Robotics for lifetime tests of dishwashers

ROBOTICS FOR LIFETIME TESTS OF DISHWASHERS

Joshua Hampp

Folie 1 © Fraunhofer

Use Case: Tests of dishwashers

- Dishwasher
 - Tool of daily domestic work
 - Reliable home help
- →Quality Management assures functioning
- ⊕ BOSCH ⊕
- Manufacturers run extensive tests:
 - Lifetime and endurance tests
 - Under different conditions
- Test case to automate in this project with BSH:
 - Testing of the whole dishwasher
 - Simulation of normal use

Use Case: Tests of dishwashers

- Test procedure:
 - 1. Pour in dirt
 - 2. Insert cleaning tablets
 - 3. Using dish rack
 - 4. Starting the dishwasher

Folie 3 © Fraunhofer

Use Case: Tests of dishwashers

- Environment:
 - One or more lanes with dishwashers
 - Over 40 dishwashers in each lane
 - Central loading facility for dirt and cleaning tablets

Use Case: Tests of dishwashers

- Requirements of the robot:
 - Mobile platform
 - Manipulator with adapted gripper
 - Depot for
 - Cleaning Tablets
 - Dirt
 - User Interface (UI)
 - Simple (non-programmers)
 - Supporting safety
 - Communication with
 - Dishwashers
 - Loading facility
 - CE mark (safety)

Folie 5 © Fraunhofer

Technical implementation of the use case

- Hardware
 - Conductor rail
 - Omni-directional drives
 - Universal Robots arm
 - Lift axis
 - 2 Laser Scanners
 - Signals
 - Cleaning tablets depot
 - Computer & safety controller (PLC)
 - Camera system

Folie 7 © Fraunhofer

Technical implementation of the use case

Technical implementation of the use case

Technical implementation of the use case

User interface for teach-in

- User Interface for teach-in
 - Integrated in UI of Universal Robots
 - Only in "teach mode" available
 - Control of the complete robot
 - Editing of scripts
 - Information about the robot
- Teach button at the gripper
 - Hand-guided manipulator
 - Two-channel switch

Folie 11
© Fraunhofer

User interface for teach-in

Soft safety features (ROS and UI)

- Heartbeat ensures control PC is alive
- State of dishwashers are validated after each execution
- Collision checks
 - 3D environment model of ground, ceiling and lane
 - Check before movement of arm or lift
- Validation of gripper state
- Each script is checked for validity (collisions, robot state)

Folie 13
© Fraunhofer

Hard safety features

- Hazard identification and risk reduction was performed in order to apply a CE mark
- Automatic mode (all components activated)
 - Requires separation of human and robot by a fence

- Drive mode (base activated)
- Teach mode (lift axis and manipulator activated)
- → Safety measures depending on risk level
 - Size of protective fields determined according to ISO 13855
 - Different resetting behavior
- → Safety functions with performance level d or more

Note: ROS is potential "unsafe"

Hard safety features: System architecture

Experiences with ROS (reusability and extendibility)

- Benefits of ROS for this project
 - Standardized communication model
 - → Reuse of many components
 - → Ease of extensions
 - Debugging tools
 - Latest technologies
- Challenges
 - Stable driver development
 - Safety certification

ROS-INDUSTRIAL TECHNOLOGIES, TRENDS, APPLICATIONS

Fraunhofer IPA **F 292** 26 June 2014 Stuttgart