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ABSTRACT
We present several exact and highly scalable local pattern
sampling algorithms. They can be used as an alternative
to exhaustive local pattern discovery methods (e.g, frequent
set mining or optimistic-estimator-based subgroup discov-
ery) and can substantially improve efficiency as well as con-
trollability of pattern discovery processes. While previous
sampling approaches mainly rely on the Markov chain Monte
Carlo method, our procedures are direct, i.e., non process-
simulating, sampling algorithms. The advantages of these
direct methods are an almost optimal time complexity per
pattern as well as an exactly controlled distribution of the
produced patterns. Namely, the proposed algorithms can
sample (item-)sets according to frequency, area, squared fre-
quency, and a class discriminativity measure. Experiments
demonstrate that these procedures can improve the accuracy
of pattern-based models similar to frequent sets and often
also lead to substantial gains in terms of scalability.

1. INTRODUCTION
This paper presents simple yet effective procedures for lo-

cal pattern discovery [20] that attack the task from a differ-
ent algorithmic angle than the standard search approach—
namely, by directly generating individual patterns as the
outcome of a random experiment. Local patterns such as
association rules [1] or emerging patterns [12] are used in
various application contexts from exploratory data analy-
sis where they constitute units of discovered knowledge to
predictive model construction where patterns act as binary
features [9, 10, 13]. What all applications have in com-
mon is that usually only a few patterns can be effectively
utilized—either due to the limited attention of a data ana-
lyst or because too many features can reduce the compre-
hensibility and performance of a global model. Standard
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local pattern discovery algorithms, however, are based on
exhaustive search within huge pattern spaces (e.g., frequent
set miners [19, 26], or optimistic-estimator-based subgroup
and association discovery [17, 23]). Consequently, they tend
to either produce a vast amount of output patterns or at
least enumerate them internally.

This motivates the invention of algorithms that only sam-
ple a representative set of patterns without explicitly search-
ing in the pattern space. Such algorithms exist in the litera-
ture [2, 6, 8] but they provide either no control over the dis-
tribution of their output or only asymptotic control by sim-
ulating a stochastic process on the pattern space using the
Markov chain Monte Carlo method (MCMC). In addition to
only offering approximate sampling, MCMC methods have
a scalability problem: the number of required process simu-
lation steps is often large and, even more critical, individual
simulation steps typically involve expensive support count-
ing operations. Hence, these algorithms are often infeasible
for large input datasets. Therefore, we present novel pat-
tern generation methods that sample patterns exactly and
directly, i.e., without simulating time-consuming stochastic
processes. More precisely, given a dataset D and a number
of desired patterns k, the procedures

• produce exactly k patterns each of which is generated
exactly according to a distribution proportional to ei-
ther frequency, squared frequency, area (i.e., frequency
times size), or discriminativity (i.e., frequency in posi-
tive data portion times negative frequency in negative
data portion);

• use time O(‖D‖+ kn) for frequency and area or time
O(‖D‖2 + kn) for squared frequency and discrimina-
tivity, where n denotes the number of items and ‖D‖
the size of the dataset, i.e., the sum of all data record
sizes1.

That is, after a linear or quadratic preprocessing phase each
pattern is produced in a time linear in the number of items.
This time complexity appears to be almost optimal, because
only reading the data once requires O(‖D‖) and just printing
k patterns without any further computation requires time
O(kn).

1This assumes that exp(n) > |D|; the actual complexities
are O(‖D‖+ k(n+ ln |D|)) and O(‖D‖2 + k(n+ ln2 |D|)).
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Figure 1: (a) Exhaustive search: involves complete generation of an enumeration space guaranteed to contain
all interesting patterns; however, size of that space usually has no reasonable bound w.r.t. to input size and
is hard to predict. (b) Controlled pattern sampling : no explicit construction of uncontrolled, potentially huge,
part of pattern space; instead random generation of designated number of patterns; no guarantee of finding
patterns satisfying hard interestingness threshold, but control over time, output size, and distribution.

After giving some more background on the idea of con-
trolled repeated pattern sampling and reviewing other pat-
tern sampling algorithms, the remainder of this paper is
structured as follows. We define formal and notational back-
ground (Sec. 2) followed by a detailed description of the
sampling procedures (Sec 3). Then we report experimental
results showing that sampled patterns are equally useful for
pattern-based classification as frequent sets and that pattern
sampling can easily outperform exhaustive listing on large
datasets (Sec. 4). Finally, we give a summarizing discussion
of all results (Sec. 5).

1.1 Pattern Sampling
The data mining literature contains several local pattern

discovery algorithms that can efficiently produce large out-
put families. Here, efficiency is defined in an output-sensitive
way (see, e.g., [16]), that is for instance amortized polyno-
mial time per pattern, which is a useful notion assuming
that the produced pattern collections are the final output.
When viewed from a global (application-driven) perspective
though, the enumerated patterns are usually only an inter-
mediate result, from which a final—often much smaller—
pattern collection is selected. That is, enumeration is only
one step within a surrounding local pattern discovery pro-
cess. This two phase approach, which we refer to as “ex-
haustive search” is illustrated in Figure 1(a): during the
enumeration step part of the implicitly defined pattern space
is physically constructed—we refer to that part as “enumer-
ation space”—and then, during the selection step, the most
valuable patterns from this enumeration space are collected
with respect to some interestingness measure.

An example for this paradigm is listing frequent sets of an
input dataset, but subsequently using only those sets that
provide rules with a large value of some measure that reflects
the primary user interest (e.g., lift). A further example is
optimistic-estimator-based pruning for subgroup or associ-
ation discovery. There the enumeration space is the family
of all sets having a large enough optimistic estimate of their
interestingness, and the patterns that are selected for the
result family are those with a large value of the actual inter-
estingness measure. Note that, in this example, enumeration
and selection are algorithmically interweaved, i.e., sets are

already selected during the enumeration phase. Many more
examples emerge from the LeGo approach to data mining
[22] where patterns are selected according to their utility for
constructing global models.

Two reasons usually motivate this two phase approach:
either there is no efficient algorithm that directly optimizes
the measure of primary interest or this measure is not known
in advance (this happens in exploratory settings where in-
terestingness can be user-specific). In either case, the enu-
meration step can constitute a severe bottleneck. Even if
enumeration is performed by an amortized polynomial time
algorithm, its computation time is essentially unpredictable:
the size of the enumeration space cannot be directly con-
trolled and its explicit construction takes time at least pro-
portional to that size. On the other hand, if one enforces
a maximum computation time by aborting the execution at
a certain point, one ends up with an uncontrolled subset of
the enumeration space, which depends on the internal search
order of the enumeration algorithm.

In contrast, suppose we can access the pattern space L
by an efficient sampling procedure simulating a distribution
π : L → [0, 1] that is defined proportional to some func-
tion that either is our primary interestingness measure or a
function that correlates with it. Then, for any designated
number of patterns (or corresponding designated computa-
tion time) it is possible to efficiently generate a collection
of exactly that many patterns that is representative of the
distribution π. Consequently, since π has a semantic con-
nection to the underlying notion of interestingness, a mean-
ingful allocation of computational resources is guaranteed
for any limited time budget.

Figure 1(b) illustrates this alternative approach, which we
want to refer to as “controlled repeated pattern sampling”.
A potentially positive side-effect of this paradigm is that in-
stead of the usual hard constraints it utilizes parameter-free
soft constraints [5]. Hence, the user is freed of the often
troublesome task of finding appropriate hard threshold pa-
rameters such as a minimum frequency threshold.

1.2 Related Work
In contrast to sampling from the input database (see, e.g.,

[25, 28]), it is a relatively new development in local pattern
discovery to sample from the pattern space. In the context



of maximal frequent subgraph mining, Chaoji et al. [8] de-
scribes a random process that stops after a certain number
of steps that is bounded by the maximum number of edges
present in an input graph and produces a maximal frequent
subgraph. A similar process is already applied in Gunopou-
los et al. [18] within a Las Vegas variant of the Dualize
and Advance algorithm. More precisely, it is used for the
internal randomization of an algorithm with an otherwise
deterministic output (all maximal frequent and minimal in-
frequent sets of a given input database). When applied for
the final pattern discovery, however, this random process has
the weakness that it provides no control over the generation
probabilities of individual patterns.

Several papers propose to overcome this weakness by ap-
plying the MCMC method. Boley and Grosskreutz [7] pro-
poses frequent set sampling to approximate the effect of
specific minimum frequency thresholds. The proposed algo-
rithm simulates a simple Glauber dynamic on the frequent
set lattice: starting with the empty set, in each subsequent
time step a single item is either removed or added to the
current set. A similar MCMC method is used in Zaki and
Al Hasan [2] for generating a representative set of graph
patterns. These MCMC methods provide limited control of
the generation probabilities, namely of the infinite limit of
the state distribution. The worst-case convergence can, how-
ever, be exponentially slow in the size of the input database.
For sampling from the family of frequent patterns, this prob-
lem appears to be inherent: almost uniform frequent pat-
tern sampling can be used for approximate frequent pattern
counting, which one can show to be intractable under rea-
sonable complexity assumptions (see [7]). Similar conclu-
sions can be drawn for enumeration spaces defined by lin-
early scaled versions of the frequency measure such as the
standard optimistic estimator for the binomial test quality
function in subgroup discovery [27].

In order to avoid this implication of hard-constraint-based
pattern discovery (e.g., using a hard frequency threshold),
Boley et al. [6] combines pattern space sampling with soft-
constraint-based pattern discovery [5]—resulting in the pat-
tern sampling paradigm described in Section 1.1 above. Still,
the underlying method is again MCMC-based, and, despite
using a more sophisticated chain defined on the closed set
lattice of the input database, it shares the practical weak-
nesses of this technique. The present paper retains the idea
of controlled pattern sampling without hard constraints, but
proposes novel pattern generation methods that are exact
and direct, i.e., they do not involve MCMC process simu-
lation. Consequently, the resulting pattern discovery pro-
cesses are efficient not only theoretically but also on a wide
range of real-world benchmark datasets.

2. PRELIMINARIES
Before going into technical details, we introduce some ba-

sic notions and notation. For a finite set X we denote
by P(X) its power set and by u(X) the uniform proba-
bility distribution on X. Moreover, for positive weights
w : X → R+ let w(X) denote the distribution on X aris-
ing from normalizing w, i.e., the distribution described by
x 7→ w(x)/

∑
x′∈X w(x)—assuming that there is an x ∈ X

with w(x) > 0.
A binary dataset D over some finite ground set E is

a bag (multiset) of sets, called data records, D1, . . . , Dm
each of which is a subset of E = {e, . . . , en}. The size of

D, denoted by ‖D‖, is defined as the sum of all its data
record sizes

∑
D∈D = |D|. Inspired by the application of

market basket analysis the elements of E are often referred
to as “items”. More generally, one can think of E as a set
of binary features describing the data records. In particu-
lar, a categorical data table can easily be represented as a
binary dataset by choosing the ground set as consisting of
all attribute/value equality expressions that can be formed
from the table. More precisely, a categorical data ta-
ble T consisting of m data row vectors d1, . . . , dm with
di = (di(1), . . . , di(n)) can be represented by the dataset
DT = {D1, . . . , Dm} with Di = {(j, v) : di(j) = v} over
ground set

ET = {(j, di(j)) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} .

For a given dataset D over E, the pattern space (or
pattern language) L(D) considered in this paper is the power
set P(E) of the features and its elements are interpreted
conjunctively. That is, the local data portion described by a
set F ⊆ E, called the support (set) of F in D and denoted
D[F ], is defined as the multiset of all data records from D
that contain all elements of F , i.e., D[F ] = {D ∈ D : D ⊇
F}.

An interestingness measure for a pattern language L(·)
is a function

q : {(D, x) : D a binary dataset, x ∈ L(D)} → R .

However, often there is a fixed dataset that is clear from
the context. In such cases—and if we want to simplify the
notation—we just write q as a unary function q(·) = q(D, ·)
and omit the first argument. The most basic measures for set
patterns are the support (count), i.e., the size of its sup-
port set qsupp(D, F ) = |D[F ]| and the frequency, i.e., the
relative size of its support with respect to the total number
of data records qfreq(D, F ) = |D[F ]| / |D|. For a frequency
threshold t ∈ [0, 1] a set is called t-frequent (w.r.t. D) if
qfreq(D, F ) ≥ t. A further measure considered here is the
area function [15] qarea(D, F ) = |F | |D[F ]|. Intuitively,
the area of a set corresponds to the number of 1 entries of
the submatrix (of the binary matrix representation of D)
consisting of the columns corresponding to F and the rows
corresponding to D[F ].

All measures defined so far are unsupervised measures
in the sense that they rely on no further information but
the dataset itself. In contrast, there are so-called super-
vised descriptive rule induction techniques that rely on ad-
ditional information in the form of class labels l(D) ∈ C =
{c1, . . . , ck} associated to each data record D ∈ D. For
c ∈ C we denote by Dc the data portion labeled c, i.e.,
Dc = {D ∈ D : l(D) = c}. Examples for this setting are
emerging pattern mining [12] and contrast set mining [3],
where one is interested in patterns having a high support dif-
ference between the positive and the negative portion of the
data records, or subgroup discovery [27], where one searches
for patterns with a high distributional unusualness of these
labels on their support set. An important special case is the
case of binary labels, i.e., C = {⊕,	}. For this case we
consider the following discriminativity measure

qdisc(F ) = |D⊕[F ]| |D	 \ D	[F ]| .

A further measure for the discriminative power of a pattern
is the Fisher score qfish, which is defined for datasets with
arbitrary labels C. Intuitively, it measures the relation of the



inter-class variance of a feature to its intra-class variances,
i.e.,

qfish(F ) =

∑
c∈C |Dc| (qfreq(Dc, F )− qfreq(D, F ))2∑
c∈C

∑
D∈Dc

(δ(D ⊇ F )− qfreq(Dc, F ))2

where δ(D ⊇ F ) is 1 if D ⊇ F and 0 otherwise. This pa-
per does not present a sampling algorithm for this measure.
However, the Fisher score is used for post-processing gener-
ated patterns in the context of constructing global classifi-
cation models.

3. SAMPLING ALGORITHMS
After the introduction of set patterns and interestingness

measures, we can now present our sampling procedures. A
naive approach for sampling a pattern according to a dis-
tribution π is to generate a list F1, . . . , FN of all patterns
with π(F ) > 0, draw an x ∈ [0, 1] uniformly at random,

and then return the unique set Fk with
∑k−1
i=1 π(Fi) ≤ x <∑k

i=1 π(Fi). However, the exhaustive enumeration of any
non-constant part of the pattern space is precisely what we
want to avoid. That is, we are interested in non-enumerative
sampling algorithms.

Below we give such algorithms for four quality functions:
frequency and squared frequency as well as area and dis-
criminativity. The algorithms are inspired by the elemen-
tary procedures used in Karp et al. [21] (for estimating the
number of satisfying assignments of a DNF formula): in a
first step one element of a suitably constructed set of base
objects is drawn, and in a second step a sub-object is drawn
that is induced by that base object; hence the term“two-step
random procedures”.

Note that, in contrast to the frequency measures, for the
latter two quality functions it is NP-hard to find optimal
patterns: Finding a set of maximum area for a given input
dataset is equivalent to the NP-hard problem of computing
a biclique with maximum number of edges from a given bi-
partite graph (see [15]). The same hardness result holds for
the discriminativity measure because optimizing area can be
linearly reduced to optimizing discriminativity: by setting
D⊕ to D and D	 to {E \ {e} : e ∈ E} we get

qdisc(D⊕ ∪ D	, F ) = |D[F ]| (|E| − |E|+ |F |) = qarea(D, F )

for all F ⊆ E because with this construction of the negative
data portion we have |D	[F ]| = |E| − |F |.

3.1 Frequency and Area

Algorithm 1 Frequency-based Sampling

Require: dataset D over ground set E,
Returns: random set R ∼ qfreq(P(E)) = qsupp(P(E))

1. let weights w be defined by w(D) = 2|D| for all D ∈ D
2. draw D ∼ w(D)
3. return R ∼ u(P(D))

We start with sampling according to frequency and area,
both of which can be achieved by very similar linear time
algorithms. The key insight for frequency-based sampling,
i.e., π = qfreq(P(E)), is that random experiments are good
in reproducing frequent events. Namely, if we look at a
pattern that is supported by a random data record we are

likely to observe a pattern that is supported by many data
records altogether. This intuition leads to a two-step non-
enumerative sampling routine (see Algorithm 1), which is as
fast as it is simple: First select a data record of the input
dataset randomly with a probability proportional to the size
of its power set. Then return a uniformly sampled subset of
that data record. Using the size of the power set in the first
step is important, as otherwise the sampling routine would
be biased towards sets occuring in small data records. As
noted in Proposition 1 below, the random set resulting from
combining both steps follows the desired distribution.

Regarding the computational complexity of the sampling
algorithm we can observe that it is indeed efficient: if one
has knowledge of the numbers |D| for all data records D ∈ D
and, moreover, has index access to all data records, a single
random set can be produced in time O(log |D| + |E|) (the
two terms correspond to producing a random number for
drawing a data record in step 1 and to drawing one of its
subsets in step 2, respectively). Both requirements can be
achieved via a single initial pass over the dataset. Thus, we
have the following proposition.

Proposition 1. On input dataset D over E, a family of
k realizations of the random set R ∼ qfreq(P(E)) can be
generated in time O(‖D‖+ k(|E|+ ln |D|)).

Proof. Let Z be the normalizing constant
∑
F⊆E |D[F ]|

and D denote the random data record that is drawn in step 2
of the algorithm. For the probability distribution of the
returned random set we have

P[R = R] =
∑
D∈D

P[R = R ∧D = D]

=
∑

D∈D[R]

1

2|D|
2|D|

Z

=
|D[R]|
Z

=
qsupp(D, R)

Z

with a normalizing Z =
∑
D∈D 2|D| (which is equal to the

desired
∑
F⊆E |D[F ]|).

Algorithm 2 Area-based Sampling

Require: dataset D over ground set E with ‖D‖ > 0,
Returns: random set R ∼ qarea(P(E))

1. let weights w be defined for all D ∈ D by

w(D) = |D| 2|D|−1

2. draw D ∼ w(D)
3. return R ∼ s(P(D)) with s(F ) = |F |

Sampling according to area, i.e., π = qarea(P(E)), can be
achieved via a slight modification of frequency-based sam-
pling: in step two, instead of drawing a subset uniformly
from a data record, draw a subset with probability propor-
tional to its size. The latter step can be implemented, e.g.,
by first drawing a size s with probability proportional to(|D|
s

)
and then by uniformly drawing from D a subset of size

s. As a side effect, this modification affects the normaliza-
tion constants and in particular the data record weights of
step one. Since for the sum of all subset sizes of a data



record D we have ∑
F⊆D

|F | = |D| 2|D|−1 ,

the data record weights need to be modified accordingly.
The resulting pseudo-code is given in Algorithm 2. Again,
after all weights have been computed via an initial pass over
the data, an arbitrary number of random sets can be pro-
duced in time O(log |D|+ |E|). Hence, with a similar proof
as for Proposition 1 we can conclude:

Proposition 2. On input dataset D over E, a family of
k realizations of the random set R ∼ qarea(P(E)) can be
generated in time O(‖D‖+ k(|E|+ ln |D|)).

It is important to note that area can be replaced by weighted
area relatively easy without changing the asymptotic complexity—
where weighted area is defined as

qware(F ) =

(∑
e∈F

w(e)

) ∑
D∈D[F ]

w(D)


for a set of positive weights w : (E ∪ D) → R+. The same
holds for weighted frequency. In this paper, however, for the
sake of simplicity we only consider the unweighted case.

3.2 Discriminativity and Squared Frequency

Algorithm 3 Discriminativity-based Sampling

Require: binary labeled dataset D over ground set E
such that there is an F ⊆ E with qdisc(F ) > 0

Returns: random set R ∼ qdisc(P(E))

1. let weights w be defined by

w(D⊕, D	) = (2|D⊕\D	| − 1)2|D⊕∩D	|

for all (D⊕, D	) ∈ D⊕×D	
2. draw (D⊕, D	) ∼ w(D⊕ ×D	)
3. return R = (F ∪ F ′) with

F ∼ u(P(D⊕ \D	) \ ∅) and F ′ ∼ u(P(D⊕ ∩D	))

In order to design a sampling procedure for discrimina-
tivity, i.e., π = qdisc(P(E)), we can lift the principle of
frequency-based sampling to a random experiment that is
a little more complicated and has the following intuition: if
we look at a pattern that is supported by a random positive
data record and not supported by a random negative data
record, we are likely to observe a pattern that is altogether
supported by many positive data records and only few neg-
ative data records, i.e., we are likely to observe a pattern
with a relatively high discriminativity score. Again, in or-
der to control the resulting distribution, it is necessary to
consider a pair of data records (D⊕, D	) with a probabil-
ity equal to the number of sets F ⊆ E with F ⊆ D⊕ and
F 6⊆ D	. This implies that the increased expressivity of dis-
criminativity compared to frequency comes at a price: due
to the necessity of weight computation for all pairs of posi-
tive and negative data records, we end up with a quadratic
preprocessing phase. Algorithm 3 contains all the details of
the resulting sampling procedure and leads to the following
result.

Proposition 3. Let D be a binary labeled input dataset
over ground set E such that there is a set F ⊆ E with
qdisc(D, F ) > 0. A family of k realizations of the random
set R ∼ qdisc(P(E)) can be generated in time O(‖D‖2 +
k(|E|+ ln2 |D|)).

Proof. Let R denote the random set returned in step 3
of the algorithm and D⊕, D	 the data records drawn in
step 2. Moreover, for D ∈ D⊕ and D′ ∈ D	 let δ(D,D′)
denote the family of all sets F ⊆ E that are supported by
D but not supported by D′. We can rewrite this definition
as

δ(D,D′)

={F ⊆ E : F ⊆ D,F 6⊆ D′}
={F ∪ F ′ : ∅ ⊂ F ⊆ (D \D′), F ′ ⊆ (D ∩D′)} .

This form shows that the weights w(·, ·) assigned in step 1
are equivalent to |δ(·, ·)| and, moreover, that R is a set drawn
uniformly from δ(D⊕,D	). With this we can conclude sim-
ilar to the previous algorithms that

P[R = F ] =
∑

D∈D⊕

∑
D′∈D	

P[R = F,D⊕ = D,D	 = D′]

=
∑

D,D′∈δ−1[F ]

1

|δ(D,D′)|
w(D,D′)

Z

=
1

Z

∣∣{(D,D′) ∈ D⊕ ×D	 : D ⊇ F,D′ 6⊇ F}
∣∣

=
1

Z
|D⊕[F ]| (|D	| − D	[F ])

with Z =
∑
D,D′∈D⊕×D	 |δ(D,D

′)| =
∑
F⊆E qdisc(F ) as re-

quired.

Algorithm 4 Squared-frequency-based Sampling

Require: dataset D over ground set E,
Returns: random set F ∼ q 2

freq(P(E)) = q 2
supp(P(E))

1. let weights w be defined by

w(D1, D2) = 2|D1∩D2|

for all (D1, D2) ∈ D ×D
2. draw (D1, D2) ∼ w(D ×D)
3. return F ∼ u(P(D1 ∩D2))

It is straightforward to see that the approach of drawing
two data records can also be used to implement other poten-
tially interesting distributions that can be expressed as the
product of two support counts. A basic example is squared
frequency. In order to achieve this distribution, one can con-
sider a uniformly2 drawn subset of two random data records,
i.e., a subset of their intersection. The resulting pseudo-code
with appropriate pairwise weights is given in Algorithm 4.
Closely following the proof of Proposition 3 this algorithm
can be used to show another proposition.

Proposition 4. On input dataset D over E, a family of
k realizations of the random set R ∼ q 2

freq(P(E)) can be

generated in time O(‖D‖2 + k(|E|+ ln2 |D|)).

2For sampling according to the squared area function, draw
a subset with probabilities proportional to its squared size
instead of uniformly.



In principle, one can design sampling algorithms for an abi-
trary power c of the frequency measure by drawing a subset
from c random data records. However, the resulting time
complexity for computing the weights for each c-tuple of
data records gets out of hand quickly.

4. EVALUATION
The sampling procedures presented in the previous section

are provably efficient and correct, i.e., their randomized out-
put follows the specified distributions. Beside their practical
scalability, it remains to be evaluated how useful these dis-
tributions are in the context of local pattern discovery. It is
inherently difficult to evaluate pattern discovery methods for
exploratory data analysis. There one aims to find interesting
patterns based on notions of interestingness that are often
user-subjective. Hence, a sophisticated experimental design
would be required. Here we resort to the other branch of lo-
cal pattern discovery applications, i.e., pattern-based global
model construction, which allows us to simply use Fisher
score as primary interestingness measure and accuracy as
objective evaluation metric for the overall process.

dataset class nm/ct items rows density

autos 7 15/10 135 205 0.190
balance-scale 3 4/0 20 625 0.250
breast-cancer 2 0/9 51 286 0.195
colic 3 7/15 84 366 0.271
credit-a 2 6/9 71 690 0.223
diabetes 2 8/0 40 768 0.225
glass 7 9/0 45 214 0.222
heart-c 5 6/7 49 303 0.285
heart-h 5 6/7 46 294 0.246
heart-statlog 2 13/0 55 270 0.254
hepatitis 2 6/13 55 155 0.344
hypothyroid 4 7/22 78 3772 0.364
iris 3 4/0 20 150 0.250
lymph 4 3/15 57 148 0.333
prim.-tumor 22 0/17 37 339 0.468
sonar 2 60/0 300 208 0.203
tic-tac-toe 2 0/9 27 958 0.370
vehicle 4 18/0 90 846 0.211
zoo 7 1/16 135 101 0.133

Table 1: Benchmark datasets with basic statistics:
number of classes |C|, number of numerical and cat-
egorical columns (nm/ct), number |ET | of items in
corresponding binary dataset, number of rows, den-
sity |DT | |ET | /‖DT ‖.

In our experiments we use a variety of databases from
the UCI machine learning repository [14] listed in Table 1.
In order to apply the pattern discovery algorithms, binary
datasets are created from these databases by first converting
them into categorical datatables using five bucket frequency
discretization of all numeric data columns, and then by con-
sidering the corresponding binary datasets (using attribute /
value pairs of categorical attributes as items; see Section 2).
Implementations of the sampling algorithms are available in
the software section of http://www-kd.iai.uni-bonn.de.

4.1 Predictive Performance
We start with experiments evaluating the sampling algo-

rithms in the context of pattern-based classification. Here
one aims to improve classification accuracy by enriching
given labeled training data with pattern-based features. We

closely follow the framework of Cheng et al. [9]. In a nutshell
it consists of three basic steps: extraction of a collection of
patterns (which are subsequently considered as features of
the data records supporting them), feature selection based
on Fisher score and pattern redundancy, and classification,
for which we use a linear support vector machine.

In more detail, for an input data table T with corre-
sponding binary dataset DT = D and class labels C =
{1, . . . , c} we consider pattern collections C, Rfrq, Rsfr,
Rdcr that are based on deterministic top-k frequent closed
sets (these can be efficiently produced, e.g., by the algorithm
of Pietracaprina and Vandin [24]) and sampling according to
frequency, squared frequency, and discriminativity, respec-
tively. Area-based sampling is not considered here, because
it is not designed to provide good features for classification.
Each pattern collection P is the union of c collections Pi
based on the class labels i ∈ C where the size of Pi is pro-
portional to the number of training examples of that class,
i.e., |Pi| = α |Di|. Consequently, the size of the complete
collection is α |D|, which is linear in the input size. The pa-
rameter α is set to 32 independently of the method and the
dataset. This setting is a compromise between efficiency and
stability of the pattern selection process (described below)
as captured by the average Fisher score of finally selected
features. See Figure 2 for an illustration on three exemplary
datasets.

Figure 2: Average Fisher score of collections pro-
duced by methods for increasing values of α.

The feature selection step for a pattern collection P is
then performed as follows: initialize P0 = ∅ and consider all
sets F1, . . . , Fl ∈ P having qfreq(D, ·) ≥ 0.05 in descending
order of their Fisher score qfish(D, ·). Select a pattern Fi
if the number of previously uncovered data records that it
covers is at least 1% of the dataset, i.e.,∣∣∣∣∣∣D[Fi] \

⋃
F∈Pi−1

D[F ]

∣∣∣∣∣∣ ≥ 0.01 |D|

where Pi−1 is the family of sets already selected when con-
sidering Fi. The selection process is stopped either after all
patterns have been considered or if Pi covers the dataset
completely, i.e.,

⋃
F∈Pi

D[F ] = D. This is a very simple



instantiation of the framework of Cheng et al. with the
condition of 1% coverage improvement acting as binary re-
dundancy measure. A further deviation is that in our case
the remaining patterns are not reordered after each selection
step. While the original procedure constructs potentially
more powerful feature collections, this simplified version is
much faster: the time complexity is only linear instead of
quadratic in the number of input features. For the final
pattern collection P ′ the original data table T is then aug-
mented by binary attributes corresponding to the elements
of F1, . . . , Fk ∈ P ′. That is, the augmented table T ′ has
n+ |P ′| columns with rows defined by

t′i(j) =


ti(j), if j ≤ n
1, if j > n and Di ⊇ Fj−n
0, otherwise

where Di is the data record of DT corresponding the the
i-th row of T .

dataset plain C qfreq q2
freq qdisc

autos 76.31 75.79 75.26 74.74 75.79
balance-scale 85.09 85.09 85.09 85.09 85.09
breast-cancer 70.37 71.48 72.59 72.22 72.96
colic 65.71 67.14 67.43 66.86 66.00
credit-a 85.44 84.56 85.00 85.15 85.00
diabetis 74.40 75.20 73.87 73.87 73.87
glass 63.00 64.00 65.50 68.00 68.50
heart-c 81.73 79.66 82.76 82.76 82.07
heart-h 82.50 81.79 81.43 81.43 81.79
heart-statlog 81.16 80.39 83.08 83.46 82.69
hepatitis 80.71 80.71 80.71 85.00 79.29
hypothyroid 97.55 97.53 97.50 97.63 97.58
iris 89.29 88.57 91.43 91.43 91.43
lymph 83.08 85.39 85.39 83.85 84.62
primary-tumor 40.94 44.38 45.94 47.50 47.81
sonar 78.42 77.37 78.42 78.42 78.42
tic-tac-toe 76.28 92.55 96.60 96.60 94.15
vehicle 67.95 70.48 69.64 69.64 70.24
zoo 91.11 91.11 93.33 91.11 92.22

Table 2: Accuracy of SVM classification on plain
database and with feature enrichment based on fre-
quent sets and sampled pattern collections (bold
face indicates outperformed baseline).

The linear SVM of the LIBSVM software is used as clas-
sifier—wrapped in an optimization layer for its regulariza-
tion parameter c. That is, the training set is first used to
determine the optimal regularization parameter c ∈ {2i :
i = −5,−3, . . . , 14} using 5-fold cross-validation and then
a model is trained with the optimal parameter using the
whole training set. The complete workflow is validated us-
ing 10-fold cross-validation for all pattern collections simul-
taneously.

Table 2 contains the results. As one can observe, for some
of the datasets pattern-based classification provides a sub-
stantial accuracy boost compared to the plain SVM baseline
(“tic-tac-toe”, “primary-tumor”, “glass”). For others there is
still an improvement but to a lesser extend, or the results are
roughly identical. Most importantly, the sampling methods
perform stronger than exhaustive top-k mining on a major-
ity of datasets. A Wilcoxon signed ranks test (see [11]) for
our N = 19 databases reveals that pattern-based classifica-
tion with each of the random set collections outperforms the

plain SVM significantly at the 5%-level (t-values of 42, 28.5,
and 45.5 respectively; critical value 46). Moreover, although
all random set collections are lying ahead of the frequent set
collection on our test databases, it is not significantly out-
performed by any of them. We can conclude that pattern-
based classification based on all tested sampling algorithms
is likely to outperform the plain SVM, and is unlikely to be
inferior to standard frequent-pattern-based classification.

4.2 Scalability and Effectivity
Having evaluated the quality of the sampled patterns we

now turn to scalability and effectivity studies.3 The theoret-
ical potential of the direct sampling procedures is already in-
dicated by the guarantees of Propositions 1-4. In particular
for frequency and area-based sampling they suggest applica-
bility on larger to large-scale datasets. Below we investigate
to what degree this potential can be realized in practice.

The practical advantages of direct pattern sampling over
the MCMC pattern sampling algorithms are very clear: while
for instance the closed set Markov chain simulation [6] takes
seven minutes to sample a closed set from a 30K row subset
of the US census dataset, frequency-based direct sampling
takes only 0.067 seconds to draw the first sample including
preprocessing—afterwards additional samples can be pro-
duced in milliseconds.

Figure 4: Time of lcm versus time of frequency-
based sampling for an identical number of patterns.

For comparing direct sampling to exhaustive search algo-
rithms there is a very large number of possible contenders
in the literature, and, in principle, each of them requires an
individual comparative study. For this paper we resort to
a rather general setting: we compare the computation time
of the sampling algorithms with that of the linear closed
frequent set mining algorithm (lcm) of Uno et al. [26] per
pattern. For direct sampling this constitutes a worst-case
setting because within the group of exhaustive methods fre-
quent set mining algorithms usually produce the largest out-
put per time unit and lcm is known to be among the fastest
of them (winner of the FIMI contest [4]). In addition to
the datasets used for the predictive performance study, we
also consider several of the larger benchmark datasets of the

3Used hardware was a 2.67GHz 2 core CPU with 8GB RAM.



Figure 3: Pattern collections generated for“primary-tumor”by frequency-based sampling, squared-frequency-
based sampling, and top-k closed frequent set listing; plotted according to frequency (x-axis) and fisher score
(y-axis); highlighted patterns are selected by feature selection procedure.

FIMI workshop, including the 1GB sized “webdocs”, and a
500MB random dataset.

The results are presented as log/log scatter-plot in Fig-
ure 4. One can observe that for most configurations lcm and
the frequency-based sampling generate their patterns in ap-
proximately equal time with the majority of wins going to
the sampling. However, focusing on the configurations with
large-scale datasets (star symbol) reveals that the sampling
algorithm can substantially outperform lcm. For “webdocs”
this includes a speed-up factor of 10, for the random dataset
even one of 25. We can conclude that frequency-based sam-
pling can substantially outperform (closed) frequent set list-
ing on large datasets and it performs equally well with slight
advantage on small-scale data.

While the time performance of frequency-based sampling
is also representative for area-based sampling, this is not
true for the two sampling procedures with quadratic time
weight computation phase. For almost all of the relatively
small datasets of Tab. 1, this weight computation time is
only marginal, i.e., less than 0.2 seconds. For large-scale
datasets, however, the quadratic complexity is prohibitive;
as already indicated on the 3772 row dataset “hypothyroid”
where weight computation takes 13 seconds. After data
record weights are computed, the performance is essentially
equal to frequency-based sampling.

C qfreq q2
freq

diabetes 0.023 (0.066) 0.023 (0.066) 0.023 (0.066)
hypo. 0.016 (0.0190) 0.356 (3.613) 0.414 (5.420)
lymph 0.446 (0.580) 0.148 (0.352) 0.372 (0.580)
tumor 1.035 (1.270) 1.552 (3.630) 1.725 (4.336)

Table 3: Average (maximum) Fisher score of fea-
tures selected from pattern collections.

The scalability experiments above compared computation
times for an equal number of generated patterns. This leads
to the question of effectivity, i.e., what can be said about the
quality per pattern? To this end, we again use the feature
selection procedure from Section 4.1 and consider the qual-
ity of features within top-k frequent closed sets and random
set families of the same size with respect to our measure of
primary interest, the Fisher score; again using the setting of
k = 32‖D‖. This time we do not split the datasets accord-
ing to the label, in order to avoid different values for global

and local frequency of patterns (hence, we ignore discrim-
inativity, which inherently requires splits). Table 3 shows
the results of four datasets that are representative for differ-
ent constellations: For datasets that contain high-frequency
patterns with high discriminative power, as for instance for
“lymph”, the top-k paradigm is highly effective. Often, how-
ever, the patterns with high Fisher score are of relatively low
frequency and are hidden (from the perspective of top-k fre-
quent set listing) underneath a large pattern set of high fre-
quency but low discriminativity. Such a constellation can for
instance be observed for “primary-tumor” (see also Fig. 3).

5. CONCLUSION
We introduced four simple direct sampling procedures that

generate random set patterns distributed according to fre-
quency, squared frequency, area, and a discriminativity mea-
sure for binary labels. All procedures come with tight the-
oretical performance guarantees. Moreover, we described
experimental studies demonstrating that the produced pat-
terns are as useful as frequent pattern collections for pattern-
based classification, and that direct sampling can compete
with and often even outperform the fastest exhaustive min-
ing algorithms when generating an equal number of patterns.

In the context of pattern-based classification there is a
large amount of pattern discovery approaches that range
from optimistic-estimator-based best-first-search algorithms
[23] to methods interweaving model training and pattern dis-
covery [10, 13]. Although such algorithms typically traverse
much less patterns per time unit as lcm, their search is more
directed towards high quality patterns. This motivates an
in-depth comparative study with such methods potentially
leading to more sophisticated usage of the sampling algo-
rithms (e.g., applying it within model training just as the
cited approaches do with exhaustive mining).

That said, pattern sampling as a paradigm is in no way
restricted to pattern-based classification, and should also be
evaluated for other in particular unsupervised model con-
struction tasks as well as for exploratory data analysis. This
is likely to motivate further variants of pattern sampling
procedures. An example is the introduction of column and
row weights to the interestingness measure in order to model
subjective interest in certain parts of the input data or to de-
crease the probability of re-discovering redundant patterns.
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