

Energy Efficiency - Made in Germany

Ways to energy efficiency for the metall and paper industry

23.11.2010 Export Initiative Energy Efficiency

Dr. Kathrin Hesse Fraunhofer Institute for Material Flow and Logistics

on behalf of the German Federal Ministry of Economics and Technology

www.efficiency-from-germany.info

Contents

- Demand for energy in the industry
- Cleaner Production a strategy for efficiency?
- Supply engineering measures for energy efficiency

Energy Efficiency - Made in Germany

Demand for Energy in the industry

www.efficiency-from-germany.info

Energy Demand in German Economic Sectors Distribution of Final Energy Consumption (2007)

- Industry
 Transport
 Households
- Trade and Service

Energy Demand in the German Industry (2007) Final Energy Consumption for Industrial Applications

- Mechanical Energy
- Space Heating
- Other Process Heat
- Hot Water

Energy Demand in the German Industry (2007) Energy Sources by Fields of Application

in percentage

Primary Energy Consumption in Germany by Fuel Sources (2007)

Spain - Final Energy Consumption by sector (2007)

- Transport 🛾
- Industry
- Households
- Services, etc.

Primary Energy Consumption in Spain by Fuel Sources (2007)

- 🛯 Oil
- 🛯 Natural Gas
- 🛾 Coal
- Nuclear Energy
- Hydro Electric

German metal industry – key facts

- Initial situation
 - Energy costs in the metal industry are in the order of about 0.3% to 6% of the annual turnover
- Processes
 - Large range of processing methods and their combinations
 - Wide spectrum of various companies regarding processing steps, manufacturing facilities, production types, degree of mechanization
- Strategy for increasing energy efficiency
 - Reduction of energy demand
 - Optimization of energy application

Energy expenditure in the German metal industry (2008)

Bituminous coal

- Coke and coke breeze (dry)
- Heavy heating oil
- Natural gas , other gases

■Coke oven gas

■ Net purchased electricity

Energy expenditure in the German non-ferrous metal industry (2008)

Source: Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Monitoringbericht 2008

Electricity demand in the German metal industry for selected processes

 Mechanical manufacturing
 Thermal manufacturing
 Compressor, heating

Surface treatment

■ Office, Lighting

German Pulp and Paper Industry – key facts

- Initial situation
 - The pulp and paper industry belongs to Germany's fifth largest industrial energy consumers
 - During the last years the share of energy costs relating to the turnover was approx. 10%
- Processes
 - Half-stock production (pulp, mechanical pulp or recycled fiber)
 - Stock preparation
 - Paper machine (Fourdrinier machine)
 - Finishing
- Strategy for increasing energy efficiency
 - Reduction of energy demand
 - Optimization of energy application

Source: energieagentur.nrw

Energy consumption in the German paper industry for different paper products

Energy consumption in the German paper industry for supply engineering

Energy Efficiency - Made in Germany

Cleaner Production – a strategy for efficiency?

www.efficiency-from-germany.info

Energy Efficiency by Cleaner Production

- Objective
 - Prevention or reduction of harmful environmental impacts by choice and optimization of a suitable production method

Ecological AND economical benefits

- Improvement of process flows
- Optimization of the use of resources
- Improvement of the emission situation
- Reduction of production costs
- Decreasing the quantities of waste and wastewater
- Proceeding
 - Coarse analysis = assessment of the actual state
 - Macro analysis = identification of potentials for improvement
 - Micro analysis = preparation of cleaner production measures

Cleaner Production in Electroplating Industry

- Initial situation
 - High water and energy consumptions for realizing optimum surfaces
- Proceeding
 - Examination of all relevant material flows and processes in a electroplating plant
- Results
 - Reduction of surface losses of the heating boilers by the installation of heat exchangers (reduction of energy use by 10%)
 - Optimization of a production line by improved process organization in the procedure of rinsing water (reduction of water and chemical use by 20%)
 - Reduction of the fresh water supply by rain water exploitation (coverage of fresh water share up to 80% by rain water)

Energy Efficiency - Made in Germany

supply engineering – measures for energy efficiency

www.efficiency-from-germany.info

Measures in the field of Supply Engineering I

- Lighting
 - Raise of the lights degree of effectiveness
 - Change of the geometric arrangement in the room
 - Adjustment of the lighting intensity and duration
- Compressed air
 - Check and removal of leakages
 - Optimal sizing of the compressors and pipes
 - Adapted processing of the compressed air
- Ventilation plants
 - Orientation towards actual requirements
 - Accomplishment of the plants
 - Geometric arrangement of airflow

Measures in the field of Supply Engineering II

- Cooling systems and air condition plants
 - Check of the required temperature level
 - Generation of process cooling with cooling towers or groundwater
 - Elimination of heat sources from air-conditioned areas
- Heating systems and thermal insulation
 - Measures for the heat recovery
 - Automatic regulation of heaters
 - Insulation of plants and buildings
- Electric motor
 - Choice of engines of a higher efficiency class
 - Use of speed regulated drives

Technology: lighting in a production hall

- Initial situation
 - Lights with white-coated trapezoid metal reflectors
 - Equipped with T8 lamps, 58W and conventional electrical ballast
- Energy efficiency measures
 - Lights with highly efficient reflectors
 - Daylight dependent lighting regulation
 - Replacement of conventional electrical ballast (KVG) by electronic (EVG)
- Saving potential
 - Energy: 970.000 kWh/a (72%)
 - Costs: 99274 USD
 - Invest: 180731 USD

Technology: leakage reduction in the compressed-air system

- Initial situation
 - 28% of the produced compressed-air was used in the compensation of leakage losses
- Energy efficiency measures
 - Reduction of leakages in the distribution networks, in the mountings and in the connecting pipes by 5% to 23%
 - Use of speed regulated compressors
 - Reduction of electricity consumption of the compressedair supply due to a better utilisation of the compressors
- Saving potential
 - Energy: 1.386.325 kWh/a (20%)
 - Reduction of emissions: 762 t CO₂/a

Technology: ventilation and air-conditioning

- Initial situation
 - An energy analysis detected a clear over-dimensioning as well as an improvement needy regulation at a building services installation

Energy efficiency measures

- Adjustment of supply and exhaust air quantities of the ventilation systems
- Requirements on heating, air conditioning and hygiene
- Reduction of the supply and exhaust air quantities
- Control of the supply and exhaust air levels
- Saving potential
 - Energy: 2.566.000 kWh/a
 - Costs: 252004 USD
 - Invest: 289551 USD

Technology: efficiency by applying used parts

- Initial situation
 - most technical innovations in modern vehicles within the electronics segment - a very dynamic market with short innovation cycle
 - obligation for supply by the automotive industry which hast to warrant the supply with technically unchanged spare parts

Goal

- investigation and assessment of the spare part supply strategies
- Result
 - installation of a system for the recovery and reprocessing of used parts as new spare part
 - development of a decision tool for the selection dependent from need of the optimal spare parts
 - supply strategy for the various product life cycles

Energy Efficiency - Made in Germany

process engineering – measures for resource efficiency

www.efficiency-from-germany.info

Technology: Optimization of a manufacturing method in the product development

Near net shape casting/forming

Machining from the solid

Manufacturing from a preformed blank

Source: demea (2010)

330 g

Technology: Optimization of a manufacturing method in the product development

- Initial situation
 - High share in machining waste
 - High tool wear
- Energy efficiency measures
 - Use of preformed blanks instead of solid materials
- Saving Potential
 - ▶ 50% lesser material waste
 - Lesser tool wear due to lower machining forces
 - Gain of efficiency by reducing the handling times
 - ≥ 2.370.000 € saving potential

Conclusions

- Demand for energy in the industry
- Cleaner Production a method for establishing efficiency
- Several examples for energy efficiency in the field of supply engineering

Thank you for your attention!

Dr. rer. nat. Kathrin Hesse

Fraunhofer Institute for Material flow and Logistics IML
Department Environment and Resource Logistics
Joseph-von-Fraunhofer-Str. 2-4
44137 Dortmund
Telephone +49 (0) 231 9743-364
Telefax +49 (0) 231 9743-77364
E-Mail kathrin.hesse@iml.fraunhofer.de