
Layout dependent Synthesis for Manufacturing
Costs optimized 3D Integrated Systems

Andy Heinig
nkaunhofer Institute for Integrated Sys t eb

IIS/EAS
Dresden, Germany

blankil: andy.heinig@eas.iis.fraunhofeEma

Abstract—3D integration opens up entirely new perspectives
in chip development, such as integration of different technologies
in a stack with smaller form factor as with classical board
design. It enables also the partitioning of large SOC designs
into a stack with two or more dies. If the resulting 3D-System
is optimized, its costs can be smaller than the costs for the
manufacturing of the corresponding 2D-System. In this paper
a new layout dependent synthesis method for manufacturing
costs optimized 3D integrated systems is introduced. As its major
part a 3D synthesis optimization method algorithm which used
layout information from a floorplanner is presented. The flow
was tested on a VLIW processor design, which demonstrates a
cost reduction by 3D implementation.

I . INTRODUCTION

In the last years there are two main drivers for 3 D in
tegration. The first is the combination of different silicon
technologies (e.g. analog, C M O S , sensors) in a single package.
For example [1] shows the integration of an image sensor
with a high performance processor. The second driver results
from the manufacturing costs of large chips such as SOCs
or multi-processors. As shown in [2] the manufacturing of a
die with 200mm2 costs 400 units, whereas the manufacturing
of a 100mm2 die costs only 133 units. Assuming that the
200mm2 system can be partitioned into two dies of 100mm2,
the total die costs is only 266 unit. Even if additional costs for
T S V processing and stacking will occur, the total costs will be
below the 400 cost units of the single die realization. Beside
cost reduction, 3 D integration can also improve the system
performance. With the right placement, TSVs allows to reduce
the interconnect length between functional blocks. Utilizing
the cost and performance advantages of 3 D integration well
requires proper synthesis of functional blocks on a set of dies.

A classical 2 D design is divided into different stages to
translate the given RTL-Code to the final layout. The mayor
stages of such a design flow are shown in figure 1. The flow
is broken into these stages to bring the computation time
into a range which is solvable in an acceptable time. In this
work we are mainly interested to develop new 3 D synthesis
optimization methods and to integrate it into a 3 D flow. So in
the following the synthesis should be explained more in detail.
As it is shown in figure 1 the synthesis is also divided into
two steps. This two synthesis steps can be classified into two
major categories: synthesis with or without layout information.

Fig. 1. 2D design flow with layout dependent synthesis optimization.

The algorithms from both categories where used to fulfill
different task and optimization goals which are derived from
the classical 2D design flow. In such a classical 2D design
flow the RTL-code is firstly synthesized followed by the place
and route. Such a hierarchal approach is a practical from the
computational time. For old technologies such an approach is
useable because the layout can be approximated with some
simple models. Which models can be used in the synthesis
step to guide them. In modern technologies such assumptions
doesnt hold. To eliminate the use of layout approximation in
the synthesis step a new category of synthesis algorithms was
developed. In these algorithms the layout and synthesis flows
are performed together. But the drawback of such algorithms
are there long running time. So in practical applications a two-
step approach is used.

The advantages of 3D integration such as shorter intercon
nect and reduced costs can be used only, if the complete
design flow is adapted for 3D implementation. Especially the
synthesis of the modules and the placement of functional
blocks to the different dies in a stack and the insertion of
related TSV is an important task that is not supported by
current 2D design tools.

However, in this work a new developed 3D synthesis method
should be presented. Because the presented is layout dependent
the necessary environment is also presented. In this work the
environment is given in form of a floorplanner from which
the needed layout information can be derived. The developed
design 3D design flow is shown in figure 2.

Similar to the classical 2D design flow the now developed
3D flow are also organized in some steps. Because TSVs uses
significant die area (in a 45nm technology a TSVs has the
same size as 20 nand gates) the number of TSVs should
be reduced in all steps of the flow. In the first step of the
3D Flow a classical 2D synthesis is used to transform the
RTL-Code into a first standard cell netlist. For complexity
reason this netlist is then coarsened into so called supercells
which contains a lot of standard cells. With these supercells
the floorplanner plans a first floorplan of the 3D system. The
TSV insertion step follows. Because the supercells compound
a lot of smaller standard cells, so the TSVs can placed into
the supercells. The additional area for the TSVs was already
considered in the floorplanning step with extra area for the
related supercell. With the results of the floorplanner and the
TSV insertion steps the new developed 3D layout dependent
3D synthesis improves the former synthesis results. In this
case improve means first of all a reduced number of TSVs
under consideration of other constraints such as area or timing.
With the new synthesis results an update of the floorplan
is performed because a variation in the number of TSVs
influences the floorplan in a great manner. These two steps
are repeated until only very small changes in the synthesis
are done. After that the coarsened supercells are refined and a
standard 2D place and route tool is used for the place and route
step. In a preparation step the original netlist is partitioned
into individual netlists for the single dies. Furthermore scripts
are generated which places the TSVs to their fixed positions.
The standard cells within the supercells are placed first to
the center of the supercell. Later their position is optimized
by the 2D place and route tool. The timing constraints for
every die are calculated by the 3D floorplanner and also set
by a script. After the preparation step the standard 2D place
and route tool places the standard cells to their best positions
considering timing and design rules. With the fixed positions
of the TSVs it is guaranteed that there is no mismatch between
of the positions from the same TSV on different dies. After
this step, was completed for all dies, the 3D system is placed
and routed.

The overall optimization goal is a 3D-system with optimized
manufacturing costs that also fulfills other constraints such as
timing, power or electrical ones. The presented optimization
goal and strategy is different to other 3D floorplanners such

Fig. 2. Proposed 3D design flow.

as [3], [4] which optimize the area of the system.
3 D floorplanning and the T S V insertion steps are most

important for system optimization. After these steps are com
pleted the place and route steps are done individual for every
die by standard place and route tools whereas the positions of
TSVs and an approximate position for the standard cells are
given by the floorplanning and T S V insertion tool.

The reminder of the paper is organized as follow. In
section I I known 2 D layout dependent synthesis optimiza
tion methods are introduced. Because there is not known
such method for 3 D integration we present in section I I I
the new developed 3 D layout dependent synthesis method.
This method uses ideas from the 2D case but must consider
different optimization goals such as number of TSVs. Also
in this section the necessary environment for a layout driven
optimization is presented. In our case the layout information
there derived from a 3 D floorplanner. The paper ends with the
result section.

I I . RELATED WORK

In the following some 2 D layout dependent synthesis meth
ods should be presented. In [5] is one of the first layout
dependent synthesis optimization presented. In this work there
is no repeated iteration between the placement and the layout
dependent synthesis optimization. The algorithms works as
follows: an initial netlist is synthesized but the latest step
of the synthesis the mapping step isn’t performed. With this
synthesis result a global placement is done and with this
position information the decomposition and the mapping is
performed. Such an approach allows that the decomposition

Fig. 3. Different mappings for the same logic but which results in different
numbers of TSVs.

results in compact standard cells in areas which have a higher
congestion. Otherwise in areas with lower congestion or if
two cells are far away the resulting number of standard cells
is increased but the cells himself are smaller.

This work is extend in [6] to consider congestion informa
tion do guide the layout dependent logic synthesis.

In [7] on other method for such an optimization is presented.
The main idea behind this work is to reduce the congestion
of an area in both step, placement and routing. This is
done by some two major phases. In the first major phase
a placement is done and is refined by a layout dependend
synthesis optimization. This optimization is driven by the
congestion of the area which is reduced by repeated iterative
call of the both steps until a given threshold is reached. If the
threshold is reached then the second major phase is started.
In this phase the placement result are routed under congestion
minimization. Then the resulting routing is refined by a layout
dependent synthesis optimization. The routing step and the
synthesis optimization steps are repeated until the routing
congestion is lower as the given maximum routing congestion.

I I I . 3 D FLOW WITH LAYOUT DEPENDENT SYNTHESIS

A. Remapping

The major task for the remapping is to reduce the number
of TSVs in the 3D stack. So there are some configurations
identified in which the number of TSVs can be reduced. The
first of such configurations is shown in 3. In this configuration
the 2D synthesis results in a mapping which contains only
one standard cell with four input pins. In some parts of the
design such an mapping can be a good trade-of between area,
congestion and delay. If two of the four predecessors are on
an other die at the 3D stack the floorplanner inserts two TSVs
as depicted in the figure. For this configuration can another
mapping of the graph to the standard cells results in a solution
with three standard cells where each of them contains two
inputs. This mapping consumes a little bit more placement
area, but the advantage of this standard cell mapping is that
only one TSV must be inserted by the floorplanner. The task
for the 3D layout dependent logic synthesis is to find such
configurations and apply the remapping with the use of the
well-known DeMorgan rules as it is explained above. This
search and remapping step should be repeated because for

parts of the currently remapped structure maybe the same
optimization can be applied.

In Algorithm 1 is the pseudo code for the remapping
synthesis optimization method is depicted:

Algorithm 1 Pseudo code for remapping of standard cells with
more than two TSVs in the same die.

for all standardcells do
if standardcell with more than two TSVs at same die
then

remap with DeMorgan rules
run fast flooplanning
if floorplan not fulfill timing constraints then

reject remap
end if
if floorplan not fulfill area ratio between dies then

reject remap
end if

end if
end for

The area constraints are important because otherwise the
area in the involved dies can be to different and this can
results in some unusable place in one of the involved dies.
Also the timing constraints are very important because the
flooplanner optimizes the timing and the 3D synthesis shouldnt
work against the floorplanner.

The above described configurations can be extended in a
more general way as it is depicted in 4. In this more general
situation the two TSVs which are the input of the cell in 3 can
be more spread about the die. This spread cells can combined
into one cell which has then the two or more TSVs as input as
it is also shown in the figure 4 in the middle. If the situation
which is shown in the middle is reached the approach is the
same as it is used in 3.

To find such solutions a recursive search is applied for a
standard cell. For all interconnects to predecessor cells the
number of TSVs is counted and for the predecessor cells this
approach is applied recursive. This recursive calls are only
done to a given depth because most of the participated cells
are moved from one die to the other die on and influences the
area ratio between the dies. Also if the depth of the recursive
calls is not limited the runtime of the algorithm is too long. In
practice a depth of 4 or 5 is a good tradeoff between reducing
the number of TSVs, the runtime and the area ratio.

In Algorithm 2 is the pseudo code for the general remapping
synthesis optimization method is depicted:

B. 3D floorplanner
As described above the 2D synthesis results where parti

tioned into so called supercells. Because every interconnect
between two supercells can result in a TSV if the concerned
supercells are placed at different dies. So the coarsening step
encourages the goal of lowering the number of TSVs by
minimizing the number of cuts in interconnects between the
supercells under consideration of balancing the total area of

Algorithm 2 Pseudo code for remapping of standard cells with
more than two TSVs in the same die.

for all standardcells do
CTSV = count TSVs recursive in predecessors until given
depth
if CTSV > 2 then

Ccells = collect standard cells which in the path to the
TSVs
Rcells = remap Ccells with DeMorgan rules
run fast flooplanning
if floorplan not fulfill timing constraints then

reject remap Rcells
end if
if floorplan not fulfill area ratio between dies then

reject remap Rcells
end if

end if
end for

Fig. 4. Different mappings for the same logic but which results in different
numbers of TSVs.

the supercells. Because the problem is NP-complete a heuristic
strategy similar to the hMetis algorithm [8] is used to solve
the problem.

Other floorplanners for 3D-systems such as described in
[10] use the hierarchy of the design to derive the supercells.
But this assignment from cells to supercells does not regard the
number of TSVs in the resulting layout. Therefore in this work
a repartitioning algorithm is used to create new supercells.

In [9] an analytical approach for place and route of 3D-
Systems is introduced. Its optimization goal is a combination
of die area and number of TSVs. This optimization goal
induces two problems, if manufacturing costs should be op
timized as it is done in this work. First the areas for the
single dies must be given. However the area of the dies can
only be determined if the number of TSVs is known because
TSVs occupy a significant die area. But their number is not
determined before 3D place and route. The result is a mutual
dependency that can be solved only in a time consuming and
possibly non converging iterative loop. The second problem
is similar to the first. A strong relation between the number
of TSVs and the area exists. If the relation between the
dimensions of the different dies is adverse the number of TSVs
grows strongly. Finding a good balance for both terms is very
difficult and must be done by the designer.

C. Cost function

Stochastic optimization techniques use a cost function to
evaluate a solution. It is defined as:

cost = xi * ci + X2 * C2 + ... + yi *pi +1/2 *P2 + ■■■

The cost function consist of two parts ci, C2,... and pi,P2, ■■■
and there corresponding weighting factors x\, X2, ...yi, y2, ■■■.
The first part describes the major optimization goal in the
context of this work, the production costs. However every
digital design must meet some constraints, as for example
timing, power or electrical ones. In the second term of the
cost function a penalty term is inserted for every constraint.

If shall the manufacturing cost of a 3D-System be optimized
there is the need for a cost model. Different cost models for 3D
chips exists, e.g.[10], [11], [12], [13]. We use a cost function
for a 3D-System with k layers similar to[10]:

ci =
i=\ \ 1 dte,t 1 TSV,t 1 B)+

CB ■ (k — 1)
Y fc-i

where Cdie,i, CTSV,i are the costs to produce the i-th die and
its TSVs. The yields of these processes are Ydie,i and YTSV,i.
CB are the costs for stacking of two dies (with the yield YB)
together.

The first penalty term is added to meet timing constraints.
It consists of three regions. The first region describes the case
that the floorplan violate the timing constraints whereas the
second case is used if the timing is short below the constrain.
The penalty is evaluated as follows:

ptime

y\ ■ T if T> Tmax

y\-T if Tbuffer >T > Tmax

0 otherwiese

in which T is the timing which is calculated for the current
floorplan with a statical timing analysis (STA), Tmax is the
maximal accepted timing, Tbuffer is the aspired timing and
y\, y\ are the corresponding penalty factors (with y\ > y\).

High number of TSVs implicates some problems. One of
them is the increasing area needed for TSVs. In the standard
cell area a number of TSVs can be placed in the given TSV
grid. If the TSVs require more than the places given by the
TSV grid the die area must be increased only for the TSVs.
This leads to increased production costs. Another problem is
the increasing of the wire length if a TSV cannot be placed in
the enclosing box - which is the box given by the pins of the
corresponding interconnect. If the number of TSVs is high they
are placed often out of the enclosing box resulting in longer
interconnects as estimated. The impact of the TSV number in
cost function - resulting from the TSV-Yield YTSV,%- is small,
so a penalty term PTSV to the objective function is added:

PTSV = yi ' {I'TSV l'max,TSV)

in which NTSV ist the number of TSVs in current floorplan,
Nmax,Tsv is the desired number of TSVs, 2/2 is a penalty
factor and n+ = max{0, n}.

The complete cost function is then:

cost = x1 · c1 + ptime + pTSV
with the cost weighting factor g, the cost function C and
the penalties Stime and STSV . It is important to balance the
impact of the different parts of the objective function to find
a good solution.

D. Floorplanning
The floorplanning step is the major part of the proposed

design flow. At the floorplanning step the supercells will be
placed to the individual dies and within the dies to their non-
overlapping positions. To handle this mapping from supercells
to positions at dies an efficient data structure is needed.
Some work was done for developing data structures for the
floorplanning of 2D chips. In the 3D domain these structures
can be extended to either 2.5D structures or real 3D structures.
Real 3D data structures are the 3D slicing tree [3], the 3D
CBL [14], the sequence triple and sequence quintuple [15]. 3D
data structures have the advantage to handle real 3D supercells
which means supercells that occupies area at more than one
die. However the supercells generated by the partitioning step
will not be placed at different dies and the floorplanning
considers only the area consumption of TSV. Therefore in this
work we use a 2.5D data structure which holds the data for
the die stack together a 2D data structure (e.g. sequence pair)
for the individual dies.

Different stochastic optimization techniques such as thresh
old accepting algorithm [16], simulated annealing [17] or great
deluge algorithm [18] are used for floorplanning. In previous
work [?] we discovered that the threshold accepting algorithm
delivers the best results for the production cost optimization
floorplanning problem. Evolutionary or genetic algorithms are
not considered because this class of algorithms compares - in
contrast to the previous ones several different configurations
in every optimization step. Storing these configurations in
parallel is very memory consuming and therefore for real
world examples not applicable.

Stochastic optimization techniques need operations to gener
ate a new configuration from the current one. A new configura
tion should only have few changes from a current configuration
regarding the costs resulting from evaluation of cost function.
Six operations are defined in this work, to generate such a
neighborhood configuration from the current one:

Stochastic optimization techniques need operation to gen
erate a new configuration from the current configuration. The
new configuration should only less differ from the current con
figuration regarding the costs resulting from the cost function.
In this work where defined six operations to generate such a
solution neighborhood configuration from the current one.

Swap the position of two supercells at the same die
•

Move the position of a supercell at the die
•

Change the aspect ratio from one supercell
•

Move one supercell to another die
•

Swap two supercells between different dies
•

Move the point of origin.
•

In the following the pseudo code of Algorithm 3 for the
stochastic optimization method is explained:

Algorithm 3 Pseudo code for stochastic optimization tech
niques.

generate start solution l0
i=0
while stop criterion is false do

generate neighborhood solution lN
generate random number r
if r ≤ P(accept lN) then

li+1 = l N
else

li+1 = l i
end if
i = i+1

end while

At first a start configuration is chosen randomly. Following,
in every optimization step a neighboring configuration lN is
generated by selecting and executing one of the six previous
described operations on the current solution li. This solution
would be accepted with a given probability.

The algorithm ends if the stop criterion is fulfilled. Different
stop criterions are possible, for example ending either if a
given number of iterations is reached (i = Nstop) or if almost
all of the neighboring solutions are discarded.

The algorithms simulated annealing, threshold accepting
an great deluge algorithm vary only in P(accept lN). It is
clear that P(accept lN) = 1 if the new solution is better
than the current. But to overcome local minima it should be
possible to accept worse configurations. So there are cases
with P(accept lN) > 0 although lN is worse the li in the
algorithms.

The value thresholds describe that the accepting barrier is
lowered. In early phases this barrier is high and the search is
not influenced by this. In later phases this barrier is lowered
to zero and the search accepted only configurations with even
or better costs.

The number of cycles for every threshold is determined
empirical and in the order of 10000 to 100000.

E. Floorplanning update
One advantage of the stochastic optimization techniques

is there opportunity to restart the algorithm on an older
solution. This opportunity can be used for the update of
the floorplan. Such an update is done by a restart of the
stochastic optimization algorithm. The other advantage of
the stochastic optimization techniques is there opportunity to
balance between accuracy and runtime by justify the number
of steps. This opportunity is also used by the update of
the floorplan because in this case only some steps for the
stochastic optimization algorithm are necessary.

IV. RESULTS

The flow can’t be tested and the well-known M C N C and
G S R C benchmarks because for this benchmarks no cell in-

Fig. 5. Resulting layout for the VLIW-Processor example.

Steps
1
5
10
15
20
25
30

SA
TSVs
2470
2323
2286
2267
2256
2243
2211

Delay
2.97
2.94
2.89
2.87
2.87
2.84
2.84

TA
TSVs
2470
2324
2285
2267
2291
2276
2265

Delay
2.97
2.94
2.89
2.87
2.85
2.83
2.81

GD
TSVs
2470
2455
2436
2416
2393
2374
2364

Delay
2.97
2.95
2.93
2.91
2.89
2.89
2.87

T A B L E I
RESULTS OF THE SYNTHESIS OPTIMIZATION FOR THE STOCHASTIC

FLOORPLANNING METHODS SIMULATED ANNEALING (S A) , THRESHOLD
ACCEPTING (TA) AND GREAT DELUGE (G D) .

formation or RTL-Code is available. However, the flow was
tested on a high-scalable VLIW-processor. In a 2D-system the
processor was placed at a die with 700.000um2 and total costs
of 100 units. With the proposed method, the same system
can be placed at a three dies stacked with a total area of
643.000um2. As it is shown in Figure 5 the cost optimal
system consists of dies with different size. The dies cost 35
+ 35 + 15 units. With additional 10 units for TSV insertion
and stacking the total manufacturing costs are with 95 units
below the 2D implementation. The results for the timing and
the number of TSVs and the different stochastic floorplan
optimization techniques are shown in table I. If it is shown
the repeated using of the optimization reduces the number of
TSVs and also the timing. The reduction of the timing is at
most a result of the reduced number of TSVs which have
a significant delay. Also it is shown that threshold accepting
gives the best result for this example. In the table is also shown
that after some steps there is no progress in the reduction of the
timing or the number of TSVs. At this point the optimization
loop can be canceled.

The longest path in the 2D-system has a delay of 3.0ps

whereas in 3 D the delay was reduced by 0.2ps to 2.8ps.

V. C ONCLUSION AND OUTLOOK

A new layout dependent 3 D synthesis method and there
inclusion into a 3 D design flow presented. It could be shown
that 3 D integration can provide advantages for large designs.
In the future we will search for other configuration which
also has a significant influence to the timing or the number of
TSVs.

REFERENCES

[1] I . Limansyah, M . J . Wolf, A . Klumpp, K.Zoschke, R . Wieland, M . Klein,
H . Oppermann, L . Nebrich, A . Heinig, A . Pechlaner, H . Reichl, and
W. Weber, “3d image sensor sip with tsv silicon interposer,” ECTC 2009,
2009.

[2] T. Karnik, “3d architectures and cad tools,” D43D Workshop, 2010.
[3] L.Cheng, L.Deng, and M . Wong, “Floorplanning for 3d vlsi design,”

Proceedings of IEEE/ACM ASP-DAC 2005, pp. 504–511, 2005.
[4] J . Cong, G . Luo, J . Wei, and Y. Zhang, “Thermal-aware 3d ic placement

via transformation,” in Proceedings of the 2007 Asia and South Pacific
Design Automation Conference, ser. ASP-DAC ’07. Washington, DC,
U S A : I E E E Computer Society, 2007, pp. 780–785. [Online]. Available:
http://dx.doi.org/10.1109/ASPDAC.2007.358084

[5] T. Kutzschebauch and L . Stok, “Congestion aware layout driven logic
synthesis,” in Computer Aided Design, 2001. ICCAD 2001. IEEE/ACM
International Conference on, 2001, pp. 216 –223.

[6] ——, “Layout driven decomposition with congestion consideration,”
in Proceedings of the conference on Design, automation and
test in Europe, ser. D A T E ’02. Washington, D C , U S A :
I E E E Computer Society, 2002, pp. 672–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=882452.874539

[7] D . Pandini, L . Pileggi, and A . Strojwas, “Global and local congestion
optimization in technology mapping,” Computer-Aided Design of Inte
grated Circuits and Systems, IEEE Transactions on, vol. 22, no. 4, pp.
498 – 505, apr 2003.

[8] G . Karypis, R. Aggarwal, V. Kumar, and S . Shekhar, “Mulitlevel
hypergraph partitioning: Applications in vlsi domain,” 34th Design and
Automation Conference, pp. 526 – 529, 1997.

[9] J.Cong and G.Luo, “A multilevel analytical placement approach for 3d
ics,” Proceedings of the 14th ASP-DAC, pp. 361–373, 2004.

[10] X . Dong and Y. Xie, “System-level cost analysis and design exploration
for three-dimensional integrated circuits (3d ics),” Asia and South Pacific
Design Automation Conference, pp. 234–241, Januar 2009.

[11] J . H . Lau, “Tsv manufacturing yield and hidden costs for 3d ic
integration,” 60th Electronic Components and Technology Conference,
pp. 1031–1042, June 2010.

[12] Y. Chen, D . Niu, Y.Xie, and K . Chakrabarty, “Cost-effective integration
of three-dimensional (3d) ics emphasizing testing cost analysis,” Pro
ceedings of the International Conference on Computer-Aided Design
(ICCAD), pp. 471–476, November 2010.

[13] R . Weerasekera, L . Zheng, D . Pamunuwa, and H . Tenhunen, “Extending
system-on-chip to the third dimension: Performance, cost and tech
nological tradeoffs,” Proceedings of the International Conference on
Computer-Aided Design (ICCAD), pp. 212–219, November 2007.

[14] Y.Ma, S . X.Hong, and C.K.Cheng, “3d cbl: an efficent algorithm for
general 3dimensional packing problems,” Proceedings of the 48th MWS-
CAS, pp. 1079–1082, 2005.

[15] S . H.Yamazaki, K.Sakanushi and Y.Kajitani, “The 3d-packaing by a
meta data structure and packing heuristics,” IEICE Transactions on
Fundamentals, pp. 639–645, 2000.

[16] G . Dueck and T. Scheuer, “Threshold accepting: A general purpose opti
mization algorithm appearing superior to simulated annealing,” Journal
of Computational Physics, vol. 90, pp. 161–175, September 1990.

[17] E . Aarts and J . Korst, Simulated Annealing and Boltzmann Machines:
A Stochastic Approach to Combinatorial Optimization and Neural
Computing. New York: John Wiley and Sons, 1990.

[18] G . Dueck, “New optimization heuristics – the great deluge algorithm
and the record-to-record travel,” in Technical reports. Heidelberg: I B M
Germany, 1989.

