be determined if it is not larger than x. Otherwise, this
system stops on the side of the requester because the counter returns to idling and consequently
no pair (g, c) appears at the place N-CD anymore.

50ne can also modify the counter such that the reference event begins to “tick” only after a request submission:
remove RNFE in Figure 9.

5.4 Expecting response within a period of time (time-out) 29

5.4 Expecting response within a period of time (time-out)

The net diagram in Figure 15 shows how to model a “time-out” problem by means of an event
counter with fixed counting distance. Let the initial conditions be AP, F-CE and idle.

When condition idle holds, the system is in the basic operation (idling) in which it merely
observes/monitors the course of time with the event epidle (to enable pulse while idle). By an
occurrence which is not specified in detail here and which is subsumed in the event prep, the
condition ready can begin to hold at any time. This enables the system to send a message to
some other functional unit: event send, in conflict with event epidle, sets three conditions: sent
(message sent) means that the message is on the way, pendg (response pending) means that a
message has been sent to the other functional unit and that a response to it has not yet arrived,
and waitg (waiting for response) means that the system is still waiting for the response in order
to process it.

The behavior of the other functional unit is only represented as far as it is relevant to the
considered system: It is assumed that the event E does not occur before the event A.

A other functional unit E
sent O pendg () ard
reva revb
] O
intime
(e) waitg
prep rtimeout
[T epidle] O |
ready send eppendg | ccpendg timeout

O) O O O O

CE NE E CD ND D CA A
F- N-.. L-

AP event counter for d pulses (see Figure 5) BP

@g reference event ﬁ)
M
LI

Figure 15: Waiting for response with time-out

30 5 TIME MODELING APPLICATIONS

Arrival of a response means that condition arrd (response arrived) begins to hold and co-
incidently condition pendg ceases to hold. How to describe in the model that the response can
arrive either in time (intime) or too late (timeout)?

Through the event send, the system not only enters the state described above, but coinci-
dently submits a counting request to an event counter for the counting distance d (delay) with
cancelation option. If a response arrives before the end of the counting distance, the system
states the in-time arrival of the response with event rcvb (to receive response before deadline):
it cancels the counting request (N-D), sets the condition intime for some further activities of
the system and returns to the basic operation (idle).

If the alarm rings before receiving a response (waitg still holding), the waking signal is
confirmed immediately (L-A), but a later arrival of a response is still expected: rtimeout (to
react to time-out) sets timeout as a result of exceeding the time limit, and, still in the same
time interval, waiting for the late response begins with eppendg (to enable pulse while response
pending). As soon as a response arrives (pendg ceases to hold, arrd begins to hold), the system
reacts with the event rcva (to receive response after deadline) and restores the condition idle.

To realize the arrival of a response as early as possible and to identify its timeliness we must
use a counter which requires a signal for continuing counting (N-ND) after each pulse. This
“pulse release” (reflecting that there is no response in this interval either) occurs in the event
cependg (to continue counting while response pending).

5.5 Timing with suspend/resume

As a last (and more complex) example of time depending behavior, consider the “timed PN
system” depicted in Figure 16. The example is taken from [2, p. 52] (the net elements and time
variables were given mnemonic names). The transitions are timed transitions in the terminology
of [2]. A timed transition “can be associated with a local clock or timer”. The diagram shows a
left and a right subsystem. The authors describe the intended behavior as follows:

“Transitions TL and TR ... belong to a free-choice conflict, and the firing of either of
them disables the other (...). In fact, if the initial marking is that shown in the figure, the
timers of TL and TR are set to their initial values, say drti, and drr, with drr, < dvr; after a
time d1,, transition TL fires, and the timer of TR is stopped. Now the timer of BL is started
and decremented at constant speed until it reaches the zero value. After BL fires, the conflict
comprising TL and TR is enabled again. The timer of TL must be set again to an initial value
(possibly, again drty,), whereas the timer of TR can either resume from the point at which it
was previously interrupted, i.e., from drr — dtr,, or be reset to a new initial value. The choice
depends on the behaviour of the modelled system, ...” Our choice is to resume counting.

The timed PN system includes the three conditions W, LX and RX. W (both subsystems
waiting) holds while both timers of TL (top left) and TR (top right) are counting (down). It
ceases to hold when one of the subsystems starts executing its activities, i.e., when TL or TR
occurs. Execution is modeled with conditions LX (left execution) and RX (right execution). If
one of them holds, the respective subsystem is executing. When time for execution has run out,
transition BL (bottom left) or BR (bottom right) occurs: W begins to hold anew, the timer of
TL or TR, respectively, is set to the initial value and the suspended counting process is resumed
from the point at which it was previously interrupted. Notice that place W is duplicated in the
diagram.

To keep the model as simple as possible, we will not consider the case where TL and TR
become enabled at the same time (our model will simply stop, see below). That case would,
however, not pose any new problem.

If we want to capture the time semantics of the model in a formal way, timing has to be

5.5 Timing with suspend/resume 31

Figure 16: The timed PN system

reference event

Figure 17: The timed PN system with timers and reference event (in-
formal net, not executable)

made part of the model. With event counters this can be achieved as outlined in Figure 17. The
original transitions are now connected with four event counters or timers that count the same
pulses. Although the timers are local to the four transitions, the time is global. An oval stands
for the places of a counting interface, a rectangle for an event counter. Connectors without arrow
heads indicate the existence of some causal relationship in both directions. The reference event
can be regarded as resulting from a fusion of the four transitions from BP; to AP;,i=1,2,3,4
(subscripts omitted in the diagrams). They form the component events (small squares) whose
coincident occurrences make up a pulse. This is only a graphical notation that aims at reducing
the number of lines in the diagram. An additional transition Init is needed to set the timers of
TL and TR the very first time.

The connectors that cross the diagram indicate the interaction with the T-timer of the other
subsystem:
e suspend ... lines between TL and the TR timer and between TR and the TL timer,
e resume ... lines between BL and the TR timer and between BR and the TL timer.

32 5 TIME MODELING APPLICATIONS

The exact specification of the timed behavior requires a straightforward modification of the
counting interface of the TL and TR timer to allow for suspend/resume as described below.

The four timers can be modeled with event counters for fixed counting distances, starting
from Figure 6. N-D can be omitted, there is no need for it. The timers of BL and BR need
no extension, those of TL and TR receive a modified “Next count”-part (N-...) as shown in
Figure 18. The features of the new N-part are listed in Table 1a.

not discontinue
not suspend suspend resume not resume

Figure 18: N-part of the counting interface with suspend/resume option
(with additional T-element)

Table 1a. Net elements of the modified “Next count”-part for suspend/resume

holding of

condition/

occurrence of

event ... means ...
Next count, i.e., counting process ...

N-CD ... Can be definitely or temporarily Discontinued, i.e., can be aborted or suspended

N-ND ... was explicitly Not Discontinued or is no longer temporarily discontinued, i.e., was
resumed

N-CR ... Can be Resumed

N-NR ... was explicitly Not Resumed

RNR to react to not resumed (N-NR) in the current interval

The system represented in Figure 16 and described in the quoted text can now be modeled
with standard constructs of Petri nets. Figure 19 shows the resulting model. Due to lack
of space the timers are represented without pulse interfaces and with their counting interfaces
only, prefixes -, N- and L- are omitted. Several places of the counting interfaces are graphically
duplicated to reveal the structure of the model: places F-CE, F-NE and F-E of the timers for
TL and TR (two of them are triplicated), and places F-CE and F-NE of the timers for BL and
BR.

To avoid too much crossing lines, the places of the two extended N-interfaces with sus-
pend/resume option (Figure 18) are arranged in vertical order and on the “wrong” side: they
belong to the T-timer of the other subsystem, i.e., to the timer on the opposite side of the
diagram. Interface elements of the B-timers are also drawn separately, but on the same side of
the diagram.

Summarizing, the interfaces of the timers for TL and TR comprise the following places:

F-CE, F-NE, F-E

5.5 Timing with suspend/resume 33

N-CD, N-ND, N-CR, N-NR

L-CA, L-A.
The timers for BL and BR have the same F- and L-interfaces, but no suspend/resume elements
(N-CR, N-NR) at their N-interfaces.

The counters are expected to be chosen according to the time distances drg, dr1,, dgr, and
dgr. What is important is that no pulse is missed by the timers and no pulse occurs without
being noticed at each counting interface.

Initially, eight conditions hold: the four conditions N-CE; and the four conditions AP;. Init
is the only enabled event, all timers stand idle (no pulse occurs). The first occurrence of Init
triggers the timed process of the two subsystems.

After several loops it will happen that TL and TR become enabled in the same time interval.
The model will then stop in the following state (seven conditions hold): W, L-CA; of the TL
and the TR timer, N-CE; and AP; of the BL and the BR timer. Handling this situation poses no
new problem and has therefore been omitted (both subsystems execute sequentially in arbitrary
order, the later one of BL and BR sets W again).

Events NW, NLX and NRX result from fusing the indicated component events (coincident
occurrence). They continue the four counting processes depending on the current situation in
the system:

NW ... transition to the next waiting interval, W begins to hold,
NLX ... transition to the next execution interval of left subsystem, LX begins to hold,
NRX .. .transition to the next execution interval of right subsystem, RX begins to hold.

=3
=

sO~—]

- R
TL timer TRtimer
NE CE NE NE CE NE
CE O=—=0O O=o=-0 CE
TL timer TR t| mer

S
Ll

BR tlmer

L
el

TRtimer

“?T
el

BL timer

s
w0,

TL timer

Figure 19: Explicit representation of timing semantics of the timed PN
system by means of four event counters for fixed counting distances

34 6 CONCLUSION

6 Conclusion

Event counters support the specification of time requirements such as used in technical systems,
but also in organizational systems with clocks, calendars, periods of time, deadlines, expenditure
of time and so on. Where such requirements actually exist, it is advantageous to integrate them
into the initial model rather than adding them in a later step to the “actual” causal structure of
the system. This is even true if time requirements refer to a real time that cannot be influenced.
However, it seems to be still a matter for dispute whether timing and functional requirements
should be joined or separated. For example, in [22] it is argued that timing requirements should
be included where the functional behavior is specified since they are inextricably connected.
In [33], by contrast, timing constraints are maintained separately from the rest of the system
specification although they are used to express restrictions on when an event takes place, on the
order in which events occur, or on the separation (in time) between successive events.

Event counters allow the system modeler to refer to occurrences of a reference event without
reducing concurrency more than is actually required by the problem at hand. This addresses the
issue of global vs local time. In a sense, such a wording obscures the difference between the scope
of a reference event and the scope of an event counter. A system can use a single global reference
event or several (more or less) local reference events. Given a global reference event it can be
counted globally with a single counter or locally with several counters working independently
of each other. Although local counting of a global reference event is sometimes referred to as
“local time” or “local clock”, it is not a local time in the strict sense, because it is the same
event that drives the counters distributed over the system. An example of locally counting a
global reference event is the civil time based on the astronomical time GMT (Greenwich Mean
Time) or on the modern reference time UTC (Universal Coordinated Time) derived from the
International Atomic Time (see e.g. [29, Chap. 3]).

There are applications where several asynchronously interacting subsystems have individual
reference events for their internal synchronization. Each of the reference events defines an
independent time for the system region to which it is connected. If, in a system with distributed
time based on several independent regional clocks, time relationships are of actual relevance,
time modeling with event counters may help to find constellations in region overlaps that could
lead to undesirable system behavior.

Even real-time or reactive systems have “time-free” areas, i.e., system parts without time
specifications. As not everything occurring in a system with time dependencies has to be linked
to a time scale, the system model should also specify where a linkage to time does not exist.
Event counters allow time-free areas to be integrated naturally into the same system model
together with time related areas.

In this report, we confined the variety of event counters to the features that are necessary for
handling typical counting requests. One can easily extend the counters to variants displaying
more information at the interface, e.g., the current pulse number. Moreover, they are suitable
as basic models for special counters or can be combined to display larger counting units, such
as second — minute — hour — day — week — month — etc. in a time modeling application.

Event counters and their variants can serve for defining a precise semantics of time extensions
for Petri nets or of language constructs for time relationships. Such constructs are, for example,
proposed in [13, 17, 23, 27], or in the context of synchronous programming [16]. The latter has
become a new design paradigm for programming critical real-time systems. In these systems,
all reactions must stabilize before the next tick of a global clock. In synchronous programming,
the points of the “real” physical time are considered as events which have no privileged nature
compared with events occurring inside the program [17]. This view is shared in the present
report as far as time modeling is concerned. It is generalized in that “several real times” can be

REFERENCES 35

included in a single system model.

Examples of time modeling concepts and net constructs whose exact meaning could be
analyzed with event counters include: weak and strong time model [15], various firing rules in
[8], firing delays [32], time dependent predicates [12], minimum/maximum timing constraints
and durational timing constraints [30].

Where Petri nets are used to model timed systems, event counters suggest themselves as
model components. Since they are modeled as Petri net modules with uniform interfaces, they
can be integrated directly into the net model of an overall system. This may be particularly
instrumental in applications where the assumption of a global time is not suitable because its
global implementation cannot be guaranteed or because bounding the drift between local times,
called the clock skew in [29], is just the problem. An example are the local times at the nodes
of a distributed real-time system, which are kept in parallel by clock synchronization [21]. But
also in the case of systems with global time, time modeling using event counters can be useful if
several time counts (e.g., different calendars [11]) are considered and interrelated simultaneously.

An alternative is to use event counters to define more compact representations such as param-
eterized net elements (as shown in Section 5) or expressive symbols for “duration”, “deadline”,
“waiting time” etc. The counters introduced in this report are examples of building blocks
that describe time dependencies just in the way in which they are or should be effective in an
implementation.

A more theoretical issue in the context of time modeling is limits to the precision of time
measurement. The definition of counting interval used in this report entails a transitional phase
between counting intervals where exact time reading is not possible because it is not defined
(see Figure 2). This is like trying to read the time while the hand of the clock is moving. An
alternative way to define the concept of counting interval could be to consider the transitional
phase either the first or the last part of the such a counting interval. This would result in a
sequence of counting intervals with coincident changes from one interval to the next. With such
a definition a time interval 7 is always between pulses ¢ and 7 + 2. That is, we have a limit as to
the precision of time reading: An event occurring in interval ¢ can only be positioned between
pulses ¢ and 7 + 2, but not relative to pulse ¢ + 1. This leads us to fundamental questions of
measurement and scales as dealt with in [28, 24].

Finally, event counters in system modeling are not restricted to cases where the reference
events are seen as generators of points of time. An event counter can also be used, for instance,
as a kind of “gear box” with a “counting transmission” placed between subsystems. With such a
mechanism events in the one subsystem could temporarily or permanently be coupled to events
of the other subsystem such that a given occurrence pattern or a specified tolerance with respect
to advance and delay in either subsystem is guaranteed.

Acknowledgement
The author would like to thank Reiner Durchholz for his insightful comments and constructive

suggestions on earlier versions of the report and Hartmann Genrich who helped to simulate the
timed PN system (Figure 19) with Design/CPN.

References

[1] M. Ajmone Marsan, editor. Application and Theory of Petri Nets 1993, volume 691 of
Lecture Notes in Computer Science, Berlin Heidelberg, 1993. Springer-Verlag. 591 pages.

36

2]

[16]

[17]

REFERENCES

M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with
Generalized Stochastic Petri Nets. Parallel Computing. Wiley, Chichester, 1995. 301 pages.

B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems using
time Petri nets. IEEE Transactions on Software Engineering, 17(3):259-273, March 1991.

G. Bucci and E. Vicario. Compositional validation of time-critical systems using com-
municating time Petri nets. IEEE Transactions on Software Engineering, 21(12):969-992,
December 1995.

G. Buonanno, S. Morasca, M. Pezze, K. Portman, and D. Sciuto. A new timed Petri net
model for hardware representation. In D. Borrione and R. Waxman, editors, Computer
Hardware Description Languages and their Applications, pages 261-280, Marseille, April
1991. IFIP WG10.2. (Participants Edition).

R. David and H. Alla. Autonomous and timed continuous Petri nets. In Rozenberg [26],
pages 71-90.

G. de Michelis and M. Diaz, editors. Application and Theory of Petri Nets 1995, volume
935 of Lecture Notes in Computer Science, Berlin Heidelberg, 1995. Springer-Verlag. 511

pages.

M. Diaz and P. Sénac. Time stream Petri nets: A model for timed multimedia information.
In R. Valette, editor, Application and Theory of Petri Nets 1994, volume 815 of Lecture
Notes in Computer Science, pages 219-238, Berlin Heidelberg, 1994. Springer-Verlag.

R. Durchholz. Causality, time, and deadlines. Data € Knowledge Engineering, 6:469-477,
1991.

R. Durchholz. Latency time modelling with elementary Petri Nets. In Proceedings of
International Workshop on Discrete Event Systems WODES 96, pages 82-87, Edinburgh,
August 1996. IEE, IEE.

C. E. Dyreson and R. T. Snodgrass. Timestamp semantics and representation. Information
Systems, 18(3):143-166, 1993.

M. Felder, D. Mandrioli, and A. Morzenti. Proving properties of real-time systems through
logical specifications and Petri net models. IEEFE Transactions on Software Engineering,
20(2):127-141, February 1994.

R. Gerber and I. Lee. A layered approach to automating the verification of real-time
systems. In Kemmerer and Ghezzi [20], pages 768—784.

C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezze. A general way to put time in Petri
nets. ACM SIGSOFT Engineering Notes, 14(3):60-67, May 1989.

C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezzé. A unified high-level Petri net formal-
ism for time-critical systems. IEEE Transactions on Software Engineering, 17(2):160-172,
February 1991.

N. Halbwachs. Synchronous Programming of Reactive Systems. Real-Time Systems. Kluwer,
Dordrecht, 1993.

N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-time systems by
means of the synchronous data-flow language LUSTRE. In Kemmerer and Ghezzi [20],
pages 785-793.

REFERENCES 37

[18]

[19]

[20]

23]

[24]

[25]

[31]

[32]

[33]

C. A. Heuser and G. Richter. Constructs for modeling information systems with Petri nets.
In K. Jensen, editor, Application and Theory of Petri Nets 1992, volume 616 of Lecture
Notes in Computer Science, pages 224-243. Springer-Verlag, Berlin Heidelberg, 1992.

K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Berlin Heidelberg,
1992. 234 pages.

R. A. Kemmerer and C. Ghezzi, editors. Special Issue: Specification and Analysis of Real-
Time Systems, volume 18 (9) of IEEE Transactions on Software Engineering, September
1992.

H. Kopetz and W. Ochsenreiter. Clock synchronization in distributed real-time systems.
IEEE Transactions on Computers, C-36(8):933-940, August 1987.

N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese. Requirements specification
for process-control systems. IEEE Transactions on Software Engineering, 20(9):684-707,
September 1994.

X. Nicollin, J. Sifakis, and S. Yovine. Compiling real-time specifications into extended
automata. In Kemmerer and Ghezzi [20], pages 794-804.

C. A. Petri. Nets, time and space. Theoretical Computer Science, 153:3—48, 1996.

G. Richter. Clocks and their use for time modeling. In A. Sernadas, J. Bubenko, Jr.,
and A. Olivé, editors, Information Systems: Theoretical and Formal Aspects, pages 49-66,
Amsterdam, 1985. North-Holland.

G. Rozenberg, editor. Advances in Petri Nets 1993, volume 674 of Lecture Notes in Com-
puter Science. Springer-Verlag, Berlin Heidelberg, 1993. 457 pages.

A. C. Shaw. Communicating real-time state machines. In Kemmerer and Ghezzi [20], pages
805-816.

E. Smith. Comparability orders and measurement. In Rozenberg [26], pages 371-405.

A. S. Tanenbaum. Distributed Operating Systems. Prentice-Hall International, Upper Saddle
River, New Jersey, 1995. 614 pages.

J. J. P. Tsai, S. J. Yang, and Y.-H. Chang. Timing constraint Petri nets and their application
to schedulability analysis of real-time system specifications. IEEFE Transactions on Software
Engineering, 21(1):32-49, January 1995.

V. Valero, D. de Frutos, and F. Cuartero. Timed processes of timed Petri nets. In de Michelis
and Diaz [7], pages 490-5009.

W. M. P. van der Aalst. Interval timed coloured Petri nets and their analysis. In Aj-
mone Marsan [1], pages 453-492.

C. D. Wilcox and G.-C. Roman. Reasoning about places, times, and actions in the presence
of mobility. IEEE Transactions on Software Engineering, 22(4):225-247, April 1996.

38 REFERENCES

Appendix: Drawing and annotation conventions

The net diagrams are labeled according to CPN conventions. There is one exception: the
semantics of terms at high-level arrows. Consider an arrow to or from a place P. The set of
marks which is denoted by the term term is the singleton set {(P, term)} if term does not denote
a set, or {P} x term otherwise. That is, the denoted set of colors is either {term} or term,
respectively.

Multisets are not used. Therefore, two opposite arrows whose expressions denote the same color
(which may, e.g., result from a fusion of places) should be considered a simplified representation
of a more complex PN construct for side-conditions [18] rather than an extension to ordinary
Petri nets.

For the sake of legibility, the following drawing conventions are used:

e A short arrow connecting a small (named) circle with a box stands for an ordinary arrow from
or to the named place. In some diagrams, this place is drawn several times.

e A double arrow with two terms (Fig. 7) stands for two opposite arrows where the term being
closer to the box belongs to the entry arrow (entering the box) and the term being more distant
belongs to the exit arrow (leaving the box).

e A double arrow with no or a single term (Fig. 8, Fig. 15) stands for two opposite arrows with
no or the same term, respectively.

e Extensive use has been made of arrow overlays. Double arrows, however, are not overlaid at
all. Different arrow endings (with/without head) never coincide at circles, but may coincide at
boxes. This allows an unambiguous resolution of arrow bundles.

