
Design and Evaluation of a Generic

Orchestrator for execution of an AI

Pipeline

Tejas Morbagal Harish

Matriculation number: 3200842

May 2021

A thesis submitted in partial fulfillment for the

degree of Master of Science

Institute of Computer Science

Supervisors:

M.Sc. Martin Welß, Fraunhofer IAIS

Examiners:

Prof. Dr. Jens Lehmann, University of Bonn

Dr. Micheal Stadtschnitzer, Fraunhofer IAIS

INSTITUT FÜR INFORMATIK

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT BONN

Declaration of Authorship

I, Tejas Morbagal Harish, declare that this thesis titled, ‘Design and Evaluation of a

Generic Orchestrator for Orchestration of an AI pipeline’ has been written independently

and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� Where none other than the specified sources and aids were used.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

26.05.2021

Acknowledgements

I wish to thank everyone, who has been a part of my journey. First and foremost, I

would like to thank my thesis supervisor, M.Sc. Martin Welß, for his advice, patience

and willingness to help me with any thesis related issues. Also, I’m grateful to Prof.

Dr. Jens Lehmann and Dr. Micheal Stadtschnitzer for being my examiners and for the

encouragement in my research.

I am thankful to Dr.-Ing. Joachim Köhler, head of the department, NetMedia Depart-

ment, Fraunhofer IAIS for providing me an opportunity to work at Fraunhofer IAIS for

my thesis. Furthermore, I would like to thank Fraunhofer IAIS for helping me providing

access to the infrastructure.

I would like to thank my professors at the Informatik department, the teaching and

non-teaching staff of the University of Bonn.

I’m grateful to the Fraunhofer IAIS, for helping me with the resources required to im-

plement my thesis. I would also like to thank the AI4EU development team for their

cooperation and useful inputs.

I owe my special thanks to my friends especially Ms.Meghana Jayadevan who believed

in me and being part of my journey.

Last but not least, I would like to take this moment to thank my family especially my

mother, brother for having faith in me and supporting me all the way.

iii

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT

BONN

Abstract

Institute of Computer Science

Master of Science

by Tejas Morbagal Harish

The IT industry has seen significant adoption of microservice architecture in recent years.

Microservices interact with each other using different protocols. SOAP was integrated

with an ever-growing set of protocols called WS-I to promote interoperability. This large

set of protocols with SOAP quickly became unpopular as it caused a considerable effort

on the user side to make it interoperable. JSON replaced the XML as the serialization

technology, and REST replaced SOAP as the communication protocol between web

services. REST provided more flexibility, was more efficient and faster as compared

to SOAP. However, it uses third-party tools such as swagger to auto-generate code for

API calls in various languages, lacks support for streaming, needs semantic versioning

whenever the API contract changes. This lead to its limited interoperability. As a

variant of RPC architecture, Google created gRPC as a new communication protocol

that solved most of the SOAP and REST issues. gRPC uses protocol buffers, usually

called protobuf, for the serialization of data. It made it possible to clearly define the

clean interfaces between services and supported in-built code generation for various

programming languages. Automatic code generation makes it possible to use stubs and

skeleton to call the services implemented on the server-side.

In this thesis work, we use an open-source framework called Acumos, designed to make

it easy to build, share, and deploy AI apps. Acumos has a design studio where users can

compose an AI pipeline. Acumos has different orchestrators for different programming

languages. However, there is no functionality to execute a generic pipeline that is im-

plemented in multiple programming languages. Using gRPC communication, docker as

a containerization tool, Kubernetes as a deployment environment, We propose to design

a generic orchestrator capable of running any generic pipeline composed according to

AI4EU container specification. This design of a generic orchestrator capable of executing

pipelines, it has never seen before, is cutting edge and goes beyond state of the art.

Contents

Declaration of Authorship i

Acknowledgements iii

Abstract v

1 Introduction 1

1.1 SOAP, WS-I and why it failed . 1

1.1.1 Why WS* was needed and SOAP failure 3

1.2 Why REST was not interoperable . 4

1.2.1 Problems with REST . 5

1.3 Motivation for using gRPC . 5

1.4 The role of Docker as a containerization tool 6

1.5 AI4EU Experiments and Acumos . 7

1.6 Problem Statement . 8

1.7 How the Thesis is Organised . 8

2 Theoretical Background 10

2.1 Different Fields of AI and Need for AI pipelines 10

2.1.1 Symbolic AI . 10

2.1.2 Artificial Neural Networks . 11

2.1.2.1 Components . 11

2.1.2.2 Working . 12

2.1.3 Machine Learning . 13

2.1.4 Hybrid AI . 14

2.2 gRPC and Protobuf . 14

2.3 Docker . 15

2.3.1 Docker Architecture . 16

2.3.2 Docker Objects . 16

2.4 Kubernetes . 17

2.4.1 Pod . 17

2.4.2 ReplicaController and ReplicaSets 17

2.4.3 Deployment . 17

2.4.4 Services . 18

2.5 AI4EU Container Specification . 18

2.5.1 Defining the protobuf interface . 19

vii

Contents viii

2.5.2 Create the gRPC docker container 19

2.5.3 On boarding . 20

2.5.4 First Node Parameters (e.g. for Data brokers) 20

2.5.5 Scalability, GPU Support and Training 20

3 Methodology 22

3.1 gRPC Generated-code and use of stubs 22

3.1.1 Code Elements . 24

3.1.1.1 Stub . 25

3.1.1.2 Servicer . 25

3.1.1.3 Registration Function . 25

3.1.1.4 Use of pb2 and pb2 grpc in Orchestrator 25

3.2 Toplogy and Node Information of the Pipeline 26

3.2.1 Topology Information . 27

3.2.2 The DNS name and port of nodes in a pipeline 29

3.3 Graph Data Structure and the Traversal 30

3.4 Protobuf Merging and Automatic Generation of Stubs 31

3.5 Dynamic Linking of Nodes of the pipeline 34

3.5.1 Find Node in pipeline List . 34

3.5.2 Start Node . 35

3.5.3 Dynamic linking of nodes . 35

3.6 Pipeline Execution . 36

3.7 Use of gRPC for triggering the orchestrator 37

3.8 The flow of the generic orchestrator . 37

3.8.1 Orchestrator Client . 38

3.8.2 Orchestrator Server . 39

4 Experiments 40

4.1 Simple Pipelines . 41

4.1.1 House price prediction pipeline . 41

4.2 Advanced Pipeline: Audio Mining Pipeline 43

4.2.1 Audio Data Broker . 43

4.2.2 Audio Segmentation . 44

4.2.3 Audio to text . 46

4.2.4 Audio Dialog Creator . 47

4.2.5 Message dispatching between the audio mining pipeline nodes by
the generic orchestrator . 48

4.3 Important Challenges faced and solved . 49

4.3.1 The problem of restarting the pipeline containers 49

4.3.2 Search for data broker node in blueprint.json 50

5 Related Work 51

5.1 Acumos and Design Studio . 51

5.2 Kubeflow . 52

5.2.1 Building pipeline components . 53

5.2.2 Understanding how data is passed in the Kubeflow pipeline 54

5.2.3 Comparison of Kubeflow with AI4EU experiments 54

Contents ix

6 Conclusion and Future work 55

List of Figures 57

List of Tables 58

Bibliography 59

Chapter 1

Introduction

Microservices have been getting increasingly popular in recent years and many compa-

nies are migrating monolithic applications to microservice architecture. A monolithic

application involves programming of all of its services and features within a single, in-

divisible code-base that becomes increasingly difficult to maintain and scale over time.

Microservices-based applications solve traditional, monolithic application constraints by

breaking the application into multiple independent components called microservices.

These individual microservices then use APIs to interact with each other. The APIs

allow different microservices developed in various languages and run on different plat-

forms to connect and communicate efficiently. This chapter discusses different APIs for

microservices and the reason for using choosing gRPC over other APIs and the docker

for containerization in AI4EU Experiments.

1.1 SOAP, WS-I and why it failed

SOAP[1] stands for Simple Object Access Protocol. It is a XML-based protocol for

exchanging information in a decentralized, distributed environment.

Figure 1.1: Client Server Architecture of SOAP Protocol

The SOAP specification describes a standard, XML-based way to encode requests and

responses, including:

1

CHAPTER 1. INTRODUCTION 2

• Requests to invoke a method on a service, including in parameters

• Responses from a service method, including return values and output parameters

• Errors from a service

SOAP describes the structure and data types of message payloads by using W3C XML

Schema standard issued by the World Wide Web Consortium (W3C). SOAP is a transport-

agnostic messaging system; SOAP requests and responses travel using HTTP, HTTPS,

or other transport mechanism. [2]

SOAP has the following features:

1. Protocol independence

2. Language independence

3. Platform and operating system independence

Figure 1.1 illustrates the components in the SOAP architecture. In general, a SOAP

service remote procedure call (RPC) request/response sequence includes the following

steps: [2]

1. A SOAP client formulates a request for a service. This involves creating a con-

forming XML document, either explicitly or using SOAP client API

2. A SOAP client sends the XML document to a SOAP server. This SOAP request

is posted using HTTP or HTTPS to a SOAP Request handler running as a servlet

on a Web server.

3. The Web server receives the SOAP message, an XML document, using the SOAP

Request handler Servlet. The server then dispatches the message as a service in-

vocation to an appropriate server-side application providing the requested service.

4. A response from the service is returned to the SOAP Request Handler Servlet and

then to the caller using the standard SOAP XML payload format.

In general, the SOAP protocol only describes a wrapper around a message, i.e., where

to place headers, message payload, how to indicate the request’s intention (or the ”ac-

tion”). These basic requirements enable different platforms to process SOAP messages.

However, the extracted header and body elements still need to be understood and con-

verted into platform-specific runtime types. WSDL does this function for SOAP proto-

col. WSDL describes the URL where a service is reachable, the supported operations

CHAPTER 1. INTRODUCTION 3

or actions at that location, and the format for messages and related type definitions

described by XSD Schema. SOAP protocol frames the message, and WSDL describes

the application-specific messaging requirements.WSDL (Web Services Description Lan-

guage) combined with SOAP provided better interoperability between systems that share

data.

1.1.1 Why WS* was needed and SOAP failure

The SOAP specification does not define the actual content of message headers and

body. An application has the luxury to define the headers and the body for a specified

operation. However, there are some standard functions like message routing and ad-

dressing, dealing with substantial message payloads, and providing secure and reliable

communication. WS* refers to a growing set of standard protocols based on the SOAP

specification. Their purpose is to facilitate standard messaging requirements between

systems.

Sending XML over HTTP was a simple, straightforward idea. However, each of these

WS-I protocols added complexity to that simple idea. Simultaneously, two things started

happening:

1. The adoption of open-source frameworks like Ruby on Rails and others became

increasingly popular

2. JSON replaced XML as a serialization technology

Applications required a way to provide data to mobile clients. It was simple to use

many Web frameworks to look something up in a database and return the results in a

serialized format. SOAP was doomed to failure for such prevalent but straightforward

scenarios. The other concern with SOAP is strong typing. WSDL accomplishes its

magic through XML Schema and strongly typed messages. However, strong typing is a

wrong choice for loosely coupled distributed systems. Even for a small change, the type

signature changes, and all the clients built according to earlier protocol specifications

break. SOAP API also requires a larger bandwidth because of the large size of the

XML files and a payload produced by the massive structure of messages. It also requires

knowledge and understanding of all protocols used with it, which resulted in a steep

learning curve for new users. This resulted in the adoption of REST over SOAP. While

SOAP and REST have similarities over the HTTP protocol, SOAP has a rigid set of

messaging patterns compared to REST. The rules in SOAP are integral as we cannot

achieve any level of standardization without them. REST is an architecture style that

does not need processing and is naturally more flexible.

CHAPTER 1. INTRODUCTION 4

1.2 Why REST was not interoperable

REST[3] stands for Representational State Transfer. REST is not a protocol or a stan-

dard but a set of constraints on architecture design. Developers implementing an API

can do it in a wide range of ways. It involves a client-server architecture where back-end

data is made available to clients through the JSON or XML messaging format. Ac-

cording to Roy Fielding [4], an API qualifies as “RESTful” when it meets the following

constraints:

1. Uniform Interface: An API must expose specific application resources to API

consumers.

2. Client-Server Independence: The client and server are independent of one another.

The client knows the URIs of the resources only.

3. Stateless: The server does not save any data about the client request. The client

saves this “state data” on its end (via a cache).

4. Cacheable: Application resources exposed by the API need to be cacheable.

5. Layered: The architecture is layered, allowing different components to be main-

tained on different servers.

Figure 1.2: Client Server Architecture of REST API

Fig 1.1 explains the working of REST API. The REST API architecture is based on

HTTP protocol, and it is most commonly used for building web applications and con-

necting microservices. In REST, the client should be able to get a piece of data called

a resource when linked to a specific URL. Each URL is a request, while the data sent

back to the client is a response. The response is usually in JSON format but can be

in other forms as well. Clients can access these resources via a standard interface that

accepts different HTTP commands like GET, POST, DELETE, and PUT.

CHAPTER 1. INTRODUCTION 5

1.2.1 Problems with REST

The following reasons makes REST not easily interoperable

1. While creating RESTful services, users need to follow a standard practice of writing

a client library and update the client library whenever there is a change in API

contracts. This takes a extra effort from the user side.

2. Streaming is complex, and it is almost impossible in most languages.

3. Duplex streaming is not possible.

4. Difficult to get multiple resources in a single request.

5. Requires semantic versioning whenever the API contract needs to be changed.

6. REST APIs use third-party tools such as Swagger to auto-generate the code for

API calls in various languages. This was the main reason, AI4EU Experiments

decided to use gRPC instead of REST.

7. There is no standard data format for serialization. REST can use JSON, XML,

etc.

8. The URI for entities are not standardized, The developer has the choice to design

the URI. For example to access a book entity with id 12345 it could be mybook-

app/api-layer/book/12345 or restapi/books/12345 or book-service/entities/book/12345

1.3 Motivation for using gRPC

As a predecessor of REST, RPC stands for Remote Procedure Call. RPC enables a user

to call a function on a remote server in a specific format and get a response in the same

form. It does not matter what format the server executing the request uses, if it is in a

local server or a remote server.

As a variant of the RPC architecture, Google created gRPC to enable faster commu-

nication and enable transmission of data between microservices and other systems that

need to interact.

Figure 1.3 shows the communication between the gRPC server and its multiple gRPC

clients. A client application can call a service implemented on the server application on

a different application as it is a local object. On the server-side, the server implements

this interface and starts a gRPC server to handle client requests. There is a stub that

CHAPTER 1. INTRODUCTION 6

provides a way to call the same methods implemented in the server on the client-side.

gRPC servers and clients can communicate in a variety of languages supported by gRPC.

Figure 1.3: Client Server Architecture of gRPC Protocol [5]

Compared to REST and SOAP, gRPC solves the problem of inter-operability in the

following ways:

1. gRPC uses protobuf (Protocol buffers) instead of JSON as its messaging format.

Protobuf makes gRPC faster, lighter, and more efficient. In comparison with

REST, it has a standard data format.

2. It is built on HTTP 2 Instead of HTTP 1.1.

3. gRPC has native built-in Code Generation. So it is capable of generating ready-

to-use stubs and skeletons. Built-In Code Generation is one of the main reasons

AI4EU experiments decided to use gRPC for serialization.

1.4 The role of Docker as a containerization tool

Docker [6] solves a critical problem in a distributed environment like microservices.

Because microservices are self-contained, independent application units that satisfy a

particular business requirement, they are treated as small, independent applications.

What will happen if there are a considerable number of microservices created for an

CHAPTER 1. INTRODUCTION 7

application? Moreover, what if several microservices are built with different technology

stacks? The development team will soon be in trouble as developers have to manage

even more environments than traditional monolithic applications. The solution to this

problem is using microservices and containers to encapsulate each microservice. Docker

helps manage those containers. A Docker container is a standard unit of software that

packages up code and all its dependencies to execute quickly and reliable from one com-

puting environment to another. In AI4EU experiments, each AI node in a pipeline is a

Docker container. gRPC services running inside a Docker container can be implemented

in any language.

1.5 AI4EU Experiments and Acumos

In AI4EU Experiments, we propose to build reusable building blocks similar to microser-

vices. An extensive AI application is broken down into multiple smaller blocks, reused

across different applications. These reusable blocks are implemented as Docker Con-

tainers, and gRPC protocol is used for communication between the containers. These

blocks are then connected to build an AI Pipeline.

After containers are deployed in a suitable environment, execution of the pipeline has to

be handled by a Run-time Orchestrator. The orchestrator controls the flow of messages

between containers and returns the status code and status message. Kubernetes is our

target deployment environment as it works well with docker containers and has numerous

advantages concerning scalability, availability, and flexibility.

The primary motivation to use gRPC is to support automatic code generation on the

fly. It enables the orchestrator to communicate with models or AI blocks that it has no

prior knowledge about. The models or the pipeline nodes act as gRPC servers that will

be running in a docker container, and the services will be listening on a specified port.

The orchestrator acts as a gRPC client that uses generated stubs by the proto compiler

to call the services on gRPC servers, running in multiple Docker containers.

AI4EU experiments use the Acumos platform [7] to onboard the AI resources. The

models are onboarded as a dockerized URI using the Acumos platform. These models

can be shared publicly, within teams, or kept private. The design studio AcuCompose

provides a visual frontend to create a composite solution. The models onboarded in the

platform before can be connected to compose a pipeline. After the pipeline is composed,

the user needs to export the solution to the local system. The solution package will have

the Kubernetes deployments files, the protobuf definitions for all the pipeline nodes, a

Kubernetes client script, and an orchestrator client responsible for executing a pipeline.

CHAPTER 1. INTRODUCTION 8

The user then needs to execute the Kubernetes client to have the models deployed in

the local namespace of a Kubernetes cluster and then execute the orchestrator client,

which will run a pipeline composed in the user’s local environment.

An important aspect here is understanding AI4EU experiments go beyond the original

Acumos implementation by using gRPC, Docker, and Kubernetes. In this master thesis

work, the problem of designing a generic orchestrator that can run any generic pipeline

composed according to the AI4EU container specification is addressed. This design of a

generic solution that can execute any generic pipeline goes beyond the the state of the

art.

1.6 Problem Statement

Design and evaluation of a generic orchestrator that executes AI pipelines never seen

before. An AI pipeline, in this context, consists of nodes (docker containers) and edges

(information flow), thus forming a graph. After a pipeline has been composed and

deployed, execution needs to be controlled by a so-called runtime-orchestrator which

dispatches the message flow between the participating nodes following the topology

specification (blueprint.json). It must do the required initialization of the nodes and call

each model according to the flow using gRPC/protobuf communication. The following

tasks are completed in the course of this master thesis:

1. Design of both simple and advanced pipeline scenarios that serve as proof of con-

cept for the implementation. These scenarios should describe the detailed infor-

mation flow between the nodes.

2. Specify the strategy for orchestration.

3. Design and implement the orchestration subsystem as well as the necessary algo-

rithms and test it with scenarios from step 1

4. Describe and review the results, again based on the scenarios from step 1

1.7 How the Thesis is Organised

The thesis is organised into following chapters:

• Introduction and approach(Chapter 1)

CHAPTER 1. INTRODUCTION 9

• In chapter 2 we cover theoretical background regarding different fields of AI and

need for a AI pipeline, gRPC and Protobuf, Acumos AI Platform, Design Studio

of Acumos, Deployment Environment i.e Docker and Kubernetes.

• The methodology we developed is explained in chapter 3

• In chapter 4, we discuss about the different experiments involving simple pipelines,

advanced pipeline and the challenges faced in designing the orchestrator for differ-

ent scenarios.

• Related Work and other platforms with similar approaches(Chapter 5)

• Chapter 6 concludes with future work details.

Chapter 2

Theoretical Background

Here we discuss in brief the different fields of AI, starting with symbolic AI, machine

learning, neural networks, and Artificial Intelligence and the need for hybrid pipelines.

We then discuss gRPC and protobuf, deployment environment, and Acumos AI platform,

which is used by the AI4EU project.

2.1 Different Fields of AI and Need for AI pipelines

This section gives a basic idea about different fields of AI, hybrid AI and the need

for pipelines. AI4EU experiments platform is not limited to machine learning or deep

learning models. Any AI tool from any AI area can be used for building pipelines.

2.1.1 Symbolic AI

In the present world, artificial intelligence is primarily about artificial neural networks

and deep learning. However, this was not always the case. As a matter of fact, for

the more significant part of its history, the field was dominated by symbolic artificial

intelligence, also called “classical AI,” “rule-based AI,” and “good old-fashioned AI.”

Symbols represent other things. Symbols play a critical role in the thought and reasoning

process of humans. We use symbols to define things (such as dog, car, and bike) and

people (such as teacher, lawyer, salesperson). Symbols can represent abstract concepts

such as bank transactions or things that do not physically exist, such as web pages and

blog posts. They can also describe actions such as running or states of being inactive

and busy. Symbols can be organized into hierarchies. For example, a car is made of

doors, windows, tires, seats. They can also be used to describe other symbols like a dog

10

CHAPTER 2. THEORETICAL BACKGROUND 11

with a long tail or a velvet jacket. Communication through symbols is one of the main

reasons that makes humans intelligent. Hence, symbols have also played a significant

role in the creation of artificial intelligence.

Symbolic artificial intelligence exhibited early progress at the dawn of AI and comput-

ing. Visualizing the logic of rule-based programs, communicating, and troubleshooting

were easy. Symbolic artificial intelligence is appropriate for settings where the rules are

precise, and it is easy to obtain input and transform it into symbols. Rule-based systems

still account for many computer programs today, including those used to create deep

learning applications. Symbolic AI was intended to produce general, human-like intel-

ligence in a machine, whereas most modern research focuses on specific sub-problems.

Research into general intelligence is now studied in the sub-field of artificial general

intelligence.

Some believe that the significance of symbolic AI is diminishing. Nevertheless, this

assumption is far from the truth. Rule-based AI systems are still essential in today’s

applications. Many leading scientists believe that symbolic reasoning will continue to

remain a vital component of artificial intelligence.

2.1.2 Artificial Neural Networks

Artificial Neural Networks[8] are inspired by nature, basically from neural networks in

the brain. It is an abstraction of a biological neural network. Plenty of research occurred

in the area of artificial neural networks. Those rapid research works unfolded many

different network capabilities and gave multiple variants of these networks. Basic neural

network architecture can be seen in the figure 2.1. Neural Networks are developed to

exploit the architecture of the human brain to perform tasks that conventional algorithms

can solve.

2.1.2.1 Components

A typical neural network has the following components:

• Neurons: They receive input, combine the input with their internal state (known

as activation) and an optional threshold using an activation function, and produce

output using an output function. The inputs can be any external data, such as

numbers, images, and documents.

• Connections and weights: The network consists of connections; the connection

takes the output of one neuron and provides it as input to another neuron. Each

CHAPTER 2. THEORETICAL BACKGROUND 12

Figure 2.1: Artificial Neural Network basic architecture with input, hidden and out-
put neurons

connection is assigned a weight, and a neuron can have multiple inputs and output

connections[9].

• Activation Function and bias: The activation function computes the input to

a neuron from the outputs of previous neurons and their connections as a weighted

sum, and a bias is added to the result. The activation function provides a smooth

transition as input values change.

2.1.2.2 Working

Artificial neural networks use various layers of mathematical processing. An artificial

neural network contains neurons anywhere from dozens to millions arranged in a se-

quence of layers. The input layer receives information from various data sources. The

information goes through one or more hidden neurons from the input neuron. The input

information is transformed into an intermediate state by a hidden neuron which the out-

put neuron can use. The network starts learning about the information once the data

flow through each neuron. The network responds to the information that was given and

processes the information at the output neuron.

Neural networks need to be trained with a considerable amount of information through

training for learning. For example, to teach an artificial neural network how to differen-

tiate a car from a bus, the training set should be thousands of images of buses that the

network would begin to learn. Once it is trained with a significant amount of data(bus

CHAPTER 2. THEORETICAL BACKGROUND 13

images in this case), the network will classify future data. During the training period,

the output is compared to the ground truth data label. If they are the same, then the

model learning is finished. It uses backpropagation to adjust its learning by going back

through the layers to tweak the weights if it is incorrect.

2.1.3 Machine Learning

Machine Learning is a branch of artificial intelligence where systems can learn from data,

recognize patterns and enable decisions with minimal human intervention. Machine

learning is essential because it enables enterprises to view trends in data such as customer

behavior, operational business patterns that support the development of new products

and aid decision making. Classical machine learning is categorized by how an algorithm

learns to predict more accurately. There are four basic approaches:

1. Supervised Learning: In supervised learning, labeled training data is used,

and the variables are correlated. The input and the output of the algorithm are

specified. The algorithm infers a function that maps the input data to the output

label.

2. Unsupervised Learning: In unsupervised learning, unlabeled training data is

used, and the algorithm tries to discover the hidden patterns in the data.

3. Semi-Supervised Learning: This machine learning approach combines super-

vised and unsupervised methods. An algorithm is fed with labeled training data

primarily, but the model is free to explore the data independently and develop its

understanding of the data set.

4. Reinforcement Learning: Reinforcement learning is the training of machine

learning models to make a sequence of decisions. In an uncertain, potentially

complex environment, the agent learns to achieve a goal by facing a game-like

situation. The algorithm performs a trial and error to come up with the problem’s

solution, and each action gets a reward or penalty. The end goal is to maximize

the total reward. Although the designer sets the reward policy as a game rule, he

gives the model no hints or suggestions for solving the game. It is up to the model

to determine the solution for the task by maximizing the reward, starting from

arbitrary trials and finishing with sophisticated tactics and skills.

CHAPTER 2. THEORETICAL BACKGROUND 14

2.1.4 Hybrid AI

There is an emerging need for hybrid AI in today’s AI world. It would be ideal to have

intelligent systems that can provide human-like expertise such as domain knowledge,

uncertain reasoning, and adaptation to a noisy and time-varying environment. These

hybrid solutions are crucial in tackling practical computing problems. The integration of

various learning and adaptation techniques, overcome individual limitations, and achieve

synergetic effects through hybridization or fusion of these techniques, has contributed to

many new intelligent system designs in recent years. Hybrid AI denotes a sub-category

of AI which employs, in parallel, a combination of methods and techniques from artificial

intelligence subfields.

The search engine of Google is an example of hybrid AI that combines state-of-the-art

deep learning techniques such as Transformers and symbol-manipulation systems such

as knowledge-graph navigation tools. AlphaGo, one of the landmark AI achievements

of the past few years, is another example of combining symbolic AI and deep learning.

The AI4EU experiments provide an ideal platform for working on hybrid solutions by

combining various models in a pipeline.

2.2 gRPC and Protobuf

Protocol buffers are Google’s language-neutral, platform-neutral, extensible mechanism

for serializing structured data.[10] It is language-independent and uses an Interface Def-

inition Language (IDL) for defining the shape of a given message and the properties

within that message. Protobuf message definitions have values but no methods; they

are data-holders. Protobuf messages are defined in .proto files.[11] protoc is a compila-

tion tool for protocol buffers that can compile the code in various supported languages.

All the properties in protobufs are assigned default values, so if the user does not define

an integer, the integer field will default to 0. Fields with string data types will default

to empty strings, booleans to false, and similar for other data types.

gRPC is a group of technologies that allow communication with other applications using

Remote procedure calls (RPCs). Remote procedure calls are function calls that users

make in their codebase, but they execute on another machine, then return in the user’s

application. The RPC abstracts the network from the user, letting them call methods

as if they were local code.

Protocol Buffers is used by gRPC for data serialization between clients and servers. Users

need to define the interface in a .proto file containing the services used in applications.

CHAPTER 2. THEORETICAL BACKGROUND 15

Making use of the gRPC plugin for protoc (or a plugin as part of build script for a given

platform), users can generate code that will give them the methods required to call a

given service, all with native typing in the language of the user’s choice.

We can define a gRPC service in our .proto file like this:

//Define the used version of proto:

syntax = ’proto3’;

//Define a message to hold the features input by the client :

message Text{

string query = 1;

}

//Define a message to hold the predicted price :

message Prediction{

float review = 1 ;

}

//Define the service :

service Predict{

rpc classify_review(Text) returns (Prediction){}

}

gRPC supports multiple data transfer methods: Request and Response similar to typi-

cal REST service, Server-side streaming, Client-side streaming, Bidirectional streaming.

protocol buffers and gRPC protocol are used for communication between the models/n-

odes in AI4EU pipelines.

2.3 Docker

Docker [12] is an open-source platform for developing, shipping, and running applica-

tions. Docker enables us to separate our applications from the infrastructure so that

software can be delivered quickly. Docker enables the IT teams to manage the infras-

tructure similar to the managing of the applications. The delay between writing a code

and running it in production can be significantly reduced by using Docker. Docker

enables to package and run of an application in an isolated environment called a con-

tainer. Because of Docker’s isolation and security of containers, multiple containers can

CHAPTER 2. THEORETICAL BACKGROUND 16

run on a single host.The containers run directly with the host machine’s kernel and are

lightweight as compared to virtual machines. The docker platform manages the lifecycle

of the containers in the following ways [6]:

• Development of software application and its supporting components using contain-

ers.

• The container is the unit for distributing and testing the software application.

• Deployment of the application and solutions to the production environment. The

deployment remains the same whether it is a local data center, a cloud provider,

or a hybrid environment.

2.3.1 Docker Architecture

Docker works in client-server architecture. The Docker client communicates with the

Docker daemon. The daemon, which acts as a server here, performs the building, run-

ning, and distributing the Docker containers. The Docker client and daemon can run on

the same system, or a Docker client can communicate with a remote Docker daemon.

[6]

2.3.2 Docker Objects

1. Docker Image: An Docker image is a read-only template with instructions for

creating a Docker container.

2. Docker Container: A container is a runnable instance of an image. Users can

create, start, stop, move, or delete a container using the Docker API or client

interface i.e CLI.

3. Docker Service: Services allow containers to scale across multiple Docker dae-

mons, which all work together as a swarm with multiple managers and workers.A

service is used to define the desired state, such as the number of replicas of the

service that must be available at any given time.

The role for docker as containerization tool in AI4EU experiments is explained in section

1.4.

CHAPTER 2. THEORETICAL BACKGROUND 17

2.4 Kubernetes

Kubernetes[13] is an open-source container orchestration platform that automates the

manual processes involved in deploying, managing, and scaling containerized applica-

tions.

A Kubernetes cluster comprises a group of worker machines called nodes. Containerized

applications are made to run on these nodes. Every cluster has at least one worker

node. The worker nodes host the Pods that are the components of the application. The

control plane controls the worker nodes and the Pods in the cluster, and it runs across

multiple machines in a typical production environment. A cluster runs multiple nodes,

providing fault tolerance and high availability. A Kubernetes cluster can be installed

as a managed Kubernetes, i.e., DigitalOcean, Amazon Elastic Kubernetes, and others.

It can be installed by using minikube to run a cluster locally. A Kubernetes cluster

can also be installed and configured manually. In the following subsection, we will be

explaining the important objects in Kubernetes.

2.4.1 Pod

A pod is the most basic unit of a Kubernetes cluster and represents one or more ap-

plication containers and shared resources for those containers. A pod usually contains

one or more running containers. Containers running in a pod share the same network,

storage, and lifecycle. This means that they can communicate directly and will both be

stopped and started at the same time.

2.4.2 ReplicaController and ReplicaSets

The Replica Controller and Replicaset help to run multiple instances of a pod in a

Kubernetes cluster, thus providing high availability.They ensure that at any given time,

the desired number of pods specified is in the running state. If a pod stops or dies, they

create another one to replace it. The difference is Replicaset uses set-based selectors,

and Replica Controller uses equity-based selectors.

2.4.3 Deployment

Deployments are Kubernetes objects that manage the pods. The first thing a Deploy-

ment does is to create a replica set. The replica set creates pods according to the number

CHAPTER 2. THEORETICAL BACKGROUND 18

specified in the replica option. Deployment is a higher-level concept that manages replica

sets efficiently and provides declarative updates to the pods.

2.4.4 Services

Kubernetes service is an abstract way to expose an application running on a set of Pods

as a network service. Kubernetes service enables developers not to use unknown service

discovery mechanisms. Kubernetes provides pods with their IP addresses and a unique

DNS name for a set of pods, and it is also responsible for balancing the load between

the pods.

Kubernetes is our target deployment environment in AI4EU experiments. For each

node/model in the pipeline, the Kubernetes client will create a ReplicaSet which in turn

will create a pod. The Kubernetes client will also create a node-type service by which

the gRPC services become reachable.

2.5 AI4EU Container Specification

In this section, we discuss the AI4EU container specifications [14] to be followed for

AI4EU experiments. The containers should define their public service methods using

protobuf v3 and expose these methods via gRPC. All these technologies are open source

and freely available. Because the goal is to have re-usable building blocks to compose

pipelines, the main reason to choose the above technology stack is to achieve the highest

level of interoperability:

• Docker is today the defacto standard for server-side software distribution, including

all dependencies. It is possible to onboard containers for different architectures

(x86 64, GPU, ARM, HPC/Singularity)

• gRPC and protobuf are a proven specification and implementation for remote pro-

cedure calls supporting a broad range of programming languages. It is optimized

for performance and high throughput.

Please note that the tools and models are not limited to deep learning models. Any AI

tool from any AI area like reasoning, semantic web, symbolic AI, and deep learning can

be used for pipelines as long as it exposes a set of public methods via gRPC.

CHAPTER 2. THEORETICAL BACKGROUND 19

2.5.1 Defining the protobuf interface

The public service methods should be defined in a file called model.proto:

• It should be self contained, thus contain the service definitions with all inputs and

output data structures and no imports can be used

• The full feature set of protobuf v3 can be used (except import)

• A container can define several methods, but all in the .proto file

• we should take into account that all interacting proto-files must be in the same

package, or use no package at all

2.5.2 Create the gRPC docker container

Based on model.proto, we can generate the necessary gRPC stubs and skeletons for our

choice’s programming language using the protobuf compiler protoc and the respective

protoc-plugins. Then create a short primary executable that will read and initialize the

model or tool and starts the gRPC server. This executable will be the entry point for the

docker container. The gPRC server must listen on port 8061. If the model also exposes

a Web-UI for human interaction, optional, it must listen on port 8062. The file tree

of the docker container should look like below. In the top-level folder of the container

are the files model.proto and license.json.The license file is not mandatory and can be

generated after onboarding with the License Profile Editor in the AI4EU Experiments

Web-UI using this link.

Important recommendation: For security reasons, the application in the container

should not run as root, which is the default. Instead, an unprivileged user should be

created that runs the application. Here is an example code snippet from a Dockerfile:

RUN useradd app

USER app

CMD ["java", "-jar", "/app.jar"]

This will also allow the docker container to be converted into a Singularity container for

HPC deployment.

https://docs.acumos.org/en/clio/submodules/license-manager/docs/user-guidelicense- profile-editor.html

CHAPTER 2. THEORETICAL BACKGROUND 20

2.5.3 On boarding

The final step is to on board the model. There are several was to on board a model into

AI4EU Experiments but currently the only recommended way is to use “On-boarding

dockerized model URI”:

1. Upload docker container to a public registry like Docker Hub or to a private registry

2. Start the on boarding process

3. Upload the protobuf file

4. Add license profile

5. Enter the docker image URI

2.5.4 First Node Parameters (e.g. for Data brokers)

Generally speaking, the orchestrator dispatches the output of the previous node to the

following node. A particular case is the first node, where no output from the previous

node exists. To design a generic orchestrator, the first node must define its services with

an “empty” input datatype. In this case, it should be google.protobuf.Empty. Typically

this concerns nodes of type Data broker as the usual starting point of a pipeline.

syntax = "proto3";

import "google/protobuf/empty";

message NewsText {

string text = 1;

}

service NewsDatabroker {

rpc pullData(google.protobuf.Empty) returns(NewsText);

}

2.5.5 Scalability, GPU Support and Training

The potential execution environments range from Minikube on a Laptop over small

Kubernetes clusters to big Kubernetes clusters and even HPC and optional GPU accel-

eration. It is possible to support all those environments with a single container image

taking into account some recommendations:

CHAPTER 2. THEORETICAL BACKGROUND 21

• let the model be flexible with memory usage: use more memory only if available.

• let the model be scalable if more CPU cores are available (allow for concurrency).

• Some AI frameworks like PyTorch, or Tensorflow can be used to work with or

without GPU with the same code.

• even training is possible if the model exposes the corresponding methods in the

protobuf interface.

Chapter 3

Methodology

In this chapter, we illustrate our approach for solving the task of designing a generic

serial orchestrator which is capable of executing any AI pipeline which is composed in

Visual editor of Acumos following the AI4EU container specification.

First, we introduce all important sections which is required to design a generic solution

to execute a pipeline and the final section shows the overall picture and how the concepts

in the earlier sections are integrated into designing a solution.

3.1 gRPC Generated-code and use of stubs

The design of a generic orchestrator is done using python. This section gives details

about how built-in code generation of gRPC python is made use in our approach. gRPC

python depends on the protobuf compiler (protoc) to generate code. It uses a plugin

to supplement the generated code by plain protoc with gRPC-specific code. For a

.proto service description containing gRPC services, the plain protoc generated code is

synthesized in a pb2.py file, and the gRPC-specific code is contained in a pb2 grpc.py

file. The pb2 grpc.py python module imports the pb2.py . [15]

Consider the following example

service start_orchestrator {

rpc executePipeline(PipelineConfig) returns(PipelineStatus);

}

When the service is compiled, the gRPC protoc plugin generates code similar to the

following pb2 grpc.py file:

22

CHAPTER 3. METHODOLOGY 23

import grpc

import orchestrator_pb2 as orchestrator__pb2

class start_orchestratorStub(object):

"""Missing associated documentation comment in .proto file."""

def __init__(self, channel):

"""Constructor.

Args:

channel: A grpc.Channel.

"""

self.executePipeline = channel.unary_unary(

’/start_orchestrator/executePipeline’,

request_serializer=orchestrator__pb2.PipelineConfig.SerializeToString,

response_deserializer=orchestrator__pb2.PipelineStatus.FromString,

)

class start_orchestratorServicer(object):

"""Missing associated documentation comment in .proto file."""

def executePipeline(self, request, context):

"""Missing associated documentation comment in .proto file."""

context.set_code(grpc.StatusCode.UNIMPLEMENTED)

context.set_details(’Method not implemented!’)

raise NotImplementedError(’Method not implemented!’)

def add_start_orchestratorServicer_to_server(servicer, server):

rpc_method_handlers = {

’executePipeline’: grpc.unary_unary_rpc_method_handler(

servicer.executePipeline,

request_deserializer=

orchestrator__pb2

.PipelineConfig.FromString,

response_serializer=

orchestrator__pb2.

PipelineStatus.SerializeToString,

),

}

generic_handler = grpc.method_handlers_generic_handler(

CHAPTER 3. METHODOLOGY 24

’start_orchestrator’, rpc_method_handlers)

server.add_generic_rpc_handlers((generic_handler,))

This class is part of an EXPERIMENTAL API.

class start_orchestrator(object):

"""Missing associated documentation comment in .proto file."""

@staticmethod

def executePipeline(request,

target,

options=(),

channel_credentials=None,

call_credentials=None,

insecure=False,

compression=None,

wait_for_ready=None,

timeout=None,

metadata=None):

return grpc.experimental.unary_unary

(request, target, ’/start_orchestrator/

executePipeline’,

orchestrator__pb2.

PipelineConfig.SerializeToString,

orchestrator__pb2.PipelineStatus.FromString,

options, channel_credentials,

insecure, call_credentials, compression, wait_for_ready,

timeout, metadata)

3.1.1 Code Elements

The gRPC generated code starts by importing the grpc package and the plain pb2

module, synthesized by protoc, which defines non-gRPC-specific code elements, like the

classes corresponding to protocol buffers messages and descriptors used by reflection.

[15]

For each service in the .proto file, three primary elements are generated:

CHAPTER 3. METHODOLOGY 25

1. Stub: used by the client to connect to a gRPC service. In our example above it is

start orchestratorStub

2. Servicer: used by the server to implement a gRPC service. In our example it is

start orchestratorServicer

3. Registration Function: add to server function used to register a servicer with a

grpc.Server object. In our example it is add start orchestratorServicer to server

3.1.1.1 Stub

The generated Stub class is used by the gRPC clients. It has a constructor that takes

a grpc.Channel object and initializes the stub. For each method in the service, the

initializer adds a corresponding attribute to the stub object with the same name. De-

pending on the RPC type (unary or streaming), the value of that attribute will be

callable objects of type UnaryUnaryMultiCallable, UnaryStreamMultiCallable, Strea-

mUnaryMultiCallable, or StreamStreamMultiCallable. [15]

3.1.1.2 Servicer

For each service, a Servicer class is generated, which serves as the superclass of a service

implementation. For each method in the service, a corresponding function in the Servicer

class is generated. Override this function with the service implementation. Comments

associated with code elements in the .proto file appear as docstrings in the generated

python code. [15]

3.1.1.3 Registration Function

For each service, a function is generated that registers a Servicer object implementing it

on a grpc.Server object, so that the server can route queries to the respective servicer.

This function takes an object that implements the Servicer, typically an instance of

a subclass of the generated Servicer code element described above, and a grpc.Server

object. [15]

3.1.1.4 Use of pb2 and pb2 grpc in Orchestrator

In a pipeline Scenario, Each node will have a input protobuf message, output protobuf

message and services associated to it. pb2 files will be used to generate the right input

and output messages. pb2 grpc will be used to create stubs which in turn will allow

CHAPTER 3. METHODOLOGY 26

the orchestrator to call the right service for each node. Let us consider the following

example:

syntax = "proto3";

import "google/protobuf/empty.proto";

message AudioFileJob {

string file_name = 1

string work_dir = 2;

}

service AudioFileBroker {

rpc getAudioFileJob(google.protobuf.Empty) returns(AudioFileJob);

}

The above protobuf file has a message AudioFileJob and service AudioFileBroker. The

protoc complier for any protobuf file generates pb2 and pb2 grpc files. These generated

files are used by the orchestrator to create request message and call the service using

stub as shown below.

create a stub (client)

stub = pb2_grpc.AudioFileBrokerStub(channel)

create a valid request message

request = pb2.AudioFileRequest(work_dir="Local_pipeline/")

make the call

response = stub.getAudioFileJob(request)

3.2 Toplogy and Node Information of the Pipeline

Topology, order of nodes, DNS names, and other pipeline information designed in the

visual editor of Acumos will be known by two files: blueprint.json and dockerinfo.json.

The blueprint.json file is generated by the design studio of Acumos when a composite

solution is created, and the Kubernetes client generates dockerinfo.json. Both the JSON

files are included in the downloaded solution package. The Kubernetes python script in

the solution package will create the Kubernetes deployments and services for each node

in the specified namespace of a Kubernetes cluster. The Kubernetes python script will

also write DNS names in the dockerinfo.json.

CHAPTER 3. METHODOLOGY 27

3.2.1 Topology Information

Topology information is generated by the Design Studio editor, Acucompose, in a

blueprint.json file. AcuCompose enables pipeline composition by using the models on-

boarded in the AI4EU experiments platform like in figure 4.1. A typical blueprint.json

generated after pipeline composition is as below.

{

"name": "simplepipeline",

"version": "v1",

"input_ports": [

{

"container_name": "csvdatabroker1",

"operation_signature": {

"operation_name": "get_next_row"

}

}

],

"nodes": [

{

"container_name": "csvdatabroker1",

"node_type": "MLModel",

"image": "https://cicd.ai4eu-dev.eu:7444/csvdatabroker:v2",

"proto_uri": "org/acumos/csvdatabroker/1.0.1/csvdatabroker-1.0.1.proto",

"operation_signature_list": [

{

"operation_signature": {

"operation_name": "get_next_row",

"input_message_name": "Empty",

"output_message_name": "Features"

},

"connected_to": [

{

"container_name": "houseprice1",

"operation_signature": {

"operation_name": "predict_sale_price"

}

}

]

CHAPTER 3. METHODOLOGY 28

}

]

},

{

"container_name": "houseprice1",

"node_type": "MLModel",

"image": "https://cicd.ai4eu-dev.eu:7444/houseprice:v1",

"proto_uri": "org/acumos/c6bc5abe-6422-47e9-9dcf-c01c1cbb7c48/houseprice/1.0.0/houseprice-1.0.0.proto",

"operation_signature_list": [

{

"operation_signature": {

"operation_name": "predict_sale_price",

"input_message_name": "Features",

"output_message_name": "Prediction"

},

"connected_to": []

}

]

}

],

"probeIndicator": [

{

"value": "false"

}

]

}

blueprint.json will have important information such as the input ports, node name,

docker image of the node, proto URI, the adjacent nodes, input message name, output

message name, and the service the node implements. The above example is of a simple

AI pipeline with two nodes. The first node is the CSV data broker, and the last node

is the prediction node with predicts the house’s sales price given a set of attributes by

the first node. These information from the blueprint.json is parsed to extract all the

information needed by the orchestrator. Object oriented programming is used for storing

all the node information in classes.

CHAPTER 3. METHODOLOGY 29

3.2.2 The DNS name and port of nodes in a pipeline

The information such as the Domain name system(DNS) name and port of the nodes

in the pipeline will be generated in dockerinfo.json. This information is crucial as the

orchestrator will use them to call the services implemented for each node. Our target

deployment and execution environment for AI4EU experiments in this scope of master

thesis is Kubernetes. The Kubernetes client will use docker URI’s to create deployment

and service YAML files for each node which will be a part of the solution package

when a pipeline solution is downloaded. The solution package will have the deployment

and service YAML files for the orchestrator server as well. Once the solution files are

downloaded, the user is expected to extract them in his local system, where a Kubernetes

cluster is setup. The user runs a deployment script that deploys all the pods in a

Kubernetes cluster. The Kubernetes services give the orchestrator the DNS names and

the ports for accessing the microservices implemented in the Kubernetes pods. In our

case, a Nodeport service is used to expose a service running on a set of Pods as a network

service to the orchestrator. A typical dockerinfo.json will look as below.

{

"docker_info_list": [

{

"container_name": "csvdatabrokerempty1",

"ip_address": "csvdatabrokerempty1",

"port": 30016

},

{

"container_name": "housepricemodel1",

"ip_address": "housepricemodel1",

"port": 30027

},

{

"container_name": "orchestrator",

"ip_address": "orchestrator",

"port": 30009

}

]

}

The above file has the container name, DNS name of the node as the IP address, and port

information of the nodes and the orchestrator. Kubernetes takes care of the resolution

CHAPTER 3. METHODOLOGY 30

of the domain name system, i.e., DNS for each node. Kubernetes will also take care of

port mapping of node port to a container-specific port for each AI nodes in the pipeline.

AI4EU container specification suggests port 8061 as a default container port and 8062

as an optional port for the web service.

3.3 Graph Data Structure and the Traversal

The idea of building pipelines in AI4EU experiments follows the principles of Graph

Theory. Each AI block in a pipeline represents a node, and the vertices make the con-

nections. The Graph Data Structure stores all node information, and the adjacent list

stores adjacent node details for each node in the pipeline. After the graph’s construction

for the pipeline, a graph traversal method is used to get the traversal path. The orches-

trator uses this traversal path to call the services of the node in the order according to

the topology. This implementation enables the orchestrator to execute pipelines with

parallel paths from a node as long as there are no cycles between the pipeline nodes.

These pipelines are referred to as Directed Acyclic Graphs(DAG) according to Graph

Theory. In our case, Breadth-First Search(BFS) graph traversal is used because the

orchestrator needs to traverse the nodes at depth d before traversing the nodes at depth

d+1. An adjacency list is used to store the nodes connected to a source node. An

adjacency list is a collection of unordered lists used to represent a finite graph. Each list

inside the adjacency list will contain the set of neighbors of a vertex in the graph.

Figure 3.1: Graph Data structure and Adjacency List

Consider the pipeline scenario in figure 3.1; there are six nodes connected in a directed

acyclic way. The figure also shows the adjacency list for each node in the graph. BFS is a

traversing algorithm that starts traversing from the source or starting node and traverses

CHAPTER 3. METHODOLOGY 31

the graph layerwise, thus exploring the neighbor nodes (nodes directly connected to

the source node). The algorithm moves towards the next-level neighbor nodes after

traversing the previous levels. As the name BFS suggests, the algorithm traverses the

graph breadthwise by first moving horizontally ,visiting all the nodes of the current

layer, and then moving to the next layer

3.4 Protobuf Merging and Automatic Generation of Stubs

The merging of multiple protobuf files is an essential preprocessing step before the

orchestrator starts executing a generic pipeline. Each node in the pipeline has a separate

protobuf file. The orchestrator needs to communicate with all of them. After several

attempts, the only solution that worked was the merging of protobuf files. This step

considers multiple protobuf definitions for all nodes in a pipeline and consolidates a single

protobuf definition for a pipeline. It is an essential step as we take care of duplicate

messages between nodes. The user comments are ignored, and there is explicit importing

of the default google.protobuf.empty for the starting node. This step also prepares a

map that connects the service name and the remote procedure call(RPC) name. The

generic orchestrator will later use this map to call the right services using the automatic

generation of stubs.

To explain this better, let us consider the protobuf definitions of a simple two node

pipeline.

The first node in this pipeline example is a data broker node. The protobuf definition

for this node has a empty message,a features message and a get next row service

syntax = ’proto3’;

import "google/protobuf/empty.proto";

message Features {

float MSSubClass = 1 ;

float LotArea = 2 ;

float YearBuilt = 3 ;

float BedroomAbvGr = 4 ;

float TotRmsAbvGrd = 5 ;

}

service get_next_row {

CHAPTER 3. METHODOLOGY 32

rpc get_next_row(google.protobuf.empty) returns(Features);

}

The second node is a prediction model which has the following interface.

syntax = "proto3";

message Features {

float MSSubClass = 1 ;

float LotArea = 2 ;

float YearBuilt = 3 ;

float BedroomAbvGr = 4 ;

float TotRmsAbvGrd = 5 ;

}

message Prediction {

float salePrice = 1 ;

}

service Predict {

rpc predict_sale_price(Features) returns (Prediction);

}

From the above pipeline example, we can see a duplicate message in the form of message

Features. These duplicate messages are inevitable as we expect the output message

to match the subsequent node’s input message. This matching of messages between

adjacent nodes is a prerequisite for a valid connection in the design studio of Acumos,

and it avoids users connecting random unrelated models in a pipeline. To overcome this

problem, we take care of duplicate messages and write common duplicate messages only

once in the consolidated protobuf.

The logic to write a consolidate protobuf for a pipeline is designed by using python

dictionaries. A dictionary with key-value pair is created for messages and services. Other

non-essential lines of code in individual protobuf files like user comments are ignored.

A different dictionary for mapping the service names with the remote procedure call

names is also created. This dictionary of service with the RPC name is significant for

orchestrator as it can make the required mapping from stubs to call the services of a

particular node. For the service predict sale price in the above example, following

RPC to stub mapping will be created.

CHAPTER 3. METHODOLOGY 33

{’predict_sale_price’: ’PredictStub’}

The consolidated pipeline.proto for the above pipeline will look as below:

syntax = "proto3";

import "google/protobuf/empty.proto";

message Features {

float MSSubClass = 1 ;

float LotArea = 2 ;

float YearBuilt = 3 ;

float BedroomAbvGr = 4 ;

float TotRmsAbvGrd = 5 ;

}

message Prediction {

float salePrice = 1 ;

}

service get_next_row {

rpc get_next_row(google.protobuf.Empty) returns(Features);

}

service Predict {

rpc predict_sale_price(Features) returns (Prediction);

}

The consolidated pipeline.proto will have the clean structure with messages and the

services for the nodes of the pipeline without duplicates. The protoc compiler will

then be used to generate the stubs and skeletons i.e gRPC Generated-code explained in

section 3.1.

CHAPTER 3. METHODOLOGY 34

3.5 Dynamic Linking of Nodes of the pipeline

A generic orchestrator has to have the capability of dynamically making connections

between nodes given the blueprint JSON file with topology and node information. Dy-

namic linking of nodes makes use of the breadth first search(BFS) traversal output and

the list of all node class instances which has all the node properties. This list is obtained

by parsing the blueprint JSON file. The design of the logic to dynamically link nodes of

the pipeline is shown in figure 3.2.

Figure 3.2: Dynamic Linking of Nodes

3.5.1 Find Node in pipeline List

This function is responsible for finding the current node index in a pipeline list that

stores all the node information. A python list of Node objects is used to store the node

information. Each element in this python list gives a node class instance that stores the

nodes’ individual properties. After parsing the blueprint file and storing details in the

pipeline list, the orchestrator constructs a Graph for the nodes and makes the relevant

connections. The BFS traversal algorithm’s output will guide the orchestrator in the

order of nodes to be called. BFS output is another python list. The orchestrator needs

to find the index of the current node it is processing in the pipeline list. This function

will return an index that the orchestrator can use to get all the current node information.

CHAPTER 3. METHODOLOGY 35

3.5.2 Start Node

This function takes the index returned by the Find Node function above in section

3.5.1. The function is responsible for creating a gRPC request, a stub that will be

used to call the current node’s service. The logic behind connecting nodes in AI4EU

experiments is that the previous node’s output will be the input of the subsequent

node. A special case here is the starting node where the output from the previous

node does not exist. AI4EU container specification specifies that the first node should

have an empty request message. The orchestrator creates a default empty request with

google.protobuf.Empty for the first node. For the next subsequent nodes, the previous

node’s output is dispatched by the orchestrator.

3.5.3 Dynamic linking of nodes

This recursive function will dispatch the messages from the source node to all the subse-

quent nodes until a termination condition is reached. The relevant stub for the current

node is used to call the service the node implements. This recursive function’s termi-

nation condition is when the response before the gRPC service call is the same as the

response after the gRPC service call. This termination condition denotes the previous

node is exhausted and does not have valid messages to return. To explain this, let us

consider an example where a node implements the following service.

service Predict {

rpc predict_sale_price(Features) returns (Prediction);

}

The predict sale price service has a input message Features and output message

Prediction. The output prediction message has the following members:

message Prediction {

float salePrice = 1 ;

}

Since the member field salePrice is a datatype float, When the orchestrator creates a

response message, it has a default value of the data type, which is 0.0f in the case of

float. This is stored in response before call object. The orchestrator then calls the

service using the stub and the output of the predict sale price is captured in the

response after call object. If the call is successful, the response after call object

will have a float value other than the default.

CHAPTER 3. METHODOLOGY 36

3.6 Pipeline Execution

In this section, we explain the execution of pipeline by using a flow diagram in figure

3.3. The getstubs function in figure 3.3 is responsible for reading the protoc complier

generated pb2 grpc file and getting all the stubs for the nodes. The Find stub for

the node function stores the right stub for all the nodes in the pipeline. This association

of the right stub for each node is made by using the rpc service map which is given by

the module mergeproto which is explained in section 3.4

Figure 3.3: Execution of the pipeline

The orchestrator parses blueprint and dockerinfo files to get all node information and

the input node name. This information will be used to get a BFS traversal output. The

orchestrator then dispatches the messages between the nodes by dynamically linking

them according to BFS traversal path.

CHAPTER 3. METHODOLOGY 37

3.7 Use of gRPC for triggering the orchestrator

The basic idea is to have an orchestrator running in a pod in a Kubernetes cluster, just

like the other nodes in a pipeline. In this way, a generic orchestrator can handle multiple

requests sequentially. However, the problem was how to trigger the orchestrator for each

pipeline execution from outside the Kubernetes pod? We solve the problem of triggering

the orchestrator by using the client-server architecture of gRPC.

The orchestrator exposes a grpc service like below:

message PipelineConfig {

text blueprint = 1; //complete blueprint.json as text

text dockerinfo = 2; //complete dockerinfo.json as text

bytes protos-zip = 3; //zip file of protos as binary

}

message PipelineStatus {

int32 statusCode = 1;

text statusText = 2;

}

rpc executePipeline(PipelineConfig) returns(PipelineStatus)

The above protobuf interface for the orchestrator has an input message named Pipelinecon-

fig, which has fields for the blueprint file to be passed as text, dockerinfo file to be passed

as text, and a zip file of protobufs for all the nodes passed as binary. The output mes-

sage is named PipelineStatus and has fields for status code and text description of a

status. StatusCode is similar to HTTP status code; for instance, 200 is ”OK/Success,”

and statusText contains ”success and the result” or the detailed exception text. For

each pipeline run, the orchestrator excepts these three files, i.e., blueprint.json, docker-

info.json, and a zip file containing all the individual protobuf interfaces of the nodes.

3.8 The flow of the generic orchestrator

In this section, we explain the orchestrator’s overall flow using all the concepts explained

in the previous section. The flow diagram is shown in figure 3.4. A user first composes a

CHAPTER 3. METHODOLOGY 38

pipeline in Acumos Visual studio editor AcuCompose, validates the composite solution,

and downloads the solution package. Solution.zip contains the following files and folders:

1. blueprint and dockerinfo JSON files

2. A microservice folder which will have all the protobuf definitions of the nodes

3. A deployment folder which has all the necessary Kubernetes artifacts for the nodes

and the orchestrator

4. Kubernetes client script

5. an orchestrator client script.

Figure 3.4: Triggering the orchestrator

The users executes the Kubernetes client script which deploys all the nodes and the

orchestrator server in the Kubernetes cluster. The output of the Kubernetes client

script gives the IP address and the port of the orchestrator server.

3.8.1 Orchestrator Client

The orchestrator client will scan all the protobuf files in the solution package’s mi-

croservices folder and converts them into a zip file format. The orchestrator client then

CHAPTER 3. METHODOLOGY 39

converts the blueprint and dockerinfo files as text, the zip file of the protobuf files to

binary, and sends it over to the orchestrator server according to the protobuf interface as

explained in section 3.7. The IP address and port given as output from the Kubernetes

client script will be used by the orchestrator client to make a gRPC connection to the

orchestrator server.

3.8.2 Orchestrator Server

The Orchestrator server deserializes the blueprint and dockerinfo files back to JSON

files and the nodes’ protobuf definitions. The orchestrator will then execute a remote

procedure call to reach the gRPC service executePipeline. All files received from the

client and those generated for the current pipeline are stored in a directory named

work dir. The idea behind creating the working directory in the orchestrator’s container

is to store all the relevant files for a particular pipeline in a single directory. All the

files in this working directory will be deleted before each pipeline run, and the new files

for the current pipeline will again be generated. In this way, we delete the working

directory before each run to have the last run’s files for diagnostic means. The gRPC

service executePipeline will then call the generic serial orchestrator module. The generic

serial orchestrator will do the following:

1. Merges the individual protobuf files of all the nodes and generates the stubs auto-

matically as explained in section 3.4.

2. Parses the JSON files to get the node properties as explained in section 3.2.

3. Stores the node information in a Graph Data Structure and uses a Breath first

search traversal to get the traversal path. This is explained in section 3.3.

4. Finally dispatches the messages from one node to another according to the pipeline

topology by dynamically linking the nodes in the pipeline. This is explained in

section 3.5.

Finally, after dispatching the messages to all the nodes, the orchestrator will return a

status code and status message. If the execution was successful, the status code returned

is 200. In case of failure, the orchestrator server will return an appropriate exception

code and exception message to the client. The output of the orchestrator can be viewed

by logging into the bash of the orchestrator Kubernetes pod.

Chapter 4

Experiments

In this chapter, we explain the different experiments conducted throughout the scope of

this master thesis. The design of a generic orchestrator capable of running any pipeline

built according to AI4EU container specification required some simple and complex

scenarios to understand the complications and solve real-world challenges. This chapter

demonstrates the various experiments conducted and challenges faced during the design

of the generic orchestrator.

Before composing the pipeline in AcuCompose, the individual nodes need to be imple-

mented as a docker container exposing it’s gRPC service. Following steps need to be

performed to implement a node as docker container exposing it’s gRPC service.

1. Define the service: Each node performs a specific function in a pipeline. This

function can be a data broker service, machine learning, deep learning, or symbolic

AI model. The service can be defined in any programming language chosen by the

model provider.

2. Define the messages and services in a proto file: Each model or a node in a

pipeline has to have a protobuf interface which defines the input message, output

message and the gRPC service.

3. Generate the gRPC classes for a programming language chosen to im-

plement the service: we need to install the required libraries and then call the

protoc compiler to generate the needed stubs and skeletons.

4. Creating a gRPC server: The server will import the generated files from the

protoc compiler and the function created in previous step. Then we will define a

class that will take a request from the client or the orchestrator and uses the service

function to return a response. After that, we will use add Servicer to server

40

CHAPTER 4. EXPERIMENTS 41

from model pb2 grpc before adding the class Servicer to the server. Once we have

implemented all the methods, the next step is to start up a gRPC server so that

clients or the orchestrator can call the service. The gRPC server is expected to run

on port 8061, and an optional HTTP-Server for a Web-UI for human interaction

is expected to run on port 8062.

5. Include the license file for the model

6. Prepare the Docker file Include all the dependencies and a build a docker image.

This docker image will then be used by the Kubernetes client. Kubernetes client

takes care of scaling and container port mapping.

4.1 Simple Pipelines

This section explains the experiment done for a simple AI pipeline. Simple AI pipeline

in this scenario consists of two nodes, i.e., a data broker node and a simple AI model

node that performs the required task. The data broker node is our input node which

reads a record from the database and forwards it to the next node. A database can

be a simple CSV file or an actual database. In AI4EU experiments, different types of

data brokers will be developed for different applications. The data broker and the other

model implementations are excepted to be provided by the user. However, this data

broker or the model can be published in a public catalog called Marketplace, where it

will be accessible to the general public.

4.1.1 House price prediction pipeline

The house price prediction pipeline consists of two nodes, i.e., CSV data broker and a

machine learning regression model, which predicts a house price based on the already

trained model trained on training data. The CSV data broker reads a record from

the test data and the generic orchestrator dispatches the records sequentially to get

a prediction for each record. The data broker and the model is implemented by the

steps described above. The models are then on boarded to Acumos platform by using

dockerized URI method and attaching the appropriate license and protobuf file. The

on boarded models are then connected together in AcuCompose to form a pipeline as

shown in figure 4.1.

Figure 4.2 shows the message dispatching in the house price prediction pipeline. The

generic orchestrator gets blueprint and dockerinfo files as input. It parses both the files

to get individual properties and the IP address of the nodes. The orchestrator’s IP

CHAPTER 4. EXPERIMENTS 42

Figure 4.1: House price pipeline

Figure 4.2: Message dispatching in House price pipeline

address to reach the nodes and other properties give node names, input message, output

message, and services implemented. The node’s protobuf files are merged into a single

consolidated protobuf file. This consolidated file contains all the messages and services

without duplication. The stubs are generated on the fly and are used to call the relevant

services of the node. The orchestrator calls the first node, the CSV data broker, with

an empty input request. The service get next row returns the first Features record

from the CSV file. The orchestrator dispatches the Features message from the first

node to the next node, the house price prediction node. The orchestrator now uses the

CHAPTER 4. EXPERIMENTS 43

prediction node’s stub to call the service predict sale price, which gives a sales price of

the house as a response. The generic orchestrator always dispatches the output of the

previous node as an input to the next node. This process is repeated until the CSV data

broker is exhausted and has no more records to return. The orchestrator server returns

a ”success” response to the orchestrator client if the message dispatching is successful

or returns the appropriate exception if something goes wrong during the process.

4.2 Advanced Pipeline: Audio Mining Pipeline

This section explains the experiment done for advanced pipelines. An advanced pipeline

in this scenario has more than two nodes. We have considered an audio mining example

where the whole operation is modeled as four reusable building blocks with clean pro-

tobuf interfaces according to AI4EU container specification. The idea behind this audio

mining pipeline is to demonstrate that a real-time application such as audio mining can

be fragmented into reusable building blocks, connected together in Acumos Visual Stu-

dio, i.e., AcuCompose, and to show that the generic orchestrator designed in this master

thesis is capable of handling the dispatching of messages according to the topology of

nodes. Since the master thesis concentrates on the design of a generic orchestrator, we

make use of pre-trained audio models for audio segmentation and converting segmented

audio files to text. pykaldi [16] is used for segmentation and automatic speech to text

functionality. We explain the protobuf interfaces and how each of the four nodes is im-

plemented according to the gRPC protocol used in AI4EU experiments. The four nodes

in the audio mining pipeline are described in the following sub-sections.

4.2.1 Audio Data Broker

The protobuf interface for the audio data broker node is show below.

syntax = "proto3";

import "google/protobuf/empty.proto";

message AudioFileJob {

string job_uuid = 1;

int64 priority = 2;

string file_name = 3;

string work_dir = 4;

int64 length = 5;

}

CHAPTER 4. EXPERIMENTS 44

service AudioFileBroker {

rpc getAudioFileJob(google.protobuf.Empty) returns(AudioFileJob);

}

The audio data broker has an input message google.protobuf.empty and the output

message AudiofileJob. Since a real-time audio application can require multiple audio

files to be processed and it will occupy a large memory space, we are not looking to

send these audio files as binary data over the gRPC channel. Instead, we send the

file names of audio files along with the working directory where audio files are stored.

The field job uuid will contain a unique UUID for each audio file job. The service

AudioFileBroker has a single RPC method, getAudioFileBroker, which takes in Empty

message and gives AudiofileJob message as the response. The RPC getAudioFileJob

will take into account multiple audio files present in the working directory and passes

the files sequentially to the orchestrator.

4.2.2 Audio Segmentation

The protobuf interface for the audio segmentation node is as follows.

syntax = "proto3";

message AudioFileJob {

string job_uuid = 1;

int64 priority = 2;

string file_name = 3;

string work_dir = 4;

int64 length = 5;

}

message AudioSegment {

string job_uuid = 1;

string segment_uuid = 2;

string file_name = 3;

string segment_file = 4;

string work_dir = 5;

int64 index = 6;

int64 length = 7;

float start_time = 8;

CHAPTER 4. EXPERIMENTS 45

float end_time = 9;

}

service AudioSegmentation {

rpc getNextAudioSegment(AudioFileJob) returns(AudioSegment);

}

The audio segmentation node has the service getNextAudioSegment, which takes input

AudioFileJob from the previous node, audio data broker, and responds with AudioSeg-

ment message. AudioSegment message has the following fields, and their purpose is

listed below:

1. job uuid: Indicates which audiofilejob the current segment belongs

2. file name refers to the original audio wave file.

3. segment file refers to the current segmented file.

4. work dir refers to the working directory

5. length field gives the total segments the original wave file is segmented to.

6. start time and end time indicates the start and end time of the segment

Figure 4.3: Audio Segmentation

Figure 4.3 shows the implementation of service AudioSegmentation. The audio seg-

mentation node receives the input AudiofileJob with fields work dir,file name and the

job uuid. The remote procedure call getNextAudiosegment performs the the actual seg-

mentation only if there is a response from audio data broker node. If the there is no

response from the audio data broker node, an empty response is returned to the orches-

trator and the orchestrator terminates when it receives a empty response from any one

if the nodes. The segmentation of the audiofile is done by using pre-trained models from

CHAPTER 4. EXPERIMENTS 46

pykaldi [16] which gives the segments for a audio file by indicating the start time and

end time of each segment. The start time and end time is made use to make segmented

audio files by making use of pydub python library.

4.2.3 Audio to text

The protobuf interface for the audio to text node is as follows.

syntax = "proto3";

message AudioSegment {

string job_uuid = 1;

string segment_uuid = 2;

string file_name = 3;

string segment_file = 4;

string work_dir = 5;

int64 index = 6;

int64 length = 7;

float start_time = 8;

float end_time = 9;

}

message SegmentText {

AudioSegment segment = 1;

string text = 2;

string language = 3;

}

service AudioToText {

rpc audiototext(AudioSegment) returns(SegmentText);

}

The service audiototext takes the input message AudioSegment from the previous au-

diosegmentation node and responds with SegmentText message. SegmentText message

has the following fields, and their purpose is listed below:

1. segment : This field holds the entire message AudioSegment from the audio seg-

mentation node.

CHAPTER 4. EXPERIMENTS 47

2. text : This field contains the converted text information from a segmented audio

file.

3. language : This field indicates the language of the audio files.

The remote procedure call audiototext performs the conversion by using pre-trained

pykaldi [16] model.

4.2.4 Audio Dialog Creator

The protobuf interface for the audio dialog creator node is as follows.

syntax = "proto3";

message AudioSegment {

string job_uuid = 1;

string segment_uuid = 2;

string segment_file = 3;

string work_dir = 4;

int64 index = 5;

int64 length = 6;

int64 start_time = 7;

int64 end_time = 8;

}

message SegmentText {

AudioSegment segment = 1;

string text = 2;

string language = 3;

}

message DialogResponse {

int64 status = 1;

}

service AudioDialogCreator {

rpc addSegment(SegmentText) returns(DialogResponse);

}

CHAPTER 4. EXPERIMENTS 48

The service AudioDialogCreator has a single remote procedure call addSegment which

takes in SegmentText message from the previous node and responds with a DialogRe-

sponse. DialogResponse message has a single field, ”status,” which will be set to ”1” if

the RPC call was successful and set to ”0” if unsuccessful. The RPC method addSeg-

ment creates a text file and writes all the converted text messages received from the

audiototext node. This text file will have a consolidated converted text from all the

audiofile jobs processed. The role of the audio dialog creator is to arrange the converted

text from different segments in the correct order.In this audio mining pipeline, the audio

dialog creator node acts as a data sink.

4.2.5 Message dispatching between the audio mining pipeline nodes

by the generic orchestrator

Figure 4.4: Message dispatching between the nodes for advanced audio mining
pipeline

After writing the protobuf interfaces for each node, implementing the gRPC servers for

the node’s services, and creating docker images for the nodes, the pipeline nodes are

onboarded to Acumos. The pipeline is composed in the visual studio of Acumos, and

the solution package for the Kubernetes environment is downloaded. The solution.zip

has the deployments for all the nodes, blueprint.json, dockerinfo.json, the Kubernetes

client script, and the orchestrator client script. The user needs to execute the Kubernetes

client script with a namespace as an input parameter for deploying all the docker images

CHAPTER 4. EXPERIMENTS 49

in a Kubernetes cluster. This target Kubernetes environment can be an actual local

Kubernetes cluster, or a Kubernetes cluster created using minikube on the user’s laptop

for development purposes. After successful deployment, the user needs to execute the

orchestrator client script with the orchestrator server’s IP address and the port. This IP

address and port will be given as output of the Kubernetes client script. The orchestrator

client will pass the blueprint, dockerinfo, and the zip file of protobuf files as serialized

data over the gRPC call to the orchestrator server. The orchestrator server will, in

turn, perform pre-processing steps like deserialization, merging of protobuf files, and

automatic generation of stubs and then passes the control to the generic orchestrator

module. Figure 4.4 shows the dispatching of messages between the nodes by the generic

orchestrator. The orchestrator successfully identifies the starting node or the input node

of the pipeline, creates a graph data structure for the nodes, and calls the BFS traversal

to get the order in which the message has to be dispatched. The orchestrator then

dispatches the output of the previous node as input of the next node. The orchestrator

terminates the execution when it receives an empty response from any node or when an

exception occurs. Upon successful execution, the orchestrator server sends the status

code and the status message to the orchestrator client. The user can view the message

dispatching output by logging into the orchestrator’s Kubernetes pod. The text file

containing the converted audio to text can also be found in the orchestrator’s Kubernetes

pod.

4.3 Important Challenges faced and solved

In this section we explain briefly the main challenges faced during the gRPC implemen-

tation of the nodes and during the design process of a generic orchestrator.

4.3.1 The problem of restarting the pipeline containers

The audio mining pipeline’s docker containers running the gRPC servers terminate when

the node service returns a response. This termination is not ideal as we need the docker

containers always running, and the containers for each node should be able to process

multiple requests.

For audio data broker, this problem was solved by scanning the working directory for

multiple wave files and storing them in an array. A counter is set to control the array’s

index, and when all wave files are processed, the data structures used for storing the

wave files, the counter variable, and other variables are reset to their default values.

CHAPTER 4. EXPERIMENTS 50

For the segmentation node, the getNextAudioSegment was changed to keep it lightweight.

A new function segmentaudiofile was implemented to perform the segmentation for an

audio file. This is shown in figure 4.3. The function segmentaudiofile is called only once

to get all the audio segments for an audio file. These segments are stored in an array,

and the getNextAudioSegment call for the next run will use the segments stored in the

array to give the next segment to the orchestrator. The data structures of the node are

reset to default after processing an audio file job. The gRPC server is also active after

processing all the audio file jobs.

For the audiototext node, new wave files needed to be created by using the start time

and end time of the segments. An open-source python library pydub was used to create

new segmented wave files by taking the segment’s start time and end time.

4.3.2 Search for data broker node in blueprint.json

In the early version of the generic orchestrator, an assumption was made that the first

node in the pipeline was always the data broker node. However, this assumption had

to be changed to allow cyclic typologies in future. The latest version of the generic or-

chestrator searches for the data broker node which has the input message with ”Empty”

or ”google.protobuf.Empty” and passes this node as the source node to the Breadth

first search algorithm(BFS). The BFS algorithm then gives the traversal path for the

orchestrator accordingly.

Chapter 5

Related Work

5.1 Acumos and Design Studio

Acumos is an Open Source Platform that supports the training, integration, and deploy-

ment of AI models. Acumos allows data scientists to publish AI models while guarding

them against developing fully integrated solutions. A model in Acumos is interoperable

with any other microservices of Acumos, regardless of the toolkit (such as TensorFlow,

SciKit Learn, H20)used to build it. This interoperability is achieved as the model is

packaged into an independent, containerized microservice. Models developed with Acu-

mos supported toolkit and language including Java, Python, and R can be onboarded,

packaged, and cataloged. The microservices of Acumos are easy to integrate into real-

time applications, for any software developer, without specialized knowledge of data

science and AI.[17]

Acumos provides a marketplace for easy collaboration and sharing of artificial intelli-

gence solutions. Development and business teams across one company or across mul-

tiple domains can share the solutions securely. The marketplace also allows ratings,

descriptions, tagging, licensing options for each model on-boarded on the platform. The

platform supports communication between AI experts and software developers that au-

tomate the process for model selection while automating error reporting and software

updates for models that have been acquired and deployed through the marketplace. AI

models can be downloaded from the marketplace, trained, graded on their ability to

analyze datasets, and integrated into completed solutions or used to compose pipelines

in AcuCompose. The development teams can access encapsulated AI models without

knowing the inner details of the models and make connections with various data sources,

using a range of data adaptation brokers to build complex applications through a simple

chaining process. Unlike other similar platforms, Acumos is not tied to any one runtime

51

CHAPTER 5. RELATED WORK 52

infrastructure or a cloud service. Acumos provides an extensible mechanism for pack-

aging, sharing, licensing, and deploying AI models .They can be published in a secure

catalog that is easily distributed between peer systems.

Acumos has a graphical interface called Design Studio for combining multiple models,

data brokers into a full end-to-end solution that can be deployed into any runtime

environment, such as a cloud services such as Azure, and AWS, a private data center,

or a specialized hardware environment designed to accelerate AI applications. Acumos

only requires a containerization tool, like Docker, to deploy and execute portable general

purpose applications.

AI4EU experiments use the Acumos platform and its features for onboarding and shar-

ing the marketplace models. However, AI4EU experiments go beyond the capabilities

of Acumos by supporting not only AI or machine learning models but any model or

software built following the container specification as explained in section 2.5. Acumos

supports onboarding mainly by using model bundles, and protobuf’s are generated au-

tomatically. Nevertheless, this automatic generation results in many constraints in the

usage of protobufs. Acumos has different model runners or orchestrators for various

programming languages supported by it to execute the pipelines. These different model

runners have different paths where REST services are exposed and are not standardized.

AI4EU experiments, therefore, decided to come up with its own generic orchestrator,

which can execute any pipeline composed in the visual studio of Acumos. The generic

orchestrator designed in the scope of this master thesis is programming language ago-

nistic and would not have a problem with dependencies. The model provider has all the

flexibilities to build the container as needed, including all dependencies, and provide a

gRPC service.

5.2 Kubeflow

Kubeflow is a machine learning toolkit for Kubernetes. Kubeflow Pipelines [18] is a

platform for building and deploying portable, scalable machine learning (ML) workflows

based on Docker containers. A pipeline in Kubeflow is a description of an ML workflow.

This pipeline includes all components in the workflow and how they combine in the

form of a graph. The pipeline also contains the definition of the inputs required to run

the pipeline and the inputs and outputs of each component. A pipeline component is a

self-contained Docker image that performs one step in the pipeline.

At an abstract level, the execution of a pipeline in kubeflow proceeds as follows:

CHAPTER 5. RELATED WORK 53

1. Python SDK: The SDK is used to create components or build a pipeline using

Kubeflow domain-specific language(DSL)

2. DSL compiler: The compiler transforms the pipeline written in Python code into

a static configuration (YAML).

3. Pipeline Service: call the service to create a pipeline run from the static configu-

ration.

4. Kubernetes resources: Kubernetes API server is called by the pipeline service to

create the necessary Kubernetes resources to execute the pipeline.

5. Orchestration controllers: execution of containers in a pipeline is done by a set

of orchestration controllers. Argo Workflow controller is one such orchestrator

controller.

6. Artifact storage: The Pods store metadata and artifacts.

7. Persistence agent: The pipeline service creates the Kubernetes resources and is

monitored by a persistent agent. It also records the set of containers executed

along with their input and output.

8. Pipeline web server: The pipeline web server is used to collect data from different

services to display important information such as debugging information, execution

status of pipelines.

The Kubeflow Pipelines SDK provides a set of Python packages that users can use to

specify and run their machine learning (ML) workflows.

5.2.1 Building pipeline components

Components in a Kubeflow pipeline are containerized applications that perform a step

in the ML workflow. Pipeline components can be defined in two ways. [19]

1. A containerized application can be used as a pipeline component. A component

specification needs to be created to define a container image as a pipeline compo-

nent.

2. A python function can be made as a pipeline component. The Kubernetes pipelines

SDK enables the conversion of a python function into a pipeline component.

CHAPTER 5. RELATED WORK 54

5.2.2 Understanding how data is passed in the Kubeflow pipeline

When Kubeflow Pipelines executes a component, a container image is started in a Kuber-

netes Pod, and inputs are passed as command-line arguments. The outputs are returned

as files. The definition of inputs, outputs, and how they are passed to the program as

command-line arguments are present in the specification of the component. Typically,

small inputs are passed to the components as values, and significant inputs are passed as

file paths. Python function-based components handle the complexity of passing inputs

into the component and passing the function’s outputs back to the pipeline. [19]

5.2.3 Comparison of Kubeflow with AI4EU experiments

In Kubeflow, the users need to use the Kubeflow Pipeline SDK to write the pipeline

components, compile the component using a DSL compiler to get the static configura-

tion, and finally run the pipeline using the Kubeflow Pipeline SDK. In comparison, the

generic orchestrator designed for AI4EU experiments in this master thesis automatically

generates the communication artifacts on the fly and can execute any generic pipeline

which it has not seen before.

Chapter 6

Conclusion and Future work

In this thesis, we have designed a generic orchestrator capable of executing an AI4EU

pipeline. The design of the generic solution combines multiple open-source technologies

like gRPC communication, protocol buffers, Docker, and Kubernetes. The generic or-

chestrator creates a valid request, gets the response for each node in the pipeline, and is

responsible for dispatching messages between the nodes following the pipeline topology

by dynamically linking the nodes. The problem of triggering the generic orchestrator is

also solved by using gRPC communication. The files generated by the AI4EU experi-

ments platform after a pipeline is composed in its visual editor are sent over as binary

to the gRPC orchestrator server by the gRPC orchestrator client, which will start the

generic orchestrator module. The gRPC orchestrator server returns a status code and

a status message to the client after executing the pipeline. With the help of gRPC, the

generic orchestrator designed is capable of executing any pipeline about which it has no

prior knowledge. The usage of Docker as the containerization tool enables nodes/models

in a pipeline to be implemented in any programming language and using any libraries

and tools. Docker gives flexibility to the creator of the node, and all his needs are nicely

encapsulated in a Docker container. The use of Kubernetes as deployment environments

enables automatic scaling of the nodes and the orchestrator. The generic orchestrator

is not limited to machine learning or deep learning models, but it executes any pipeline

composed following the AI4EU container specification. For Experiments and evaluation,

we have implemented a simple and advanced pipeline. A simple pipeline has two nodes:

a CSV data broker and a machine learning model that predicts the house price. An ad-

vanced pipeline is an audio mining pipeline. For this experiment, we have four nodes: an

audio data broker, audio segmentation, audio to text, and an audio dialog creator. The

generic orchestrator successfully handled the message dispatching and dynamic linking

of the nodes deployed in a Kubernetes cluster.

55

CHAPTER 6. CONCLUSION AND FUTURE WORK 56

Our work promises several future research directions. As part of Experiments, we have

implemented evaluation pipelines, also called production pipelines. In the future, exper-

iments for training pipelines are planned. There is also the scope of having a web-UI for

the orchestrator for user interaction. There will be support for the execution of cyclic

pipeline topologies as well. The generic orchestrator designed in the scope of this master

thesis follows a serial execution pattern. The AI4EU project plans to have several or-

chestrators for parallel execution, handling streaming and batch processing data. There

is scope for supporting the following utility nodes or the infrastructure nodes in the

AI4EU pipelines.

1. Splitter Node: The splitter splits a protobuf message to multiple models.

2. Data Mapper Node: Maps multiple protobuf messages coming from multiple mod-

els.

3. Diagnostic Node: Connect diagnostic tools likes Tensorboard.

4. Model Initializer: Some models require initialization before it is ready for pipeline

execution.

5. Persistent Volumes: Some models/nodes in a pipeline need to share a common file

system.

For the models or nodes in the pipeline to connect to the infrastructure/utility nodes,

those connections needs to be reflected in the protobuf interface of the models. The

orchestrator designed in this master thesis supports the Kubernetes deployment en-

vironment. There is scope for designing orchestrators for various other deployment

environments as well. A separate orchestrator can be designed for Robot operating sys-

tem(ROS) and for each cloud provider, such as Amazon Web Services(AWS), Microsoft

Azure, Google cloud, GAIA-X, and several others.

List of Figures

1.1 SOAP API . 1

1.2 REST API . 4

1.3 gRPC Protocol . 6

2.1 Artificial Neural Network . 12

3.1 Graph Data Structure . 30

3.2 Dynamic linking of nodes . 34

3.3 Execute Pipeline . 36

3.4 Triggering the orchestrator . 38

4.1 House price pipeline in Acumos . 42

4.2 Message dispatching in House price pipeline 42

4.3 Audio Segmentation . 45

4.4 Message dispatching between the nodes for advanced audio mining pipeline 48

57

List of Tables

58

Bibliography

[1] Arthur Ryman. Simple object access protocol (soap) and web services. In Proceed-

ings of the 23rd International Conference on Software Engineering, ICSE ’01, page

689, USA, 2001. IEEE Computer Society. ISBN 0769510507.

[2] Authors oracle. Simple object access protocol overview - oracle. https://docs.

oracle.com/cd/A97335_02/integrate.102/a90297/overview.htm.

[3] Leonard Richardson, Mike Amundsen, and Sam Ruby. RESTful Web APIs. O’Reilly

Media, Inc., 2013. ISBN 1449358063.

[4] Roy Thomas Fielding. Architectural styles and the design of network-based software

architectures. Doctoral dissertation, University of California, Irvine, 2000.

[5] Authors gRPC. grpc docs. https://grpc.io/docs/, 02 2019.

[6] Authors docker. Docker overview. https://docs.docker.com/get-started/

overview/.

[7] Shuai Zhao, Manoop Talasila, Guy Jacobson, Cristian Borcea, Syed Anwar Aftab,

and John F Murray. Packaging and sharing machine learning models via the acumos

ai open platform. In 2018 17th IEEE International Conference on Machine Learning

and Applications (ICMLA), pages 841–846, 2018. doi: 10.1109/ICMLA.2018.00135.

[8] David Kriesel. A Brief Introduction to Neural Networks. 2007. URL

availableathttp://www.dkriesel.com.

[9] Maysam Abbod, James Catto, Derek Linkens, and Freddie Hamdy. Application

of artificial intelligence to the management of urological cancer. The Journal of

urology, 178:1150–6, 11 2007. doi: 10.1016/j.juro.2007.05.122.

[10] Developers Google. Protocol buffers. https://developers.google.com/

protocol-buffers, 07 2008.

[11] Developers Google. Intro to grpc and protocol buffers

— by trevor kendrick. https://medium.com/well-red/

intro-to-grpc-and-protocol-buffers-c21054ef579c.

59

https://docs.oracle.com/cd/A97335_02/integrate.102/a90297/overview.htm
https://docs.oracle.com/cd/A97335_02/integrate.102/a90297/overview.htm
https://grpc.io/docs/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
available at http://www.dkriesel.com
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
 https://medium.com/well-red/intro-to-grpc-and-protocol-buffers-c21054ef579c
 https://medium.com/well-red/intro-to-grpc-and-protocol-buffers-c21054ef579c

BIBLIOGRAPHY 60

[12] Dirk Merkel. Docker: lightweight linux containers for consistent development and

deployment. Linux journal, 2014(239):2, 2014.

[13] developers kubernetes. Production-grade container orchestration: Automated con-

tainer deployment, scaling, and management. https://kubernetes.io/.

[14] Martin Welß. Ai4eu container specifications. https://github.com/ai4eu/

tutorials/blob/master/Container_Specification/ai4eu_container_

specification.pdf, 04 2020.

[15] Authors gRPC. Generated code reference python grpc. https://grpc.io/docs/

languages/python/generated-code.

[16] Dogan Can, Victor R. Martinez, Pavlos Papadopoulos, and Shrikanth S. Narayanan.

Pykaldi: A python wrapper for kaldi. In Acoustics, Speech and Signal Processing

(ICASSP), 2018 IEEE International Conference on. IEEE, 2018.

[17] The Linux Foundation ATT. Acumos an open source ai machine learning

platform. https://www.acumos.org/wp-content/uploads/sites/61/2018/03/

acumos_open_source_ai_platform_032518.pdf.

[18] The Kubeflow Authors. Introduction to the pipelines sdk — kubeflow. https:

//www.kubeflow.org/docs/components/pipelines/sdk/sdk-overview/, 2018-

2021.

[19] The Kubeflow Authors. Building pipeline with sdk — kubeflow. https://www.

kubeflow.org/docs/components/pipelines/sdk/sdk-overview/, 2018-2021.

https://kubernetes.io/
https://github.com/ai4eu/tutorials/blob/master/Container_Specification/ai4eu_container_specification.pdf
https://github.com/ai4eu/tutorials/blob/master/Container_Specification/ai4eu_container_specification.pdf
https://github.com/ai4eu/tutorials/blob/master/Container_Specification/ai4eu_container_specification.pdf
https://grpc.io/docs/languages/python/generated-code
https://grpc.io/docs/languages/python/generated-code
https://www.acumos.org/wp-content/uploads/sites/61/2018/03/acumos_open_source_ai_platform_032518.pdf
https://www.acumos.org/wp-content/uploads/sites/61/2018/03/acumos_open_source_ai_platform_032518.pdf
https://www.kubeflow.org/docs/components/pipelines/sdk/sdk-overview/
https://www.kubeflow.org/docs/components/pipelines/sdk/sdk-overview/
https://www.kubeflow.org/docs/components/pipelines/sdk/sdk-overview/
https://www.kubeflow.org/docs/components/pipelines/sdk/sdk-overview/

	Declaration of Authorship
	Acknowledgements
	Abstract
	1 Introduction
	1.1 SOAP, WS-I and why it failed
	1.1.1 Why WS* was needed and SOAP failure

	1.2 Why REST was not interoperable
	1.2.1 Problems with REST

	1.3 Motivation for using gRPC
	1.4 The role of Docker as a containerization tool
	1.5 AI4EU Experiments and Acumos
	1.6 Problem Statement
	1.7 How the Thesis is Organised

	2 Theoretical Background
	2.1 Different Fields of AI and Need for AI pipelines
	2.1.1 Symbolic AI
	2.1.2 Artificial Neural Networks
	2.1.2.1 Components
	2.1.2.2 Working

	2.1.3 Machine Learning
	2.1.4 Hybrid AI

	2.2 gRPC and Protobuf
	2.3 Docker
	2.3.1 Docker Architecture
	2.3.2 Docker Objects

	2.4 Kubernetes
	2.4.1 Pod
	2.4.2 ReplicaController and ReplicaSets
	2.4.3 Deployment
	2.4.4 Services

	2.5 AI4EU Container Specification
	2.5.1 Defining the protobuf interface
	2.5.2 Create the gRPC docker container
	2.5.3 On boarding
	2.5.4 First Node Parameters (e.g. for Data brokers)
	2.5.5 Scalability, GPU Support and Training

	3 Methodology
	3.1 gRPC Generated-code and use of stubs
	3.1.1 Code Elements
	3.1.1.1 Stub
	3.1.1.2 Servicer
	3.1.1.3 Registration Function
	3.1.1.4 Use of _pb2 and _pb2_grpc in Orchestrator

	3.2 Toplogy and Node Information of the Pipeline
	3.2.1 Topology Information
	3.2.2 The DNS name and port of nodes in a pipeline

	3.3 Graph Data Structure and the Traversal
	3.4 Protobuf Merging and Automatic Generation of Stubs
	3.5 Dynamic Linking of Nodes of the pipeline
	3.5.1 Find Node in pipeline List
	3.5.2 Start Node
	3.5.3 Dynamic linking of nodes

	3.6 Pipeline Execution
	3.7 Use of gRPC for triggering the orchestrator
	3.8 The flow of the generic orchestrator
	3.8.1 Orchestrator Client
	3.8.2 Orchestrator Server

	4 Experiments
	4.1 Simple Pipelines
	4.1.1 House price prediction pipeline

	4.2 Advanced Pipeline: Audio Mining Pipeline
	4.2.1 Audio Data Broker
	4.2.2 Audio Segmentation
	4.2.3 Audio to text
	4.2.4 Audio Dialog Creator
	4.2.5 Message dispatching between the audio mining pipeline nodes by the generic orchestrator

	4.3 Important Challenges faced and solved
	4.3.1 The problem of restarting the pipeline containers
	4.3.2 Search for data broker node in blueprint.json

	5 Related Work
	5.1 Acumos and Design Studio
	5.2 Kubeflow
	5.2.1 Building pipeline components
	5.2.2 Understanding how data is passed in the Kubeflow pipeline
	5.2.3 Comparison of Kubeflow with AI4EU experiments

	6 Conclusion and Future work
	List of Figures
	List of Tables
	Bibliography

