Recent improvements in the integration of field emitters into scanning probe microscopy sensors S. Beuer *, M. Rommel *, S. Petersen *, B. Amon *, Th. Sulzbach *, W. Engl *, A. J. Bauer *, and H. Ryssel * * Fraunhofer Institute of Integrated Systems and Device Technology (IISB), Schottkystrasse 10, 91058 Erlangen, Germany * NanoWorld Services GmbH, Schottkystrasse 10, 91058 Erlangen, Germany * Chair of Electron Devices, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany

Motivation

"Improvement of maskless fabricated field emitters in scanning probe microscopy (SPM) sensors with respect to process yield, process stability and compatibility to semiconductor processes"

- The change from a Pt to C emitter precursor material led to improved process stability and electrical performance.
- A Cr control electrode instead of a Pt control electrode improves compatibility to standard
- A 30nm thick oxygen rich layer between the emitter and the Si-substrate has a great influence on the turn-on voltage of the field emitter. This was eliminated by advanced processing. Conclusions
- Further work has to be done in the electrical characterization of the C field emitters with intermediate silicide layer.
- Results of this work significantly ease the use of such field emitter probes for real applications.

First approach:

Realization of Field Emitter

Improved approach:

Change of the control electrode material from Pt to Cr:

Change of the emitter material from Pt to C:

- suppressed overspray (with Pt precursor, Pt traces at the SiO, walls lead to conductive paths between emitter and gate)
- higher stability against bending during emission

First results clearly identify a 30nm thick intermediate layer between the substrate and the emitter, which contains high amounts of oxygen as shown by EDX. Thus, the layer has a high resistivity and is assumed to be the main reason for the high turn on voltages.

To avoid this oxygen rich layer, a conductive layer between the emitter and the substrate material can be deposited which prevents the oxidation of the silicon surface. Therefore, a Ti silicide has been formed, with the emitter deposited on top of it.

layer of high resistivity
0 20 40 60 80 100 120 140 160 180 200 220 240 x-direction (rm)

TEM, HRTEM and EDX analyses

Results and Discussion

voltage by reducing the diameter of the control electrode from 1µm to 500nm no significant change in the turn-on voltage could be obtained.

As for such electrode diameters and similar emitter geometries published values are significantly lower (e.g. 30-40V for Pt tip emitters), a high resistance in the device structure must be the reason for the high turn-on voltage.

Characterization:

- sensor bonded on a TO-5 type mount
- measurement of the IV-curve; voltage between emitter and control electrode is ramped up until emission starts

emission current is detected between emitter and a target grid facing the sensor at a distance of 5mm

The Fowler-Nordheim plot re-veals a linear dependence, indicating that emission of electrons is caused by field

The turn-on voltage is 65V. This is too high for many possible applications and for a simple integration into scanning probe microscopy systems.

Acknowledgement:
This work was partially funded by the European Commission (Contract N° 516865) within the EUproject TASNANO (Tools and Technologies for the Analysis and Synthesis of Nanostructures).
The authors wish to thank Dr. G. Frank from the Institute of Microcharacterisation at the FriedrichAlexander-University Erlangen-Nuremberg for performing the EDX analysis.

Contact: Fraunhofer Institute of Integrated Systems and Device Technology (IISB) Schottkystrasse 10

91058 Erlangen, Germany

Telefon: +49 (0)9131 / 761-129 Telefax: +49 (0)9131 / 761-360

Email: Susanne.Beuer@iisb.fra
Internet: www.iisb.fraunhofer.de er@iisb.fraunhofer.de