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ABSTRACT 

 

The performance of optical systems is highly degraded by atmospheric turbulence when observing both vertically 

(e.g., astronomy, remote sensing) or horizontally (e.g. long-range surveillance). This problem can be partially 

alleviated using adaptive optics (AO) but only for small fields of view (FOV), described by the isoplanatic angle, for 

which the turbulence-induced aberrations can be considered constant. Additionally, this problem can also be tackled 

using post-processing techniques such as deconvolution algorithms which take into account the variability of the 

point spread function (PSF) in anisoplanatic conditions.  

 

Variability of the PSF across the field of view in anisoplanatic imagery can be described using principal component 

analysis. Then, a certain number of variable PSFs can be used to create new basis functions, called principal 

components (PC), which can be considered constant across the FOV and, therefore, potentially be used to perform 

global deconvolution. Our approach is tested on simulated, single-conjugate AO data.  

 

1. INTRODUCTION 

 

 

Deconvolution algorithms almost always assume a constant PSF across the degraded image. This simplification 

allows to perform deconvolution operations over the entire field of view (FOV) using e.g. the fast Fourier transform 

(FFT), thus reducing the computational cost. However, there are many situations where the assumption of spatial 

invariance is not valid. For instance, camera shake, object motion, optical aberrations or atmospheric turbulence are 

typical cases where the PSF can vary significantly across FOV [1]. 

 

Atmospheric turbulence is one the most important factors that degrade the quality of an image in astronomical 

observations, remote sensing or long-range surveillance and reconnaissance. This reduction of quality can be 

partially corrected by means of adaptive optics (AO) but only within the so-called isoplanatic angle. When the FOV 

is much larger than this angle the variability of the PSF becomes visible. Fig. 1 shows a simulated long exposure 

image of a stellar field observed with the 3.5-m Starfire Optical Range (SOR) telescope (details of the simulation are 

described in Section 4). The AO guide star (GS) has been placed in the center of the FOV. The reader should note 

how the PSF elongation becomes more important for the stars located further out from the GS. 

 

 



 
 

Fig. 1. Left: anisoplanatic AO simulation with the 3.5-m SOR telescope for atmosphere 1 (details of the simulation can be found in Section 4). 

Location of the GS is marked with a green circle. Right: Richardson-Lucy deconvolution using the GS as reference PSF. Image are shown in log 
scale and in false colors. 

 

 

A typical way to deal with this situation is to divide the image into small non-overlapping regions where the PSF 

can be assumed constant, then perform local deconvolution and stitch all pieces back together again. Larger, 

partially-overlapping regions can be used to reduce artifacts at the boundaries by interpolating the influences of the 

different PSFs in the common regions [2].  

 

A more elegant method consists in representing the varying set of PSFs through an appropriate basis. Then, the PSFs 

are expressed as weighted sums of functions whereby each of these functions can be assumed to be spatially 

invariant. Representing a PSF as a linear combination of functions is not a new idea. For instance, the wavelet 

transform (WT) provides a set of fast-decaying functions that decompose the frequency content of a signal, spatially 

localizing such content simultaneously. Since PSFs are in general sharp and compact, the WT can be used to 

represent their variability [3]. The shapelet transform (ST) also offers a highly localized orthogonal set, which is 

derived from Gaussian-weighted Hermite polynomials. It was proposed to represent astronomical objects, in 

particular, weak gravitational lensing phenomena [4]. Unfortunately, neither of them is able to represent correctly at 

the same time all the possible features at small and large scales [5].  

 

Unlike WT and ST, principal component analysis (PCA) is not based on common analytical functions but on the 

data itself, thus increasing its efficiency in the representation of the data. In a nutshell, the derived functions are the 

eigenvectors of the covariance matrix created from the data to be represented. In reference [6] the authors use filter 

banks computed through PCA to convolve raw images for representing different types of blurring, such as foveal 

vision or aberrations experienced by a glaucoma patient, among others. The use of PCA allows for choosing an 

informed trade-off between accuracy of the representation and computational cost.  

 

To our knowledge, reference [7] was the first to propose the use of PCA in the deconvolution operation to account 

for the variability of PSFs in AO observations. The authors show that the spatially-varying deconvolution problem 

can be tackled by a weighted sum of a series of spatially-invariant deconvolutions. The chosen algorithm for 

spatially-invariant deconvolution was the Richardson-Lucy (RL) method, which obtains the maximum likelihood 

solution in the presence of Poisson noise. Reference [7] shows the performance of this approach on images acquired 

with the QUIRC/Hokupa'a AO instrument. 

 

Reference [8] presents a myopic algorithm that also assumes Poisson noise in the data fidelity term. The 

anisoplanatism of the PSFs is described with one parameter that modifies the turbulence power spectral density 

based on the von Karman model. In particular, it linearly modifies the layer altitudes of a proposed atmosphere 

profile, thus stretching or compressing its structure while preserving its morphology. In practice, this means keeping 

constant the set of functions and scaling the coefficients that weight them by a factor which must be estimated 

during the minimization process, thus justifying the myopic nature of this approach. 



 

Reference [9] introduces PCA in the L0-AbS algorithm, short for 𝑙0 analysis-based sparsity. This is an iterative, 

regularized filter that assumes Gaussian noise for the likelihood and a 𝑙0-based prior for the object. A threshold is 

applied to the solution at each iteration using a combination of the 2-D dual tree complex wavelet transform and the 

translation-invariant Haar pyramid. This approach shows good results for different types of extended objects. 

 

The goal of this paper is to test PCA on simulated PSFs from the single-conjugate AO system at SOR. Two 

deconvolution algorithms were modified to include PCA. The influence of the number of principal components on 

the subsequent global image reconstruction was tested. The comparison of this approach vs. traditional 

deconvolution with a single PSF was also carried out. 

 

This paper is organized as follows. In Section 2 the technique of decomposing a dataset in its principal components 

(PC) is described. Section 3 is intended to show how to include PCs into some iterative deconvolution algorithms. 

Section 4 describes the AO simulations used in this work and the obtained results. Finally, Section 5 outlines future 

directions. 

 

 

2. SPATIALLY VARIANT CONVOLUTION USING PCA 

 

 

The observed image 𝑖(�⃗�) is given by the standard image formation equation, which expresses the image at a position  

�⃗� as the convolution of an object 𝑜(�⃗⃗�) with a PSF ℎ(�⃗⃗�, �⃗�) that accounts for distortions caused by atmospheric 

turbulence, relative camera motion or optical aberrations: 

 

    𝑖(�⃗�) = 𝑜(�⃗⃗�)⨂ℎ(�⃗⃗�, �⃗�) + 𝑛(�⃗�)    (1) 

 

where ⨂ denotes the convolution operator, 𝑛(�⃗�) accounts for the noise from the source and the detector, and �⃗� and 

�⃗⃗� are 2-D vectors denoting image-, and object-space coordinates, respectively. Note that the PSF is assumed to 

change with �⃗⃗� and �⃗�. If the PSF can be approximated as a weighted sum of 𝐽 functions (hereafter we use the term 

eigen-PSF or principal component -PC- to denote such functions): 

 

    ℎ(�⃗⃗�, �⃗�) ≈ ∑ 𝑎𝑗(�⃗⃗�) ⋅𝐽
𝑗=1 ℎ𝑗(�⃗�)    (2) 

 

then Equation (1) becomes: 

 

    𝑖(�⃗�) ≈ ∑ [(𝑎𝑗 ⋅ 𝑜)⨂ℎ𝑗](�⃗�)𝐽
𝑗=1 + 𝑛(�⃗�)    (3) 

 

The set of ℎ𝑗’s forms a basis of space-invariant PSFs that can be convolved independently with the object, and 

whose influence/weighting over the object is determined by the set of coefficients 𝑎𝑗. In other words, 𝑎𝑗’s weight the 

object domain according to the variability expressed by the ℎ𝑗’s. To compute both ℎ𝑗’s and 𝑎𝑗’s an appropriate basis 

must be chosen. Principal component analysis (PCA) creates an orthogonal basis such that the first eigen-PSF 

accounts for as much of the variability present in the data as possible, and each succeeding eigen-PSF has the 

highest variance possible under the constraint to be orthogonal to the preceding eigen-PSF.   

 

The way to compute PCA in order to find the elements of the decomposition in Equation (2) is by means of singular 

value decomposition (SVD) [10], for which the PSF ℎ(�⃗⃗�, �⃗�) must be arranged into a matrix 𝐾 that is built in the 

following way. Let us consider an 𝑀 × 𝑀 pixel FOV representing an extended object or a stellar field. As an 

example suppose that 𝑀 = 256 so the total number of pixels in the FOV is 65536. At each location or pixel there is 

a representation of a space-variant PSF. If the support of the PSFs is 𝑁 × 𝑁 pixels, and for example 𝑁 = 64, then 

one needs a total number of 𝑀2 vectors of 𝑁2 size (lexicographically-ordered PSFs), i.e., 65536 vectors of size 

4096 that represent the total PSF variability in the FOV. Hence, 𝐾 is a 𝑀2 × 𝑁2 matrix with as many columns as 

PSFs and as many rows as individual PSF elements. Singular value decomposition of matrix 𝐾 results in: 

 

    𝐾 = 𝑈Λ𝑉𝑇       (4) 

 



where 𝑈 and 𝑉 are two matrices with orthonormal columns containing the eigen-PSFs ℎ𝑗’s and coefficients 𝑎𝑗’s, 

respectively, and Λ is a diagonal matrix whose elements are the eigenvalues of the decomposition. At this point it is 

important to stress that every PSF should be centered so that the peak always lies at the center pixel of the PSF 

support, otherwise, the SVD would be dominated by PSF translation rather than by its shape. The maximum number 

of useful eigen-PSFs will be limited by the rank of matrix 𝐾, i.e., the lowest of the two numbers: 𝑀2 or 𝑁2. In our 

work 𝑀 ≫ 𝑁, and so we will obtain a maximum number of 𝑁2 eigen-PSFs (4096, using the numbers quoted 

above). In order to reduce the dimensionality of the problem it is preferable to work with the covariance matrix of 𝐾 

rather than with 𝐾 itself, thus results a symmetric 𝑁2 × 𝑁2 matrix. Singular value decomposition of this covariance 

matrix can be expressed as: 

 

    𝐶𝑜𝑣(𝐾) = 𝐾𝐾𝑇 = 𝑈Λ𝑉𝑇𝑉ΛTUT = UΛ2UT     (5) 

 

Each of the eigen-PSFs ℎ𝑗, which forms the orthonormal basis we are interested in, can be obtained from the 

columns of the matrix 𝑈. The field of coefficients 𝑎𝑗’s can be obtained directly from the rows of 𝑈𝑇𝐾. The value of 

the corresponding eigenvalue in the matrix Λ gives the importance of its eigenvector. The larger the eigenvalue, the 

more variability is contained in the corresponding eigen-PSF.  Notice that since we assume we have access to the 

PSFs at all locations, then we will be able to compute all the coefficients at each of these locations for each eigen-

PSF, otherwise one would have to interpolate 𝑎𝑗’s to obtain those coefficients where the PSF is unknown [11].  

 

Exact recovery of the original PSFs requires the use of all possible eigen-PSFs that can be obtained from PCA. 

However, if only the first 𝐽 eigen-PSFs are kept, then the recovered data has the maximum possible variance that 

could be preserved from the original data whereas the square reconstruction error is minimum. This characteristic 

allows PCA to retain as much of the original variance as possible with only a few eigen-PSFs, thus reducing the 

computational overhead associated with Equation (3).  

 

 

 
Fig. 2. First row: example simulated PSFs from positions (127,127), (1,127), (127,1) and (1,1) respectively, within a FOV of 256 × 256 pixels. 

The support of these PSFs is 64 × 64 pixels. Second row: first four eigen-PSFs shown from left to right in order of decreasing importance 

according to their respective eigenvalues. The support of these eigen-PSFs is also 64 × 64 pixels. Third row: coefficient fields associated with 

the corresponding eigen-PSFs above. The support of the coefficient field is the same as the FOV, i.e., 256 × 256 pixels.     
 

  

Fig. 2 shows the result of PCA over PSFs within a 256 × 256 FOV (see Section 4 for description of the input data). 

Notice how the first two eigen-PSFs are related to the size of the original PSFs, while the next two describe the 

elongations along the diagonals and horizontal-vertical directions, respectively. The coefficients weight the 

importance of an eigen-PSF to obtain the correct PSF at each location.  For example, the sign of the coefficient in 



the third row, fourth column determines whether the associated eigen-PSF will be elongated in the horizontal or 

vertical direction at a given location in the FOV (second row, fourth column). In our study we have knowledge of 

PSFs at every location and so we can compute the entire fields of coefficients, otherwise there would be missing 

points in the third row in Fig. 2. 

 

The importance of each eigen-PSF is expressed by its corresponding eigenvalue. The larger the eigenvalue the more 

information is contained in the eigen-PSF. Table 1 and Fig. 3 quantify the importance of the first 10 eigen-PSFs. 

The first 4 eigen-PSFs (Fig. 2, second row) contain more than 95% of the original information, 99% is contained in 

the first 10 eigen-PSFs. If the PSF support is 64 × 64 pixels then it is possible to produce a total number of 4096 

eigen-PSFs. Although all of them are necessary to recover the original PSFs exactly, only a few of them are needed 

to obtain a relatively close recovery. This implies an important reduction in the computational cost needed to deal 

with the problem. 

 

 
Table 1. Example PCA analysis based on atmosphere 2 from simulation described in Section 4. Variation is defined as the percentage a particular 

eigenvalue forms with respect to the sum of all the eigenvalues. 

 

Eigen-PSF no. Eigenvalue Variation (%) Accumulated Variation (%) 

1 16,29 69,75 69,75 

2 3,91 16,73 86,48 

3 1,15 4,91 91,39 

4 1,03 4,40 95,79 

5 0,33 1,43 97,22 

6 0,15 0,63 97,85 

7 0,10 0,44 98,29 

8 0,09 0,38 98,67 

9 0,05 0,22 98,89 

10 0,04 0,17 99,06 

 
 

 

 
 

Fig. 3. Accumulated variation per eigen-PSF. Only 4 eigen-PSFs (second row in Fig. 2) are enough to represent 95% of the total variability 

present in the original 65536 PSFs. With 10 eigen-PSFs it is possible to represent more than 99% of the PSF variability in the FOV. 
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3. DECONVOLUTION ALGORITHMS WITH PCA 

 

 

Inclusion of PCA into deconvolution algorithms is relatively easy. In particular, with respect to the Richardson-Lucy 

(RL) method [7], it basically consists in substituting the expression for ℎ(�⃗⃗�, �⃗�) by the weighted sum 

∑ 𝑎𝑗(�⃗⃗�)ℎ𝑗(�⃗�)𝐽
𝑗=1 , 𝐽 being the desired number of considered eigen-PSFs. The equation for RL iteration is as follows: 

 

     𝑜(𝑛+1) = [ℎ𝑇⨂ (
𝑖

ℎ⨂𝑜(𝑛))]
𝛾

∙ 𝑜(𝑛)    (6) 

 

where 𝑛 is iteration number, 𝛾 is a parameter that speeds up the convergence rate when 𝛾 > 1 and slows it down 

when 𝛾 < 1, and ℎ𝑇  is the conjugate of the Fourier transform of the PSF or its 180° rotated version in the spatial 

domain. With PCA, Equation (6) is modified in the following manner: 

 

    𝑜(𝑛+1) = [∑ (ℎ𝑗
𝑇⨂ (

𝑖

∑ ℎ𝑗⨂(𝑎𝑗∙𝑜(𝑛))
𝐽
𝑗=1

)) ∙ 𝑎𝑗
𝐽
𝑗=1 ]

𝛾

∙ 𝑜(𝑛)  (7) 

 

The current estimate for the object at iteration 𝑛 must be weighted by the corresponding set of coefficients 𝑎𝑖 

associated with the eigen-PSFs ℎ𝑗. The result is convolved with the eigen-PSFs (and added up) and compared with 

the dataset 𝑖. This correcting term is then convolved again with the set of rotated eigen-PSFs ℎ𝑗
𝑇  and coefficients 𝑎𝑗 

in order to express it in the object space, before its multiplication with the current estimate. Notice that ℎ𝑗
𝑇  still uses 

the same set of 𝑎𝑗’s. 

 

In the same way PCA can be applied to the Landweber method [12] which yields the maximum likelihood solution 

in the presence of Gaussian noise, instead of Poisson noise as RL does. Such approach results in the following 

iterative method: 

 

𝑜(𝑛+1) = [∑ (ℎ𝑗
𝑇⨂(𝑖 − ∑ ℎ𝑗⨂(𝑎𝑗 ∙ 𝑜(𝑛))𝐽

𝑗=1 )) ∙ 𝑎𝑗
𝐽
𝑗=1 ]

𝛾

+ 𝑜(𝑛)   (8) 

 

 

In a similar way, reference [9] modifies the L0-AbS algorithm which is a regularized inverse filter that assumes 

Gaussian statistics for the likelihood term. Its iteration can be expressed in the Fourier domain as: 

 

    𝑂(𝑛+1) =
𝑂𝑡

(𝑛)
+𝜐∙𝐻∗∙𝐼

1+𝜐∙|𝐻|2       (9) 

 

Capital letters denote Fourier transformation and 𝑂𝑡
(𝑛)

 is a filtered version of the current estimate after thresholding 

in the wavelet domain using the 2-D dual tree complex WT or the translation-invariant Haar pyramid (or a 

combination of both). The wavelet coefficients are modeled as a strictly sparse vector following an 𝑙0 norm 

approach with a rate parameter 𝛼 plus a white and Gaussian residual term of standard deviation 𝜎𝑟. Both model 

parameters 𝛼 and 𝜎𝑟 must be chosen by the user. Regularization parameter 𝜐 depends on 𝜎𝑟 and the noise level. 

 

To compute Equation (9) using PCA, reference [9] proposes to decouple the problem, i.e., for a certain value of the 

regularization parameter 𝜐, both the set of original PSFs ℎ(�⃗⃗�, �⃗�) and the set of derived filters 𝑓(�⃗⃗�, �⃗�) =

ℱ−1 (
1

1+𝜐∙|𝐻|2) obtained from the PSFs, are decomposed with PCA independently. Hence, one applies SVD twice, 

the first time to obtain ℎ(�⃗⃗�, �⃗�) = ∑ 𝑎𝑗(�⃗⃗�) ⋅𝐽
𝑗=1 ℎ𝑗(�⃗�) and the second time to obtain 𝑓(�⃗⃗�, �⃗�) = ∑ 𝑏𝑗(�⃗⃗�) ⋅𝐽

𝑗=1 𝑓𝑗(�⃗�). 

 

Principal components of the PSFs will be applied in the numerator of Equation (9) and PCs of the derived filters will 

be applied to the resulting term. If it is possible to assume that both ℎ(�⃗⃗�, �⃗�) and 𝑓(�⃗⃗�, �⃗�) change smoothly across the 

FOV, then this double decomposition will provide an approximation close enough to the exact solution [9]. 

Furthermore, it should be noted that both PC decompositions must be computed only once for all the iterations of 

the algorithm, and not for every iteration again. 



4. DATA DESCRIPTION AND RESULTS 

 

 

In the scope of the current work it is assumed that PCA and the deconvolution algorithm can be supplied with PSFs 

for every location in the FOV. How this very detailed information about anisoplanatism could be obtained in 

practice remains an open question but at this stage the main goal is to determine the benefits of treating 

anisoplanatism rigorously through PCA as opposed to simply ignoring the problem and deconvolving the whole 

image at once with a single PSF corresponding to the image center. 

 

Attention was focused on observations with single-conjugate AO systems which exhibit very strong anisoplanatism 

compared to uncompensated imaging (on long time scales) and multi-conjugate or ground-level AO. A large set of 

AO long-exposure PSFs were simulated analytically using the PAOLA package [13]. The central point of this 

analytical approach is the calculation of the residual phase spatial power spectrum from which the optical transfer 

function and subsequently the PSF can be easily obtained. This calculation is done via filtering of the pure 

atmospheric phase spectrum with a set of filters responsible for: AO fitting error, temporal error, wavefront 

measurement error and, most importantly in our case, the anisoplanatism error. The advantage of this analytical 

method over traditional Monte-Carlo simulations is a huge reduction of the computational cost (few minutes instead 

of several hours or days). 

 

The simulations were carried out for the 3.5-m SOR telescope located at a site of rather bad seeing in New Mexico. 

Therefore, for all the turbulence vertical profiles explored as part of this project a common value of 1.2’’ for seeing 

was adopted. (Seeing angle is defined as the full-width-at-half-maximum of the long-exposure PSF taken through 

turbulence at 500 nm wavelength). With Nyquist-sampled PSFs (two pixels per 𝜆/𝐷) a 256 × 256 pixel FOV 

covers 7.5’’. As test object we used the schematic image of the Hubble Space Telescope (HST) depicted in Fig. 6. It 

can be easily calculated that HST covers around 5’’ when observed from the ground. The test image was therefore 

padded with zeros to simulate a 7.5’’ FOV. Magnitude of the guide star (natural or laser-generated) was set to 10 in 

the visible, overall transmission from guide star (GS) to detector was set to 15%. Zenith angle was set to 30˚. 
Wavelength of the observations was set to 1 µm. The AO system has many parameters and majority of them are 

outside the scope and interest of this work. Most important parameter is the density of actuators on the deformable 

mirror and simulations followed the current design of SOR AO system with 24 × 24 actuators. The other 

parameters were either taken from SOR AO design documents [14] or optimized to obtain the highest Strehl ratio on 

axis. 

 

Most importantly, the influence of turbulence profile on PSF variability in the FOV was examined by testing various 

refractive index structure constant 𝐶𝑛
2 vertical distributions found in the literature. In brief: pupil-plane turbulence 

yields very isoplanatic images while concentration of strong turbulence higher up leads to severe anisoplanatism. 

Here, we show results obtained with two real turbulence profiles which had been obtained in the course of site 

testing in the context of the European Extremely Large Telescope project [15]. One profile (“atmosphere 1”) has 

strong ground-level turbulence and produces little anisoplanatism. The contrary is true for the second profile which 

we call “atmosphere 2” here. Properties of both profiles are given in Table 2. 

 

In the simulations, firstly a GS image was generated and put either at the center of the FOV (for stellar field images) 

or in the top right corner of the FOV for images of artificial satellites, as would be the case in laser-guide-star AO. 

Subsequently, a loop over positions generated a PSF for every location in the FOV according to its field angle and 

orientation with respect to the GS. These PSFs were then stored for subsequent convolution/deconvolution.  

 

Images of satellites and stellar fields were obtained in dissimilar fashion. For satellites, all possible eigen-PSFs that 

can be computed from previous PSFs were used to convolve a ground-truth image, weighted with the corresponding 

set of coefficients, according to Equation (3). Since the complete set of eigenvectors and coefficients was used 

without reducing the dimensionality, the solution at each location of the FOV is the same as the one that would have 

been obtained with an individual PSF at such location. Object flux was set to 8.8 × 107 photons for both satellite 

models considered in this work (HST and the “fan” satellite). 

 

 

 

 



Table 2. Atmospheric models. The strongest atmospheric layers are framed in red.  

 

Atmosphere 1 Atmosphere 2 

Height [𝒎] Fractional 𝑪𝒏
𝟐  Windspeed [𝒎/𝒔] Height [𝒎] Fractional 𝑪𝒏

𝟐  Windspeed [𝒎/𝒔] 

0 0.335 12.1 47 0.410 5.0 

600 0.223 8.6 140 0.010 4.6 

1200 0.112 18.6 281 0.030 3.9 

2500 0.090 12.4 562 0.060 3.5 

5000 0.080 8.0 1125 0.010 3.9 

9000 0.052 33.7 2250 0.080 6.4 

11500 0.045 23.2 4500 0.140 12.7 

12800 0.034 22.2 9000 0.140 27.2 

14500 0.019 8.0 18000 0.130 9.0 

18500 0.011 10.0 - - - 

 

 

For stellar fields, a loop over thousand stars executed two tasks for each object: choice of position (random 

distribution; uniform over FOV) and choice of brightness. For the latter, the so-called initial mass function was 

employed to first pick randomly a mass for a star (exponential distribution with varying exponents according to 

[16]). Then, mass-luminosity relation for main-sequence stars was used to arrive at luminosity of the star. Brightness 

of GS was selected to be the luminosity cut-off, i.e. GS was always the brightest object in the FOV. Finally, an 

empty image border with no stars was used to avoid the wrap-around effect.   

 

Leftmost panel in Fig. 4 shows the left half of a stellar field. The image is corrupted with shot and readout noise of 

10𝑒− RMS. The GS is placed close to the mid-right side of this half-FOV, i.e., at the center of the entire image. 

Subsequent panels in Fig. 4 show the result of using algorithm [7] over this image for different number of PCs. 

Notice how the stars are better resolved as the number of PCs increases. In particular, it is interesting to stress that 

with only the first 2 PCs, corresponding to the diffraction core of the PSFs (see Fig. 2), there are still residuals along 

the diagonal and horizontal directions as we move further out from the GS position. This effect is corrected once the 

information corresponding to the elongation is included by means of PCs number 3 and 4. PC number 3 includes 

variations along the diagonal direction while PC number 4 corrects the horizontal-vertical aberrations. 

 

 

 
 

 

Fig. 4. Leftmost panel: input blurred and noisy image for atmosphere number 2. Data is corrupted with shot and readout noise of 10𝑒− RMS. 

From left to right: different reconstructions using [7] for 1 (69.75% of accumulated variance), 2 (86.48%), 3 (91.39%) and 4 (95.79%) PCs, 

respectively. The algorithm was stopped at the same number of iterations in all 4 cases. Images are represented in log scale. GS is close to the 

mid-right side of the image.  

 

 

The addition of a larger number of PCs helps the reconstruction process. Algorithms like RL are very efficient in the 

first iterations; however, the lack of regularization produces the undesired effect of noise amplification when the 



number of iterations is excessive. In other words, the level of reconstruction, i.e., the amount of noise in the final 

image, must be controlled when the number of iterations increases. Fig. 5 shows how the number of PCs and the 

number of iterations are somehow correlated. Two coaxial circles of stars with the same luminosity are simulated. 

The GS is placed beyond the upper right corner so the star closer to the lower left corner is the one most affected by 

anisoplanatism. It is noticeable that the more PCs are included in the reconstruction process the more “protected” the 

final image is against the noise amplification. The reader is invited to observe in the bottom row of Fig. 5 that the 

residuals over the inner circle are more symmetric and less affected by noise when 10 PCs are used with respect to 

only 5 PCs. Still, there are almost no differences between using 5 or 10 PCs when one observes the residuals over 

the outer circle. When 30 PCs are used all sources are better reconstructed over both circles.  

 

Stronger anisoplanatism requires more PCs to represent the PSF. At the same time, more blurry and more elongated 

PSFs will need more iterations to concentrate all the light in their corresponding location and will be proportionally 

more affected by noise than those PSFs closer to the GS. Therefore, an increase in the number of deconvolution 

iterations at a certain location in the FOV will require an increase in the number of PCs that represent the PSFs 

there. 

 

 

 
 

Fig. 5. Top row, leftmost panel: input blurred and noisy image for atmosphere number 2. Data is corrupted with shot and readout noise of 10𝑒− 

RMS. All sources have the same brightness. GS is placed beyond the upper right corner. Image is represented in asinh scale from 0 to 50𝐸3. 

From left to right: different reconstructions using [7] for: 5 (96.78% of accumulated variance), 10 (99.51%), and 30 (99.97%) PCs, 

respectively. The algorithm was stopped at the same number of iterations in all three cases. Images are represented in asinh scale from 0 to 

500𝐸3. Bottom row: zoom-in view corresponding to the green square in the leftmost panel of the top row. 
 

 

Figures 6 to 8 show reconstructions of artificial satellites using methods [12] (Equation 8) and [9] (Equation 9). The 

set of PSFs used to blur the original image is the same as in Fig. 5. Images have been corrupted only with readout 

noise of 10𝑒− RMS. Fig. 6 shows how the methods making use of static PSFs are not able to produce good 

reconstructions in those parts of the object that are far from the position where the reference PSF is located. Results 

obtained with the algorithms adapted to the use of PCs are significantly better (Fig. 6, rightmost panels). However, 

in Fig. 7 one can observe that different parts of the satellites would need different numbers of iterations to 

completely homogenize the reconstruction quality or consider a more robust restoration method. Regions closer to 

the GS (upper right corner) suffer from noise amplification whereas regions further out are still smooth.  

 

 



 
 

Fig. 6. Leftmost column: ground-truth image. Second column: blurred and noisy image for atmosphere number 2. Data is corrupted with only 

readout noise of 10e- RMS. Guide star is placed beyond the upper right corner. Field of view is 256 × 256 pixels. Third column: reconstruction 

using Landweber method [12] with reference PSF at position (255,255).  Fourth column: reconstruction using Landweber method with reference 

PSF at position (127,127). Rightmost column: reconstruction using Landweber method with 50 PCs (99.996% of accumulated variance). All 

reconstructions are stopped at 1𝐸4 iterations.  
 

 

 
 

Fig. 7. Leftmost column: ground-truth image. Second column: blurred and noisy image for atmosphere number 2. Data is corrupted with only 

readout noise of 10e- RMS. Guide star is placed beyond the upper right corner. Field of view is 256 × 256 pixels. Third column: reconstruction 

using Landweber method [12] with 50 PCs (99.996% of accumulated variance), and 1𝐸4 iterations. Rightmost column: 4𝐸4 iterations. 

 

 

Method [9] makes use of the wavelet transform (WT) to filter out the noise. In this work we have used the 

translation-invariant Haar pyramid although other possibilities are also valid, such as the 2-D dual tree complex WT 

or a combination of both. The values of the regularization parameter 𝜐 and the threshold level in the wavelet domain 

are needed to be set. Reference [9] proposes some optimal values for certain levels of noise and a certain set of PSFs 

that are different from the ones considered in this work, thus resulting in different PC decompositions. Fig. 8 shows 



the results for different values of the regularization parameter in Equation (9), obtaining sharper reconstructions with 

increasing values of 𝜐. Nevertheless, we found that values larger than 9 started to produce visible artifacts (see Fig. 

8, rightmost panels).  

 

Results in Fig. 8 show that algorithm [9] allows to control noise amplification better than [12] in regions close to the 

GS but also stops the enhancement of further-out regions too soon, thus stressing the need of finding a method that 

allows to homogenize the quality of the final solution across the entire FOV.  

 

 

 
 

Fig. 8. Reconstructions using Miraut method [9] with 50 PCs (99.996% of accumulated variance). From left to right: regularization parameter 𝜐 

equal to 1.04, 2.09, 4.17 and 8.35, respectively. 

 

 

5. CONCLUSIONS AND FUTURE WORK 

 

In this work we have shown the applicability of spatially-varying image deconvolution based on principal 

component analysis to anisoplanatic PSFs for single-conjugate AO systems. These techniques have been applied to 

both stellar fields and extended objects. We showed that the increase of the number of eigen-PSFs in the 

deconvolution process helps to control noise amplification. However, to homogenize the quality of the 

reconstructions, without compromising the achieved level of resolution, it is necessary to add regularization terms 

which include PC rigorously.  

 

Results shown in this work are based on the unrealistic assumption of having a perfect knowledge of all the PSFs 

involved in the image degradation. Therefore, for a 256 × 256 pixel FOV a total number of 65536 kernels is 

required. This also means having a perfect knowledge of all the coefficients, at each location, which weight the 

importance of the corresponding PCs across the FOV. 

 

Even in the case of observations of stellar fields, where PSFs could be extracted at a few locations within the FOV 

from isolated stars, the lack of knowledge of the PSF at most of the pixels would necessitate estimation of the PC 

coefficients wherever the PSF is unknown. Reference [5] uses 5th order polynomial interpolation to model the 

spatial variation of such coefficients using the known coefficients as fixed points. However, the authors state that 

higher-order polynomial can worsen the fidelity between the data and the proposed model. Different interpolation 

methods have been proposed for describing the spatial variation of the PC coefficients. Reference [11] concludes 



that Kriging gives the most reliable interpolation but this conclusion was based on very specific type of astronomical 

data, namely weak lensing surveys. 

 

Furthermore, PCA has been performed over noise-free PSFs. Shot and readout noise was introduced in the 

simulations after the ground-truth image was degraded. In real situations, extracted PSFs will be corrupted by the 

unavoidable presence of noise and, in the case of satellites, for which a myopic/blind deconvolution algorithm can 

be used to compute the degradation kernel in specific locations, the deduced PSFs will be affected by the 

uncertainties associated with that deconvolution process. Departures from the ground-truth PSFs will translate to 

different PC decompositions, i.e., different types of eigen-PSFs and coefficients, and a different number of eigen-

PSFs to properly describe the same amount of PSF variability. Such differences must be studied in order to take into 

account their effect in this reconstruction problem. 

 

Finally, introduction of PCs into the RL algorithm is straightforward: one only needs to substitute the PSF by a 

weighted sum of eigen-PSFs. However, the application of PCs in more complicated approaches, e.g., into the 

Bayesian framework, can be mathematically intractable. The authors of reference [9] had to apply an approximation 

to include PCs in a simple regularized inverse filter. The design of myopic/blind deconvolution approaches with 

PCA is the next natural step in spatially-varying imaging.  
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