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Abstract

Recently, neural sequence-to-sequence (Seq2Seq) models
have been applied to the problem of grapheme-to-phoneme
(G2P) conversion. These models offer a straightforward way
of modeling the conversion by jointly learning the alignment
and translation of input to output tokens in an end-to-end fash-
ion. However, until now this approach did not show improved
error rates on its own compared to traditional joint-sequence
based n-gram models for G2P. In this paper, we investigate how
multitask learning can improve the performance of Seq2Seq
G2P models. A single Seq2Seq model is trained on multiple
phoneme lexicon datasets containing multiple languages and
phonetic alphabets. Although multi-language learning does not
show improved error rates, combining standard datasets and
crawled data with different phonetic alphabets of the same lan-
guage shows promising error reductions on English and German
Seq2Seq G2P conversion. Finally, combining Seq2seq G2P
models with standard n-grams based models yields significant
improvements over using either model alone.

Index Terms: grapheme to phoneme, G2P, sequence to se-
quence, Seq2Seq , multitask learning

1. Introduction

A crucial component of most automatic speech recognition
(ASR) systems is the phoneme lexicon, mapping words to their
phonetic representation (e.g. Thursday — TH ER Z D EY).
Creating and maintaining phoneme lexicons manually is a te-
dious task and needs expert phoneticians. Typically, a seed lex-
icon is used to train a model that can automatically produce
phonetic entries, to either aid expert phoneticians or (accepting
a certain error rate) to generate new entries fully automatically.

Recently, neural sequence-to-sequence models (Seq2Seq)
have emerged as a generic approach to learn to translate be-
tween sequences of varying lengths [1]. Initially applied to ma-
chine translation, Seq2Seq has been successfully applied to a
wide range of various other tasks, including conversation mod-
elling [2], sentence-level grammatical error identification [3],
automatic regex generation [4] and also recently grapheme-to-
phoneme (G2P) conversion [5]. Seq2Seq models are generative
language models, conditioned on an input sequence. After en-
coding the input sequence token by token, the output sequence
is generated token by token. No explicit alignments between in-
put and output sequences are necessary, as the system is trained
in an end-to-end fashion.

We mainly target the use of the G2P model in automatic
speech recognition. Training and using a G2P model is often
directly integrated into the ASR training procedure, as phonetic
out-of-vacabulary (OOV) words in the training set hamper the
alignment of training data to its transcriptions. Common words

as determined by the language model that do not have a pronun-
ciation entry can also be candidates for G2P conversion and can
be used to extend the vocabulary of a large vocabulary speech
recognition system. Other uses for G2P conversion include gen-
erating OOV entries on the fly for text to speech systems and
assisting humans in the generation of phoneme lexicons.

The next section covers related work on grapheme-to-
phoneme conversion and sequence-to-sequence models. We
give an overview over neural sequence-to-sequence models
in Section 3, describe our evaluation in Section 4, compare
Seq2Seq models with and without multitask learning in Sec-
tion 5 and finally conclude in Section 6.

2. Related Work

Joint-sequence n-gram models are both well performing and
popular traditional models for grapheme-to-phoneme conver-
sion [6, 7]. These models need to find a joint vocabulary of
graphemes and phonemes (often called graphones) by aligning
characters and phonemes. The output sequence is modelled as a
sequence of graphones. Particularly Sequitur G2P [7] is a well
established G2P conversion tool using joint sequence modelling
and is also commonly used in state-of-the-art speech recogni-
tion model recipes, e.g. [8]. Joint n-gram models can also be ef-
ficiently represented as weighted finite state transducers [9, 10].

Yao and Zweig described the first application of Seq2Seq
to English G2P in [5]. The decoder/encoder network did yield
17% higher WERs than Sequitur G2P. However, they achieved
state of the art results on three G2P datasets by using a fixed
length recurrent architecture together with the HMM many-to-
many alignment procedure from [11]. Rao et al. [12] proposes
to use the connectist temporal classification (CTC) instead of
Seq2Seq to jointly align and translate graphemes to phonemes
in a single neural model. The proposed model on its own yields
5% higher word error rates than the Sequitur G2P baseline.
However, when both models are combined with a finite state
transducer (FST) n-gram model, they significantly outperform
the baseline. Schnober et al. also reported a negative result for
sequence-to-sequence models with an attention mechanism on
a G2P task with 20k lexicon entries (among other monotone
string translation tasks), compared to standard methods [13].

In [14], Tsvetkov et al. trained phonetic language models in
a multitask training setting. Perplexities of the joint model over
all languages are lower than individual phonetic language mod-
els. State of the art models for translation use neural sequence-
to-sequence models and incorporate an attention mechanism
and residual learning [15, 16]. This model can also be trained
on multiple language pairs at once: an additional unique lan-
guage identifier token at the beginning of the input sentence is
added to specify the required target language to translate to [17].
We follow this multitask learning [18] approach to train multi-



Figure 1: Seq2Seq model for G2P conversion with attention and character/phoneme embeddings, inputs are reversed. For multitask
learning, we extend the source vocabulary with additional markers for the subtask that are placed at the beginning of each word.

language and multi-alphabet grapheme-to-phoneme conversion
models.

3. Neural Sequence-to-Sequence Models

Neural sequence-to-sequence models can learn a conditional
distribution over a variable length sequence conditioned on an-
other sequence p(y1, ..., yr|T1, ..., T1’ ), where T" can be dif-
ferent from 7' [19]. When doing phoneme-to-grapheme con-
version, we condition the output phoneme sequence y1, ..., Yy
on the character sequence x1, ..., x7. In the following, we are
describing the Seq2Seq that we are going to use for our G2P
experiments.

Plain Seq2Seq models. A plain Seq2Seq model follows
an encoder and decoder design, where the input sequence is
encoded token by token and the output sequence is generated
token by token. Typically, recurrent neural networks are used in
both the decoder and encoder network. The RNN unit is usually
one with a gating mechanism, e.g. a Long-Short Term Memory
(LSTM) [20] or a Gated Recurrent Unit (GRU) [21], to counter
the vanishing gradient problem inherent in RNN's [22]. The out-
put sequence y1, ..., yr is conditioned on a single vector that is
generated with the encoder of the network, by initializing the
RNN decoder state to the last RNN state of the encoder.

Encoder/decoder inputs. We use character embeddings
for the encoder and phoneme embeddings for the decoder as
inputs. For both we choose n=10 as the embedding size. The
embeddings are trained as part of the model training. Follow-
ing [1], we reverse the input character sequence.

Attention mechanism. A drawback of the plain Seq2Seq
model is that all the source information has to pass through a
single vector and needs to be carried forward in the decoder’s
state. In order to facilitate information flow from the source se-
quence to the target sequence and to relieve the decoder from
having to remember the input sequence in its state, a context
vector can be computed as a weighted sum over all encoder
hidden states, dependent on the last decoder state [23]. The at-
tention vector is either added or appended to the RNN decoder
inputs. Different variations of this mechanism exist, which can
be divided into local and global attention mechanisms [24]. We
use global attention, where an attention vector is generated at
each phoneme generation step over the full character input se-
quence.

Stacked bidirectional LSTM. The encoder can also be
extended to represent past and future dependencies, with two
RNNs that read a word in opposite directions. Figure 1 de-
picts a Seq2Seq architecture for G2P with a bidirectional LSTM
encoder using a decoder with global attention. Furthermore,
LSTM cells can also be stacked vertically, by passing the out-

put of a LSTM cell as input to another LSTM cell. We combine
the outputs of the forward and backward encoder with a vector
sum. (An alternative would be to stack both vectors).

Residual connections. The residual network [15] provides
skip-connections between layers of a network. The main idea is
that learning the identity function is simpler with a residual con-
nection, because bypassing the layers computation means that
the output of a layer needs to produce a zero output and not the
identity function. We make use of a simple residual connection
between LSTM layers, where the output of an LSTM layer is
added to its input before passing it to the next LSTM layer:

y=F(x;W)+z

where y is the output of a layer and x the input. F'(x; W) is
a function with an internal parameter W [25]. We use the LSTM
unit directly as F when stacking LSTM units, i.e. we do not add
skip connections between timesteps.

Decoding. At each decoding step, the decoder generates a
softmax distribution over the output vocabulary. The simplest
method to generate the output sequence is to feed the argmax
token to the next decoding step. However, a greedy decoder
might not be able to find the sequence with the best joint prob-
ability. Beam decoding can also be used to keep n different
paths while decoding, while still efficiently searching through
the search space.

4. Evaluation

We base our evaluation on German and English G2P conver-
sion, by comparing the model predictions on unseen data to
manual entries by expert phoneticians. For German, we use
Phonolex! core (66.8k entries) and the full Phonolex lexicon
(1.4 million entries), that uses the SAMPA phonemes set. All
entries in the core set are manually verified entries, while the
source of the other entries is sometimes unclear, with most pro-
nunciations entries of the full set likely to be already coming
from rule based conversion systems [26], automatic G2P con-
versions and data-driven alignments, e.g. BAS Maus [27]. For
English we use CMUDICT 0.7b with about 138k manual pro-
nunciation entries using the ARPAbet phoneme set. For all
training scenarios, we preprocess the lexicon to remove stress
markers, which are usually omitted in ASR acoustic modelling.

We evaluate phoneme error rate (PER) and phoneme word
error rate (WER) by splitting the available data into training,
development and test splits. For Phonolex (core/full), we only
use manually verified entries as development and test data, i.e.

"http://www.phonetik.uni-muenchen.de/Bas/
BasPHONOLEXdeu.html



Table 1: Comparing Sequitur G2P and seq2seq-attn on the German Phonolex lexicon test data, with stress markers removed.

(Best scores for single models and system combinations in bold.)

Model Phonolex set | PER WER train time
(1) Sequitur G2P (model order 10) core set 1.98% | 11.54% | 12h43
(2) Sequitur G2P (model order 6) core set 1.98% | 11.30% | 3h40

(3) Sequitur G2P (model order 6) full set 541% | 29.86% | 7.45 days
(4) seq2seq-attn (biLSTM 256x3, d=0.5) full set 6.09% | 32.69% | 13h57
(5) seq2seq-attn (biLSTM 256x3, d=0.5) core set 2.49% | 13.64% | 3h59

(6) seq2seq-attn (biLSTM residual 256x3, d=0.5) core set 2.37% | 12.75% | 3h53

(7) seq2seq-attn (biLSTM residual 256x3, d=0.5) + multitask learning (de/en) core set 2.57% | 14.12% | 5h51

(8) seq2seq-attn (biLSTM 512x3, d=0.5) + multitask learning (de/en) core set 2.41% | 13.32% | 8h27

(9) seq2seq-attn (biLSTM res. 512x3, d=0.5) + multitask learning (Sampa/IPA) | core set 2.06% | 11.30% | 24h49
(10) System combination (2)+(6) core set 1.88% | 10.33% | (7h39)
(11) System combination (2)+(9) core set 1.70% | 9.52% (28h29)

Table 2: WER and PER performance for different classes of words in the German Phonolex task. While regular German words can be
phonetized with relatively small errors, loan words and named entities are particularly problematic in this G2P task.

Abbreviation | English pronoun. | French pronoun. Name / NE Hyphen Regular
Count and
% of ol entrics 23 (1.75%) 34 (2.59%) 8 (0.61%) 149 (11.36%) 29 (2.21%) | 996 (75.91%)
Model PER WER |PER | WER |PER WER |PER | WER |PER | WER |PER | WER
Sequitar G2P 1) 6> 00 1 870% | 10.20% | 38.24% |35.00% | 62.50% | 5.00% 23.49% | 2.43% 31.03% | 1.13% 7.63%
(model order 6) : : : :
seq2seq-attn
(bILSTM 256x3) | 10-59% | 26.09% | 1693% | 5294% | 3281% 75.00% | 5.80% 25.50% | 1.22% 13.79% | 118% 8.63%
+ multitask ; §
(dofom) 8.40% | 26.09% | 17.20% | 61.76% | 25.05% 62.50% | 5.41% 26.10% | 1.22% 17.24% |139% | 9.24%
Fmultitask | ¢ o001 a0 | 12,60% | 47.06% | 22.22% E62 50% | 5.58% E24 16% |222%  17.24% |1.07%  7.33%
(SAMPA/IPA) . 0 . 0 . 0 . 0 .. (4 . (4 . 0 . 0 . 0 . (4 o 0 o (4

we use 1312 entries (2%) for each set of Phonolex core. For
CMUDICT, we use the same train/dev/test splitting as proposed
in the sequence-to-sequence example of the CNTK toolkit?, i.e.
108952 train entries, 5447 dev entries and 12855 test entries.
While Phonolex core does not contain pronunciation variants,
CMUDict does include them, and we also use them in the train-
ing process. Following Bisani and Ney [7], the variant that min-
imizes the error is chosen for computing PER and WER.

To enable multi-alphabet training, we also generated our
own German and English dictionaries using the International
Phonetic Alphabet (IPA)°. We used recent dumps of the Ger-
man and English Wiktionary project®, containing IPA phoneme
entries of voluntary contributers (not all lexicon entries have a
phoneme entry). For German, we pick the top pronunciation en-
try. For English we include all variants, but not British ones (to
favor American English, which CMUDICT also models). Oth-
erwise, no attempt at normalizing notation styles is made. The
English Wiktionary contains 4 million entries, but the biggest
fraction are non-English words, mostly with the exact pronun-
ciation of the original language. Accordingly, by only using IPA
entries that are clearly marked as German or English entries, we
obtain an IPA lexicon of 330.473 words for German and a sig-
nificantly smaller IPA lexicon of 34.943 words for English.

For Sequitur G2P, we tune the model order (n-gram) on

’https://github.com/Microsoft/CNTK/tree/
master/Examples/SequenceToSequence/CMUDict/Data

3Scripts to reproduce the IPA dictionary generation are avail-
able at https://github.com/bmilde/wiktionary_ipa_
phoneme_lexicons

4dewiktionary-20170120 and enwiktionary-20170301

the development set. While 6 is the recommended parameter
of the training software, we found higher order models to give
slightly better results on the development set. It is also used in
the training procedure to adjust the discount parameters of the
joint grapheme/phoneme language model.

For our sequence-to-sequence experiments we use seq2seq-
attn®, an open source neural translation system. It can be fitted
to G2P conversion by preprocessing the dataset so that single
characters or phonemes are entire words. We also tune Seq2Seq
models on the development set: we choose the width of the net-
works’ LSTM layers from the set {64, 128, 256, 512}, number
of layers from {2, 3, 4, 5} and dropout from {0.0, 0.2, 0.3,
0.5} and train with and without residual learning. We run all
128 configurations on a cluster with Nvidia Titan X GPUs and
select promising candidate configurations on the development
set. We omit hyperparameter optimization entirely for the full
Phonolex set and leave out the 64 and 128 width configurations
for multi-task training. We exclusively use Adam [28] as opti-
mization method for network training, with an initial learning
rate of 0.001. For the first 3 epochs we use curriculum learn-
ing (sorting the sequences by length in an epoch), for all other
epochs the order is randomized.

In order to enable system combinations, we also let Se-
quitur G2P and seq2seq-attn generate n-best lists (n=10). We
simply combine the n-best lists by adding normalized scores
between 0.0 and 1.0 for entries that both models generated and
append all other entries. After resorting, the output of the sys-
tem combination is the highest scoring entry from the combined
n-best list.

Shttps://github.com/harvardnlp/seq2seq-attn




Table 3: Comparing Sequitur G2P and seq2seq-attn on a CMUDICT test set, with stress markers removed. Results shown here are for

a recent version of the lexicon (v0.7b).

Model

PER WER train time

(1) Sequitur G2P (model order 8)

6.12% | 25.71% | 34h49

(2) seq2seq-attn (biLSTM 256x4, d=0.3)
(3) seq2seq-attn (biLSTM 256x4 residual, d=0.3)

6.81% | 29.51% | 9h38
6.67% | 28.72% | 9h40

(4) seq2seq-attn (biLSTM 512x3) + multitask learning (en/de) 6.68% | 29.28% | 8h27
(5) seq2seq-attn (biLSTM 512x3) + multitask learning (ARPAbet/IPA) | 6.5% 28.23% | 6h30

(6) System combination (1) + (3)
(7) System combination (1) + (5)

59019% | 25.15% | (44h29)
5.76% | 24.88% | (41h19)

5. Results

In Table 1, we compare different G2P models on the Phonolex
lexicon test set. Using the full lexicon as opposed to Phonolex
core to train the models (the test set is the same in both cases)
significantly reduces performances (3, 4). We attribute this to
the problem that many entries of the full Phonolex set are al-
ready automatically generated in some way. We were able
to spot several problematic non-core entries, mostly in entries
marked as coming from automatic (and probably old) rule-
based conversions. We thus focused on training with the core
set after a few experiments. Seq2Seq models (5) and (6) do per-
form worse as a single model than the Sequitur G2P baselines
(1) and (2). Training a multitask model on Phonolex and CMU-
DICT training data (7, 8) did not improve upon the residual net-
work baseline (6), but is slightly better than a Seq2Seq model
without residual learning (5). However, if we train a multitask
model on our generated German IPA lexicon and Phonolex core
(9), we can considerably lower error rates, compared to all other
Seq2Seq models. With this model, we can also match the WER
score of the Sequitur G2P baseline model.

We observed that the multitask models generally need
wider networks, to account for the increased need of model ca-
pacity to model two G2P tasks. Residual learning can give a
small performance improvement as in (5) vs. (6), and also was
useful for (7) and (9), as tested on the dev set. Finally, if we
combine the Sequitur G2P model (2) with our Seq2Seq models
using n-best lists, we achieve the lowest error rates (10, 11).

To better understand the scores of the single models on
the German Phonolex data, we annotated the Phonolex test
set into the following irregular pronunciation cases: abbre-
viations (e.g. "GPA”, "FFH”, "MIDI-Dateien”), loan words
and names with predominately English pronunciation (e.g.
”Toaster”, “mousepad”), the same for French (e.g. “arrang-
ierter”, ’Taille”), other names and named entities (e.g. “Diet-
mar”’, ”Chemnitz”) as well as hyphenated words (e.g. “Acht-
Uhr-fiinf-Flug”). The irregular pronunciation cases make up
24.09% of the data. We also discarded 73 (5.56%) of the test
entries® from Phonolex, containing spelling errors of words, un-
known words (e.g. "Beteginsdis”) and transliterations of Bavar-
ian dialects (e.g. “obgnomma”, “ausaschauen” for standard
German “abgenommen”, "hinausschauen”).

Table 2 shows PER and WER results separately for our
word classes. As expected, there is a large increase in error
rates for irregularly pronounced German words and other spe-
cial forms across all models. Interestingly, Sequitur G2P strug-
gles less than the Seq2Seq models with abbreviations, English
and French loanwords and names’. Hyphenated words are con-
siderably more problematic for Sequitur G2P than for Seq2Seq

Discarded words are also discarded from the analysis in Table 1.
"The results for French loan words have to be taken with grain of

models. The multitask model trained on Sampa/IPA data mainly
improves regular words compared to Sequitur G2P. Although
still showing a bit higher error rates on irregular cases than Se-
quitur G2P, it shows lower error rates for most classes of irreg-
ular words compared to the other Seq2Seq models.

In Table 3, we also compare similar models on English G2P
conversion, as a control experiment. Similarly, Sequitur G2P
(1) outperforms individual Seq2Seq models. Residual learning
gives a small improvement (3) vs. (2) and the multi-task model
trained on German and English data (4) does degrade error rates
very slightly, similarly to the German test scores in Table 1.
The multitask model for English ARPAbet and IPA entries does
slightly improve the Seq2Seq scores (5), but fails to match the
Sequitur G2P error rate on the CMUDICT test set (1). This can
be attributed to the much smaller size of the auxiliary IPA lexi-
con, as it is 10 times smaller than in the German experiment and
also smaller than CMUDICT itself. Again, if we use a simple
combination of the model’s n-best lists (6, 7), we observe lower
error rates than from any individual model.

6. Conclusion

Our results still largely favor traditional joint sequence n-gram
modelling (with Sequitur G2P) if individual models are com-
pared, similarly to related work. However, any further advances
in either RNN architectures or the Seq2Seq architecture will
likely also benefit Seq2Seq G2P. Simultaneous training on the
German and English G2P task did no yield any benefits, but
our multitask Sampa/IPA Seq2Seq model for German G2P per-
forms on par with the Sequitur G2P baseline and shows signifi-
cantly lower error rates than the other Seq2Seq models.

Our error analysis according to word classes shows that
there is diversity in how the models learn to deal with regularly
and irregularly pronounced German words, which are difficult
to predict. Ultimately, this diversity allows us to combine differ-
ent systems: combining the Sequitur G2P and Seq2Seq models
without multitask learning (8.6% lower WER relative) and with
multitask learning (15.8% lower WER relative) yield significant
WER improvements for German G2P.

The results are similar for English G2P on CMUDICT, but
since the auxiliary IPA lexicon is 10 times smaller the German
one, we can only observe a modest decrease in WER for multi-
task Seq2Seq models. We still think that multitask learning is a
simple way to combine non-heterogeneous lexicons in Seq2Seq
G2P models, without the need for an explicit translation be-
tween different phoneme sets and annotation styles.
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salt though, as the sample size is very small (n=8).
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