
Automated Incident Response for Industrial Control Systems Leveraging
Software-defined Networking

Florian Patzer1, Ankush Meshram2 and Maximilian Heß1

1Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB), Karlsruhe, Germany
2Vision and Fusion Laboratory (IES), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

{florian.patzer, maximilian.hess}@iosb.fraunhofer.de, ankush.meshram@kit.edu

Keywords: Incident Response, SDN Security, Industrial Control Systems, ICS Security, Software-defined Networking.

Abstract: Modern technologies and concepts for Industrial Control Systems (ICS) are evolving towards high flexibility
of processes and respectively networks. Such dynamic networks are already functioning well, for example in
data centres. This is enabled by application of the Software-defined Networking (SDN) paradigm. For this
reason, ICS is currently adopting SDN. The concept of having a centralized view of the network and generating
packet forwarding rules to control it enables performing automated responses to network events and classified
incidents via SDN. This automation can provide timely and, due to the holistic view of the network, accurate
incident response actions. However, availability, safety, real-time and redundancy requirements within the
ICS domain restrict the application of such an automated approach. At present, SDN-based incident response
(SDN-IR) does not take into consideration these requirements.
In this work, we identify possible SND-based response actions to ICS incidents and introduce classification
of assets and links. Furthermore, we present a concept for SDN-IR where a predefined rule set restricts the
response actions based on the asset’s classification thereby satisfying ICS specific requirements. Subsequently,
we describe and evaluate a prototype implementation of this concept, built with the open-source SDN platform
OpenDaylight and the SDN protocol OpenFlow.

1 INTRODUCTION

Highly flexible industrial processes are currently
evolving and spreading rapidly, due to new possibili-
ties digitalization provides. Hence, modern Industrial
Control Systems (ICS) face the need for highly flex-
ible networks. Such dynamic networks are already
well established in other domains, like data centres.
Software-defined Networking (SDN) is the enabling
paradigm in these domains and currently adopted by
ICS in order to meet the need for dynamic networks.
SDN is highly efficient in providing flexible central-
ized management of data flows. This is achieved by
separating the control plane from the data plane (Kim
and Feamster, 2013). The control plane has a logi-
cally centralized view of the network and holds de-
tailed knowledge of its topology. The SDN controller
utilizes this knowledge to calculate packet forward-
ing rules and deploys them on the switches. For this,
the forwarding rule gets added to a flow table, which
is the reason why such rules are often called flow en-
tries. The switches follow the deployed flow entries
for each packet matching one of them. If a packet
cannot be matched to a flow entry, the switch sends

this packet to the SDN controller, which then can re-
act e.g. by generating new flow entries.Since SDN
management (i.e. the controller and its environment)
control the data flow within the whole SDN realm,
automated response to events and classified incidents
can be realized. As an example, (Martins and Cam-
pos, 2016) presented the automated incident response
with SDN using a security architecture where the In-
trusion Detection System (IDS) Snort sends alerts to
an SDN controller. Based on this alert, corrupt de-
vices are isolated and blacklisted via certain flow en-
tries. This enables a fast reaction to detected events.
The importance of such fast responses can be com-
prehended from reading the SANS Incident Response
Survey 2017 (Bromiley, 2017). One can clearly con-
clude from the survey that faster containment and
short-term remediation help to prevent attack propa-
gation and aid damage regulation. Moreover, in ICS,
attacks tend to have dangerous impact on the safety of
humans and quickly cause massive financial damage.
Thus, in such systems containment and short-term re-
mediation in a matter of milliseconds are of special
interest. Applying SDN for automated incident re-
sponse can achieve this objective.



Leveraging SDN for incident response is still a
very young research field. However, first research
results already exist. The authors of (Koulouris,
T., Casassa Mont, M. and Arnell, S., 2017) intro-
duced SDN4S (SDN for Security), an SDN-based
incident response (SDN-IR) system leveraging au-
tomated countermeasures to minimize remediation
time. The authors introduced the concept of play-
books, consisting of a set of triggers (corresponding
to the incident addressed by the playbook) and a set
of executable actions (building the response strategy).
Therefore, playbooks describe the decisions an SDN
controller has to make upon the arrival of an incident
alert. Since their concept is not designed for ICS envi-
ronments, it does not meet ICS-specific requirements
like availability, reliability, safety, time sensitivity and
redundancy. We return to these requirements in sec-
tion 2.2. The requirements restrict the application of
SDN-IR within the ICS domain.

Even research results addressing ICS-specific
SDN-IR are available. (Piedrahita et al., 2018)
shows how SDN and Network Function Virtualization
(NFV) can be used for automated incident response
in ICS. The authors propose virtual incident response
functions which replace ICS components under at-
tack. If an attack on SCADA level is identified, the
virtual representation is used to create a honeypot of
the control system. (Di Lallo et al., 2017) addresses
the real-time requirements for SDN-based ICS secu-
rity. In their approach they leverage spare of band-
widths to transfer replicas of the sent packets within
the network to an IDS. This shows how SDN can as-
sist in the detection phase of incident response with-
out endangering the ICS network’s quality of service
guarantees.

At present, to the best of our knowledge no SDN-
IR concept is able to support all the peculiarities of
the ICS domain. This issue prevents the application
of SDN-IR in SDN-based industrial networks. How-
ever, we found SDN4S to be a simple and useful bases
to build an ICS-capable SDN-IR solution. Moreover,
the architecture of SDN4S allowed us to extend it to
incorporate ICS-requirements. For this, we extended
the playbook-based concept of SDN4S by introducing
classification of assets (hosts, network components
and links) which represent ICS-specific requirements
and restrictive rules. Thus, as in SDN4S, the playbook
defines a set of response actions to perform for a given
incident/asset type pair. Afterwards the rules match-
ing the response actions, asset type and the asset’s
classification are used to derive preconditions which
have to be met, before the actions are allowed to be
executed. If all applying rules allow the performing
of an action, it is transformed into flow entries for re-

configuration of the relevant SDN switches. To eval-
uate the feasibility of the concept’s implementation
with common SDN platforms, we present a prototype
implementation built upon the open-source SDN plat-
form OpenDaylight and the SDN protocol OpenFlow.
Afterwards, we describe some of the results of the
evaluation which was performed by applying the pro-
totype to example topologies using the Mininet net-
work emulator.

2 SDN-IR FOR ICS CONCEPT

In this chapter our concept of ICS-capable SDN-IR is
explained. The core concept of our approach can be
summarized as follows: A playbook entry is a map-
ping from an incident-asset type pair to a list of re-
sponse actions. For each asset type-response action
pair, certain rules apply for certain classes. These
rules restrict the conducting of the response actions
by defining respective preconditions.
For this, we first describe the types of assets and inci-
dents we considered. Afterwards, we introduce basic
classifications of assets, followed by the definition of
a basic rule set. At the end of this chapter we present
how these definitions are used in an SDN architec-
ture. The here described SDN-IR concept was de-
veloped for alerts which are either initiated by host-
based and network-based intrusion detection systems
or manually triggered, e.g. by an incident responder
for the purpose of activating intensive monitoring or
isolation of a certain component. Since this allows
a wide heterogeneity of incident types being handled,
we abstractly classify the incidents covered by our ap-
proach as compromised host, compromised network
component and malicious link, where hosts are net-
work participants and a link describes any identifiable
end-to-end connection (even if that connection is not
currently established). Furthermore, when we want
to refer to hosts and switches collectively, we use the
term node.

2.1 Response Actions

The incident response process can be divided into
seven phases: Preparation, Detection, Analysis, Con-
tainment, Eradication, Recovery and Post Incident
Activity (Cichonski et al., 2012). The actions we
identified for SDN-IR primarily support the Analy-
sis and Containment phases and are described in the
following paragraphs.

Isolate Host. Hosts can be isolated from the rest of
the network, if the incident suggests that they have



been compromised. This can be achieved by deploy-
ing high-priority flow entries to the SDN switch the
device is directly connected to. Following the flow
entries, the switch drops all packages from and to this
device.

Another strategy is the isolation of linked partners
from the rest of the network, but not from each other.
More generally, if a host is potentially compromised,
it might be necessary to isolate it from the rest of the
network. However, if it has a functionally critical link
to another host, it seems to be a valid strategy to keep
that link open. Since flow entries can be defined e.g.
for specific TCP/IP connections, this can be achieved
by deploying high priority flow entries allowing the
critical link and lower priority flow entries dropping
all packets from and to the host in question.

Isolate Switch. Like hosts, SDN switches can also
be isolated from the rest of the network. Such an in-
cident response action however has significantly more
impact on the rest of the network than isolating a host.
Isolating switches can result in isolating other nodes
as well (cf. topology in figure 3 where isolation of
switch openflow:1 results in isolation of host3 and
switch openflow:6). In general, if any link cannot be
redirected via paths not containing the switch in ques-
tion, the availability of, for example, services is being
affected negatively. Thus, several conditions have to
be checked before isolating a switch (cf. section 2.3).

Block Links. Blocking certain links might be an
especially interesting approach against Denial-of-
Service attacks. For example, if a node within the
network is affecting others using a Denial-of-Service
attack, the links used for this attack can often be iden-
tified quickly and can then be blocked without iso-
lating the whole node which might be crucial for the
system. This example shows, blockage of links can
be chosen as a lighter alternative to the isolation of
whole nodes.

Mirroring/Packet Replicas. The arguably most
practical response is the replication of packets, e.g.
for monitoring. Whereas in traditional networking
special switches (or network TAPs) with the ability
to perform mirroring were needed, SDN can conduct
mirroring on every SDN switch by deploying respec-
tive flow entries. This response action creates addi-
tional traffic, but does not affect the network beyond
that. As already mentioned, (Di Lallo et al., 2017)
proposed an approach to minimize this effect.
If the replication of packets is performed to monitor a
host, the replication point or points can be chosen by

selecting all SDN switches the host is directly con-
nected to. If the monitoring of an SDN switch is de-
sired, the objective is generally a maximization of the
amount of monitored links directed over that switch.
For links between communication partners directly
connected to that switch, trustworthy monitoring is
only possible, if the switch to monitor is not a sus-
pect of compromising and can therefore replicate the
packets itself. Other links can be replicated by other
SDN switches along their paths.

Virtualization. As proposed by (Piedrahita et al.,
2018) it is possible to support a system under at-
tack with several virtualization strategies. For once
it might be possible to replace a host with its virtual
representation. This can even be extended towards
replacing physical processes with respective simula-
tions. The virtualization approach can therefore be
used to considerably improve the resilience of a sys-
tem. Even though this strategy is very promising and
worth more research, its complexity and heterogene-
ity disqualified it as part of our current research. How-
ever, the playbook approach we follow is sufficient to
trigger such incident response actions as well.

Notification. The SDN-IR solution can create no-
tifications which will be sent to configured contact
points, like an administrator’s email. The notifica-
tion action can be beneficial in several states of the
SDN-IR progress. It can be sent directly after an alert
is received, to inform the administrator and provide
first reaction suggestions which, once permission is
granted, can be performed automatically. Further-
more, the notification can be enriched with important
knowledge about the current network layout (or topol-
ogy) in order to support analysis and reduce reaction
time. In addition, the notification can provide a report
about the actions taken during an automated incident
response. As already motivated in the introduction
(section 1), the here described response actions have
to be restricted for certain classes of assets. These
classes are explained in the following section.

2.2 Classification of Assets

In this section, we introduce some basic classes of
hosts, network components and links. In various en-
vironments, it might be necessary to add more classes
or adapt the here defined basic classes.

Certain nodes and links are critically important
e.g for controlling the production plant or to per-
form safety functions. Typically, the data transmis-
sion between hosts or via links may not be inter-
rupted, not even for containment. Such nodes and



critical communication links are henceforth defined
as functionally-critical.

Time sensitivity is an important requirement
within ICS. Certain links must meet specified time
conditions and adhere to them. These links are de-
fined as time-critical.

Redundant network paths are incorporated in ICS
for two reasons: to increase the probability that, in
case of attack or disturbance, one of the paths remains
functional; and to increase total bandwidth power by
adding additional paths. For such redundant paths, it
is always important that the path contains a disjoint
set of physical transmission nodes. Hence redirecting
or interrupting redundant links might be undesired.
For this work, links instead of paths are classified as
redundant. If a link is classified as redundant more
than one path has to satisfy this link and the paths
have to be physically disjoint. Furthermore, hosts and
network components might also be classified as re-
dundant.

Typically links can belong to more than one class.
For example, functionally-critical and time-critical
links are common for safety systems.

2.3 Restrictive Rules

In the introduction, we already motivated why ICS
requirements have to be considered during the selec-
tion of applicable response actions from playbooks.
To enforce this consideration, a rule set has to be
available for the SDN-IR instance. We define this set
as restrictive, adjustable preconditions for response
actions taking into account ICS requirements. The
ICS requirements are expressed by the classes
described in section 2.2. We explain each rule and
define informal expressions wherever reasonable to
support a better understanding. The expressions are
composed of boolean statements. If the statements
result in the value true the respective action can be
performed and vice versa. We chose this additional
representation of rules to provide a valuable template
for implementations and extensions. The here pre-
sented rules are neither complete nor applicable for
every possible system. They only provide a starting
point to implement own specialized rule sets.

For the mentioned informal expressions the fol-
lowing definitions are needed:
• x ∈ N describes an index enumerating network

participants
• hostx, macx, ipx and portx represents a host, MAC

address, IP address and TCP/UDP port
• linki, j := {host i,host j,maci,mac j, ipi, ip j, port i,

port j} represents a link between host i and host j

• L represents the set of known links

• pathi, j represents a path from host i to host j as an
ordered set of switches

• time critτ(link) states that link is marked as time-
critical with a latency threshold of τ

• meetsτ(path) states that path can guarantee a la-
tency beneath τ

• pathlinkk
represents the path of linkk

In production the definition of linki, j would generally
contain too much detail, since the ports (and eventu-
ally IP address) are not static. Thus, they have to be
replaced, e.g. by customized categories like “OPC
UA link between (host i, ipi) and (host j, ip j)”.
The following paragraphs describe our exemplary
rule set.

Blocking a Link. Links should not be blocked,
if they are classified as functionally-critical
(funct crit(link)). Thus, the corresponding rule
can be defined as

block link(linki, j) := ¬funct crit(linki, j)(i 6= j) (1)

If a link is not classified as functionally-critical but
as redundant, it might be blocked, depending on the
severity of the incident.

Isolating a Host. A host should not be isolated, if it
is marked as functionally-critical or if isolation would
affect any link classified as functionally-critical. This
rule can be defined as

iso host(host i) := ¬[funct crit(host i)∨∃linkk,l ∈ L :
funct crit(linkk,l)∧ (k = i∨ l = i)](i 6= j) (2)

If a link is not classified as functionally-critical but as
redundant, it might be still reasonable to isolate the
host, depending on the severity of the incident. Fur-
thermore, as mentioned in section 2.1, isolation of a
host with the exception of specific links is also possi-
ble.

Isolating a Switch. A switch can only be isolated
when each link classified as functionally-critical,
redundant and time-critical, directed through this
switch, can be redirected without using the switch.
Moreover, for links marked as time-critical, the re-
spective time requirements have to be met for their
new paths and links classified as redundant have to be



ensured to stay redundant. This rule can be defined as

iso switch(switch) :=
∀linki, j ∈ L : switch ∈ pathlinki, j

⇒
[funct crit(linki, j)⇒∃pathi, j : switch /∈ pathi, j]

∧ [time critτ(linki, j)⇒∃pathi, j : switch /∈ pathi, j

∧meetsτ(pathi, j)]

∧ [redundant(linki, j)⇒∃pathi, j, path′i, j :

switch /∈ pathi, j ∪ path′i, j
∧ path′i, j ∩ pathi, j = /0](i 6= j) (3)

For the sake of complexity reduction the above ex-
pression is reduced to its essential statements. For ex-
ample, a link marked as time-critical and redundant
must have an alternative path which meets the time re-
quirements and is disjoint to the current backup path
(in order to be redundant). The expressed rule does
not yet take such combinations into account.

Monitoring a Host. The main issue in replicating
data from hosts for monitoring purposes is the intro-
duction of new traffic between the replicating switch
and the monitoring system. Thus, the SDN manage-
ment might only need to verify that no link classified
as time-critical looses its real-time assurance when
the path between the replication switch and the mon-
itoring system is deployed.

Monitoring a Switch. When monitoring a switch,
as many links directed over that switch should be
monitored as possible. Assuming the switch can no
longer be trusted, a prerequisite to monitor such a
link is that its current path contains other switches
which can act as replicating switches. Just like for
“Monitoring a Host”, the only time-sensitivity and
availability restrictions for this action apply to the
path from the replicating switch to the monitoring in-
stance. Thus, for the replication path, the same time-
sensitivity checks have to be conducted as explained
for “Monitoring a Host”.

Virtualization. Since different possibilities lever-
aging virtualization for incident response exist, which
all need further research, rules for such techniques are
out of scope for this paper.

2.4 Architecture

Earlier, we described what incident response actions
can be executed with SDN (cf. section 2.1) and how
they can be restricted. Extending the SDN4S ap-
proach, we developed an architecture to build our

Figure 1: Overview of the here described SDN-IR architec-
ture.

SDN-IR approach with common SDN platforms (cf.
figure 1). We introduced the components Security De-
cision Engine (SDE) and Rule Library to the SDN4S
approach. The SDE receives alerts, e.g. from an IDS.
Upon receiving an alert, the SDE derives the match-
ing playbook from the Playbook Library. Since the
here described SDE relies on deterministic decisions,
we assume the existence of a matching playbook for
every possible received alert. Given the response ac-
tions suggested by the retrieved playbook and the type
of assets (i.e. host, switch or link) affected by or re-
sponsible for the incident, the SDE obtains the respec-
tive restrictive rules (cf. section 2.3) from the Rule
Library. Interpreting the rules, the SDE knows which
checks to perform for what assets, in order to decide
whether to perform an action or not. Like our basic
rules defined in section 2.3, most rules will instruct
the SDE to perform certain checks on assets with spe-
cific classifications. For this, the classifications of
such assets have to be retrieved from corresponding
inventories, like the Host Inventory. If the SDE de-
cides to perform the response actions based on the
check results, it generates flow entries either by it-
self, or by using the SDN’s flow engine (cf. L2Switch
of OpenDaylight, section 3), which depends on the
specific implementation. Thus, the SDE is able to
use the intelligence of the flow engine to find the best
flows for the current topology, e.g. when links have
to be redirected, or apply straight-forward flow en-
tries (e.g. when a certain link has to be blocked).
The flow entries are then deployed on or removed
from the switches via the Configuration Interface (e.g.



Figure 2: Simplified overview of the prototype implementa-
tion of the here proposed SDN-IR architecture (cf. section
2.4).

NETCONF1, OpenFlow (McKeown et al., 2008) or
SNMP2). The incident response flow entries are de-
fined with a higher priority than common flow entries.
Therefore, old flow entries, colliding with the SDE’s
flow entries are ignored when packets have to be for-
warded. This way, the old state of the network can be
recovered easily if the measure gets repealed. The old
flow entries will be immediately active again after the
SDE’s flow entries were removed. For most actions,
this strategy might be preferable to removing original
flow entries. Furthermore, when using NFV an imple-
mentation of the SDE could leverage existing security
controls like firewalls as well. For actions which can
be performed by such controls, this is a more consis-
tent approach than directly applying flow entries.

3 EVALUATION

Our goal was the identification of possible pitfalls
when it comes to the implementation of our concept
on a common SDN platform. Thus, for evaluating
our concept, we applied and extended the well es-
tablished OpenDaylight (ODL) framework (Medved
et al., 2014). The modular architecture of ODL al-
lowed us to build a customized SDN management
platform. A simplified overview of our prototype im-
plementation can be found in figure 2. To conserve

1https://tools.ietf.org/html/rfc6241.html
2https://tools.ietf.org/html/rfc1157

space, we only give a brief insight into our implemen-
tation.

In our implementation, the alerts are passed to
ODL via POST REST calls which consist of an as-
set id (e.g. openflow:1 cf. figure 3), an alert category
and a priority value. On the target side of this REST
call a RESTCONF (Bierman et al., 2017) interface re-
ceives the alert. The RESTCONF interface is applied
as a so called northbound interface in ODL which is
responsible for the communication between ODL and
external applications or users.

ODL’s database management is called Model-
driven Service Abstraction Layer (MD-SAL)3 which
uses the modelling language YANG (Bjorklund,
2010) to define the database scheme. Among other
things, it is used to store flows, switch configuration
and topology information. We added our own models
to store additional host information (like identifiers,
status flags and classifications (cf. section 2)), sub-
mitted alerts, the playbook and rule libraries. Further-
more, we extend the Flow Database (cf. figure 2) to
store classification for links. This is a practical strat-
egy, chosen under the assumption that all configured
links are represented by persisted end-to-end flow en-
tries. In consequence, for every link which should be
classified, e.g. as functionally-critical or redundant,
our prototype demands flow entries being generated
in order to add the classifications to them.

The received alert first gets persisted to the
database. Afterwards, the SDE gets invoked and is
given the alert’s identifier. The SDE retrieves the new
alert from the database and queries the Playbook Li-
brary for actions to perform for the given combina-
tion of the alert category, asset type and priority. The
priority is used as an indicator for the severity of the
incident. In our case, the type of asset, can be deter-
mined via interpretation of the asset identifier given
as argument of the REST call. The playbook received
as the response can be seen in listing 1.

SWITCH
DENIALOFSERVICE

Priority.HIGH
ActionType.ISOLATE
ActionType.NOTIFY

Priority.LOW
ActionType.MONITOR
ActionType.NOTIFY

Listing 1: Example playbook entry for switches on
DENIALOFSERVICE suspicion, which defines response
actions for two different alert priorities.

Subsequently, the SDE retrieves the rules from the
Rule Library using the combination of asset type and

3https://wiki.opendaylight.org/view/OpenDaylight
Controller:MD-SAL:Developer Guide



action to perform (listing 2 shows an example rule for
asset type SWITCH and action ISOLATE).

SWITCH
ISOLATE

LINKS
functionally -critical

{redirectable}
redundant

{redirectable}

Listing 2: Example rule entry for switch isolation.

The resulting requirements are then checked by
ODL’s built-in functionality, like the NetworkGraph-
Service. For example, in listing 2: “links classified
as functionally-critical or redundant have to be redi-
rectable”. If the action’s requirements can be mapped,
the SDE generates the respective flow entries, e.g.
to isolate the switch, and requests additional flows
from the L2Switch, e.g. by creating a temporary
topology and letting the L2Switch generate the new
flows for this topology. The flow entries are sent to
an OpenFlow plugin (McKeown et al., 2008), which
we chose as the SDN controller’s interface towards
SDN switches (southbound interface). This interface
matches the Configuration Interface of figure 1.

Despite the evaluation regarding the feasibility of
the implementation of our concept with current SDN
platforms, we were interested in its impact to the net-
work’s performance. To be able to set up various
topologies, we used Mininet4 in version 2.2.0 for a
network emulator, which supports SDN switches and
external SDN controllers. We configured Mininet us-
ing our ODL implementation as external controller,
communicating with it via OpenFlow 1.3, using a
bandwidth limit of 10 MBit/s and a delay of 10
ms. Afterwards, we conducted several tests, namely
isolating hosts and switches, redirecting traffic of
hosts and switches to the monitoring system as well
as blocking various links. These actions were per-
formed with and without classifications and on vari-
ous topologies. Furthermore, the latency and band-
width during the execution of the response actions
were measured. One of these topologies can be found
in figure 3. Amongst others, we used this topology to
test the isolation of a switch. This test had the most
significant, measurable impact on the network, which
is the reason why here we use it as an example of our
results.

Figure 4 depicts the measured latency (using the
ping command) between host1 and host2 when the
isolation of switch openflow:1 is performed in second
12.

Before the isolation, the two hosts communicate
over the path (openflow:2, openflow:1, openflow:3).

4http://mininet.org

Figure 3: Example topology we used for evaluation of our
prototype. The numbers next to the SDN switches index the
physical ports of each switch.

Figure 4: Latency measurement when isolating switch
openflow:1 in second 12.

Figure 5: Bandwidth measurement when isolating switch
openflow:1 in second 12.

After the isolation the new path (openflow:2, open-
flow:5, openflow:4, openflow:3) was used. The pic-
ture shows that after the switch is isolated in sec-
ond 12, the latency slightly increases due to the ex-
tra hop in the new path. In contrast, the bandwidth
(measured using iPerf ) remains unchanged, besides a



small slump in second 15 which can be traced back to
the adaptation to the new path (cf. figure 5).

During the validation we identified open tasks re-
garding the implementation in terms of a productive
usage. Our prototype currently only supports the
object-oriented definition of rules. This is closely
aligned to the way our program conducts the feasi-
bility analysis. In the future, a more general approach
would improve implementations, e.g. by providing a
respective specified rule language. Furthermore, if a
playbook’s action is refused, it is currently not pos-
sible to configure alternative actions. Even though
it is possible to add additional playbooks for the
same incident-asset-classification combination, they
currently cannot be prioritized. In addition, whether
an alternative path can meet the time criteria of a
real-time link has to be determined by the controller
before the alternative path can be selected and sug-
gested to the SDE. This might then result in an SDE-
L2Switch negotiation to find alternative paths. How-
ever, currently our implementation is lacking the sup-
port of the real-time calculation (and thus the nego-
tiation). As part of the project FlexSi-Pro5 we are
currently developing a solution for this issue using
Time-Sensitive Networking6. In section 3, we pro-
posed the strategy to mimic the classification of links
by classifying their respective flow entries. In pro-
duction, it would be more reasonable to have a ded-
icated link representation within the SDN database,
e.g. within the topology inventory, and adding classi-
fications there. This slightly increases the necessary
development effort and the complexity of determin-
ing the links, but separates the link configuration from
the currently available flow entries and therefore does
not require end-to-end flow entries being preconfig-
ured for every classified link. Thus, we are planning
to detach the link representations from flow entries.

We are currently addressing these open tasks in
the mentioned project FlexSi-Pro and will deploy and
further develop our prototype in our ICS test labora-
tory (Pfrang et al., 2016).

4 CONCLUSIONS

In this work, we described an SDN-based solution for
automated incident response in flexible ICS networks.
In contrast to previous research, our proposed solution
takes into account the multiple restrictions for auto-
mated incident response in an ICS, utilising restric-
tive rules and asset classification. A basic, adaptable

5https://www.wibu.com/uk/flexsi-pro.html
6http://www.ieee802.org/1/pages/tsn.html

set of such rules is described in this paper. Instead
of reinventing the wheel, we designed our solution to
be compliant with the already existing SDN4S con-
cept and built a prototype demonstrating the feasibil-
ity of the implementation of our approach on com-
mon SDN platforms. Based on this prototype, we
were able to evaluate our concept to identify remain-
ing issues and potential starting points for future re-
search. With this paper, we presented an enabler for
SDN-based incident response in environments which
have special restrictions, regarding incident response
actions affecting host, network components and com-
munication links.

REFERENCES

Bierman, A., Bjorklund, M., and Watsen, K. (2017). REST-
CONF Protocol. RFC 8040, RFC Editor. Last ac-
cessed on Dec, 2018.

Bjorklund, M. (2010). YANG - A Data Modeling Language
for the Network Configuration Protocol (NETCONF).
RFC 6020, RFC Editor. Last accessed on Dec, 2018.

Bromiley, M. (2017). The Show Must Go On! The 2017
SANS Incident Response Survey. Analyst paper,
SANS. Last accessed on Dec, 2018.

Cichonski, P., Millar, T., Grance, T., and Scarfone, K.
(2012). Computer Security Incident Handling Guide
: Recommendations of the National Institute of Stan-
dards and Technology. National Institute of Standards
and Technology.

Di Lallo, R., Griscioli, F., Lospoto, G., Mostafaei, H.,
Pizzonia, M., and Rimondini, M. (2017). Leverag-
ing SDN to Monitor Critical Infrastructure Networks
in a Smarter Way. In Proceedings of the IM 2017
- 2017 IFIP/IEEE International Symposium on Inte-
grated Network Management, pages 608–611, Piscat-
away, NJ. IEEE.

Kim, H. and Feamster, N. (2013). Improving Network Man-
agement with Software Defined Networking. IEEE
Communications Magazine, 51(2):114–119.

Koulouris, T., Casassa Mont, M. and Arnell, S. (2017).
SDN4S: Software Defined Networking for Security.
Report, Hewlett Packard Enterprise. Last accessed on
Dec, 2018.

Martins, J. S. B. and Campos, M. B. (2016). A Security
Architecture Proposal for Detection and Response to
Threats in SDN Networks. In Proceedings of the 2016
IEEE ANDESCON, pages 1–4, Piscataway, NJ. IEEE.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar,
G., Peterson, L., Rexford, J., Shenker, S., and Turner,
J. (2008). OpenFlow: Enabling Innovation in Campus
Networks. ACM SIGCOMM Computer Communica-
tion Review, 38(2):69.

Medved, J., Varga, R., Tkacik, A., and Gray, K. (6/19/2014 -
6/19/2014). OpenDaylight: Towards a Model-Driven
SDN Controller architecture. In Proceeding of IEEE



International Symposium on a World of Wireless, Mo-
bile and Multimedia Networks 2014, pages 1–6. IEEE.

Pfrang, S., Kippe, J., Meier, D., and Haas, C. (2016). De-
sign and Architecture of an Industrial IT Security Lab.
In Testbeds and Research Infrastructures for the De-
velopment of Networks and Communities, pages 114–
123. Springer.

Piedrahita, A. F. M., Gaur, V., Giraldo, J., Cardenas, A. A.,
and Rueda, S. J. (2018). Virtual incident response
functions in control systems. Computer Networks,
135:147–159.


