EMI'S TWINGUN – CONCEPT FOR A NEW LIGHT-GAS GUN TYPE HYPERVELOCITY ACCELERATOR

R. Putzar, Fraunhofer EMI

65th ARA Meeting, 19 – 24 Oct. 2014, Arcachon, France

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Concept of two-stage light-gas guns

TwinGun – Concept

TwinGun – **Facility**

TwinGun – Piston Synchronisation

Major requirement for successful operation:

Defined offset between the two pistons

Infers two operation requirements:

- Reproducibility of piston motion
- Effective manipulation of piston motion

CONTENTS

- 1. Introduction
- 2. Reproducibility of piston motion
- 3. Effective manipulation of piston motion
- 4. Concluding Remarks

Reproducibility

- Piston motion sequence
 - Motion initiation, shearing of lip
 - Acceleration by powder gas pressure, dynamic friction in pump tube
 - Deformation in accelerated reservoir

Chronological reproducibility important for TwinGun

Reproducibility

Q: What is synchronously?

- indicated by experiments with very synchronous piston motion
- Exp. 77: piston delay @ sensor 5: $2 3 \mu s$
 - FWHM of pressure at coupling section is 96 98 µs (left & right)
- other experiments: typical FWHM is 90 ... 120 µs

FWHM = full width half maximum KS-L KS-R KS-M ·

Reproducibility – Experiments

Modifications investigated

- arrangement of gun powder in the powder chamber
- adjustment of the interior pump tube diameter
- shear lip thickness of the piston
- friction between piston and pump tube

operation parameters (powder charge mass, initial H₂ pressure)

Reproducibility – Experiments with nominal identical pistons

Reproducibility – Experiments with nominal identical pistons

Reproducibility – Experiments with nominal identical pistons

Reproducibility – Summary

- Piston motion in TwinGun now reproducible
- Satisfactory synchronization of piston motion
 - Experiments with nominal identical pistons presented
 - New piston: 14 out of 17 experiments within ± 20 μs

CONTENTS

- 1. Introduction
- 2. Reproducibility of piston motion
- 3. Effective manipulation of piston motion
- 4. Concluding Remarks

Effective manipulation

- Aim: effective manipulation of piston delay
 - measured at 5th pressure sensor
- Differing piston masses
 - effective manipulation in numerical simulation
 - therefore 1st choice in experiment

Effective manipulation – Experiments

Effective manipulation – Experiments

Effective manipulation – Summary

- Piston delay is linear depending on piston mass difference
- Discrepancies can be explained by delayed piston motion initiation
- Reasons for delayed piston motion initiation remains unclear
- Possibilities
 - Static friction
 - Inhomogeneous piston material

Current Performance

Concluding Remarks

- Achieved reproducible piston motion in TwinGun
- Achieved effective manipulation of piston delay
 - Piston mass difference
- Current performance at 7 km/s with acceptable load to gun components

Outlook

Increase performance while maintaining acceptable gun load