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1. Introduction 

Production is characterized by increasing flexibility and 
adaptability across all industries. Due to the variability of 
products, the requirements towards quality characteristics can 
change frequently and quality assessments are thus not easily 
reproducible. Due to increasing individualization [1], the 
already high number of manual visual inspections is further 
increased [2]. Furthermore, quality assessments conducted by 
employees are subjective [3]. The reliability of the quality 
assessment depends on the experience of the employee. Trained 
employees or experts recognize defects more reliably [4]. 

Therefore, objectivity and reliability of visual inspections are 
dependent on expertise along with training and are not always 
given. This creates a need for skilled employees and use of their 
knowledge as efficiently as possible and - if possible - to 
empower unskilled employees.  

On the one hand, current approaches to automating visual 
inspections often replace manual visual inspections completely 
instead of building on existing expertise and knowledge of 
skilled employees [5]. Several potential systems for automated 
visual inspection exist, using industrial cameras for example. 
These systems often involve a high investment and are not 
economically viable, especially for small and medium-sized 
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and evaluating image material of the components being inspected. Based on this data, DL models are trained and used to classify defects on new 
image material to automate part of the inspection process. Furthermore, smart devices serve to provide context-dependent decision 
recommendations in the visual inspection process, which were calculated by the BRBES with the inclusion of uncertainties. The knowledge base 
of the BRBES is fed by the expert knowledge of experienced visual inspectors using knowledge elicitation techniques. In this way, the system 
can enable optimized and objectified visual inspection based on the data-driven and knowledge-driven approaches used. This paper outlines the 
concept of integrating DL and BRBES into a smart devices decision support system. 
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enterprises (SMEs). In this regard, belief rule-based expert 
systems (BRBRES) make use of expert knowledge for decision 
support of unskilled employees. 

On the other hand, due to the digitalization and 
implementation of cyber physical systems (CPS) and internet 
of things (IoT) in production, expert knowledge and data are 
increasingly available to be leveraged effectively [6]. 
Specifically in visual inspection, there is a need to implement 
the objectivization of subjective quality criteria. On this basis, 
deep learning (DL) for an objective assessment of the condition 
of a component offers great potential.  

This paper presents a concept for objectivizing manual 
visual inspection on smart devices, like tablets and 
smartphones, by integrating a DL model and a BRBES into a 
joined system. The goal is to make use of available data and 
knowledge to improve and objectify employees’ decision 
making in visual inspection. Smart devices serve to provide 
access to and make use of the system where visual inspections 
are to be carried out. 

2. Related works 

Supporting visual inspectors in production to objectivize 
their quality assessment requires relevant methods and 
procedures to be considered. These include visual inspection 
itself, DL methods on smart devices, rule-based expert systems 
such as BRBES and concepts in which DL and BRBES have 
been integrated. This chapter presents related works. 

2.1. Visual inspection 

The main task of visual inspection in production is to assess 
a component and its characteristics against quality criteria to 
meet the customers’ requirements. A general outline of the 
procedure is defined in the European norms DIN EN 13018, EN 
13927 and EN 1330-10. The inspection involves an inspector, 
a test component with defined surfaces, and an inspection 
protocol, which lays out the product-specific extent of the 
inspection [7]. Possible inspection criteria include optical 
properties, surface condition and completeness of product 
assembly [8]. Inspection instructions inside the protocol, in 
which the inspection criteria are specified, are used to guide the 
visual inspection and to fulfil the requirements of customers 
and standards. Inspection criteria can be individually specified 
and used as benchmarks for evaluation with the help of 
references or examples. [9] 

In general, the qualification level of visual inspectors is not 
defined in detail by norms and standards. Accordingly, both 
untrained and trained inspectors perform visual inspections. 
However, DIN EN 13018 sets certain requirements on 
inspectors, who must be aware of the product specifications and 
experienced in all steps of the production process. [7] In 
practice, these are not always fulfilled. Experienced inspectors 
reliably recognize characteristics and should - if possible - carry 
out the visual inspections. Due to the low technical effort and 
flexibility, visual inspections are widely used in industry [9].  

Quality scales can be used in inspection instructions to 

objectivize manual, visual inspections. The scales are used to 
express, among other things, subjective inspection 
characteristics and their properties with a quantitative value. 
The Likert scale or the multi-level ATZ scale can be used in the 
evaluation process, e.g., to quantitatively assess the haptic 
properties of an inspection characteristic. [10] 

Efforts to replace subjective, manual visual inspections with 
automated visual inspection is a very active area of research due 
to the high economic potential for the manufacturing industry. 
Automated solutions lack human shortcomings like fatigue and 
subjectivity and instead yield impartial and reproducible results 
of constant quality [8]. However, in practice they need to be 
tailored to a specific inspection task and implemented into the 
production line. They reach their limits when complex 
geometries or highly reflective surfaces need to be inspected.  

Two major categories emerged as general trends: traditional 
image processing-based approaches and methods based on deep 
learning (chapter 2.2). Traditional automated defect detection 
from digital images consists of two steps: feature extraction and 
defect identification [8]. The extraction of features is specific to 
the defect detection task and requires a substantial amount of 
domain knowledge. The extracted features are then classified 
subsequently by an additional algorithm. Algorithms for 
classification can be based on probabilities (Bayesian 
Classifier, Gaussian Mixture Models) or regression of a 
separating hyperplane (Multilayer Perceptron, Support Vector 
Machines) [8]. Overall, applying traditional approaches to 
automated defect detection assume in-depth knowledge of 
different feature extraction techniques and are not compatible 
with changing production environments. 

2.2. Deep learning on mobile devices 

In recent years DL methods have been established as the 
state of the art in machine vision applications [11]. These 
methods have the advantage of learning feature representation 
directly from the data instead of manually crafting hand-
engineered features [12]. DL models are artificial neural 
networks that have a large number of hidden layers [13]. 
Depending on the properties of the data set, such as the number 
of data points and requirements on the DL model (such as the 
computation time), suitable DL models are selected. Recent 
approaches apply DL models for classification, detection, and 
segmentation of defects. All three approaches have been 
reported to perform well on recognizing surface defects in 
various kinds of industries from manufacturing of steel [14,15] 
or textiles [16] to construction [17,18]. 

Although applications in literature are specific to the use 
case, certain general conclusions can be drawn from these 
implementations: 

 DL models consistently outperform traditional defect 
detection systems in all tasks investigated 

 Data augmentation enables the data basis to be increased 
by turning, rotating, and mirroring the images  

 Data augmentation is also effective in ameliorating class 
imbalances in the dataset 
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 Light-weight DL models can run on resource-constraint 
hardware with low latency 

 Transfer learning from pre-trained models to defect
datasets leads to considerable results  

 In problem cases, where defects only cover small areas of 
the image, multi-stage approaches or processing the image 
in patches are necessary  

Suitable DL models include the Multilayer Perceptron 
(MLP) or the Convolutional Neural Network (CNN). To
achieve better results in image recognition, DL models are 
constantly being developed or refined. CNN models such as 
ResNet152, GoogleNet and AlexNet achieve good results. 
[19,20] Although these heavy-weight neural networks score 
better results on image classification benchmarks, their 
deployment to smart devices is impaired by their computational 
requirements and memory footprint. The inference time of 
ResNet152 is up to 10 times larger than of state-of-the-art 
mobile models when running on modern hardware of smart 
devices [21]. Long latency times make heavy networks 
impractical for mobile applications. Fortunately, a lot of effort 
has been made to develop mobile networks which can operate 
in real-time under the performance constraints of smart devices. 
Notable mobile networks are the MobileNetseries [22], 
NASNet [23] and the EfficientNets [24]. The inference time of 
a network cannot be estimated solely on the number of 
parameters and differs depending on the framework and the 
device [25]. Additional methods can be used to further decrease 
the inference time and memory footprint of a model. Deng et 
al. [26] provide an extensive overview of techniques for model 
compression and hardware acceleration. 

2.3. Expert systems 

Expert systems (ES) are computer-aided knowledge-based 
systems that can provide recommendations in decision-making 
processes by means of a knowledge database created by 
experts. Through ES, an increased objectivity in decision-
making processes can be achieved. In this respect, ES are 
suitable for visual inspection, as the visual inspector is 
supported in decision-making irrespective of the level of 
qualification. Furthermore, quality characteristics can be 
evaluated more objectively. [27]  

An ES usually consists of a knowledge base as well as an 
inference, an explanation, a knowledge acquisition, and a 
dialogue component. The knowledge base stores the context-
specific knowledge of all knowledge carriers (experts) and 
forms the basis of all other components. The knowledge base is 
filled with the help of the knowledge acquisition component, in 
which various knowledge elicitation techniques are applied. An 
inference mechanism uses this knowledge and derives solutions 
for an instance in the context of a problem, usually by applying 
algorithmic procedures. [27] An ES provides the user with 
conclusions or decisions that are substantially better or more 
often correct than the user could be [28]. In addition, there is an 
explanatory component that presents the inference or decision-
making in a comprehensible way. [27] 

A promising ES modelling tool is belief rule-based expert 
systems (BRBES) [29]. BRBES use knowledge representation 
and an inference mechanism. In BRBES, there are many if-then 
rules that constitute the knowledge representation. The 
knowledge representation, in the form of belief rules, include 
belief degrees, a rule weight and an antecedent attribute weight. 
The belief degrees are used to express different types of 
uncertain information. [30] 

BRBES have already been used in a variety of successful 
applications. The advantages relate to the ability to handle and 
interact with both quantitative and qualitative data from 
heterogeneous sources. [29]  

The deployment of ES in socio-technical systems such as 
production imposes requirements on the design of the dialogue 
component. Information must be available as needed and in a 
short time. This is also the case for use in visual inspection. In 
this context, dialogue components for assistance systems based 
on smart devices have already been used in numerous manual 
processes in production [31]. Exemplary applications range 
from maintenance and repair, assembly, and logistics to 
employee qualification [32]. 

2.4. Integration of DL and BRBES 

The integration of DL and BRBES combines the advantages 
of both methods for use in a context-specific problem. DL 
automates the classification, detection, and segmentation of 
objects in image data with potentially high accuracy. BRBES 
delivers decisions objectively and substantially better or more 
often correct than the user could be. The integration of DL and 
BRBES was realized by Kabir et al. [33] and Ahmed et al. [34].  

Kabir et al. [33] used the output of a DL model as input in 
the form of the antecedent attribute for a BRBES. The DL 
model uses outdoor images to predict the concentration of 
particles in the air. In addition, sensor data are added as input 
to the BRBES, which then calculates the belief degrees of six 
categories to determine the air quality index.  

The system proposed by Ahmed et al. [34] classifies the 
mental state from facial expressions of video sequences. A DL 
model generates probabilities for each class for one frame of 
the video, which in turn are used as referential values of the 
antecedent attributes of a BRBES.  

3. Application cases from production  

The proposed system needs to adhere to the requirements 
from visual inspections and the employees using it. A total of 
eight companies from the production sector that use visual 
inspections were consulted. All of which provided specific use 
cases containing a range of products with varying defects. 
From each use case, images of the products and defects were 
taken. Expert knowledge was provided from experienced 
employees as well as inspection protocols and customer 
requirement sheets. Common defects include deviations in 
form, appearance as well as surface defects of the products. 
These defects either render the products unusable for certain 
applications or undesirable to specific customers because of 
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aesthetic reasons. The defects vary in size and shape. Defective 
areas on some products show no repeating pattern or appear to 
occur in random locations. To prevent the shipment of 
defective products, visual inspection routines are integrated 
into the production cycle. Based on these use cases the 
following requirements (Rx) were derived: 

R1 - integrable into production: The system must be 
integrable into physical environments in which the products are 
inspected. Both the use of hardware and the integration into 
existing processes and procedures must be considered. For 
example, taking into account inspection cycles, the evaluation 
of a product in the visual inspection is limited to a certain 
period of time. In extreme cases, the inspection must be 
finished in a few seconds. 

R2 - objectivity: For the inspection to be less dependent on 
the subjective evaluations of the visual inspectors, an 
objectivity of the quality evaluation must be ensured. For this 
purpose, uncertainties must be considered. The evaluation basis 
or rules for the evaluation should be transparent and visible for 
untrained or inexperienced employees. Regardless of the levels 
of expertise in inspection, employees should be able to work 
with the system. 

R3 - evaluation quality: The quality of the evaluation and 
thus the validity of the system's results must at least reach the 
level of quality that employees would achieve without 
assistance. Inexperienced employees learn the rules set for the 
evaluation by using the system. Consequently, the system must 
be robust to guarantee operation under changing production 
conditions. After all, visual inspection cannot always take place 
under controlled conditions. 

R4 - scalability and adaptability: The system must be 
scalable to several workplaces and employees. Visual 
inspections take place at multiple stages in the production 
process. Due to the individualization of products and the 
diverse requirements of customers, the demands on quality also 
vary greatly. In addition, different products exhibit different 

defects. Adaptability of the systems to these aspects must be 
realized. Ultimately, future, or new variants of products will 
need to be added. 

4. Integrated approach of DL and BRBES for visual 
inspection  

We propose a novel approach through the design of a system 
for objective decision making in visual inspection. By 
integrating a DL model with a BRBES and the use of a smart 
devices application, the system provides the visual inspector 
with decisions on the quality of components and the resulting 
consequences. This is done using data as well as the knowledge 
from experienced employees. The system is depicted in Figure 
1. In the following, the main components are described 

4.1. Smart devices application 

The smart devices application shown in the upper part of the 
figure serves to generate information by recording and 
evaluating image material of the components being inspected. 

 Visual inspectors record image data with the smart devices 
of the products under inspection. In a pairwise comparison, the 
visual inspectors assess the quality characteristics and 
properties of the product. The assessment serves as antecedent 
attribute to the BRBES. Recorded images are labeled according 
to which defect and property is present on the product. The 
labeled data is used to train DL models that classify defects on 
new image material to automate part of the inspection process. 

Furthermore, the smart devices serve to provide context-
dependent decision recommendations to the visual inspectors, 
which were calculated by the BRBES with the inclusion of 
uncertainties. In this regard, the smart devices application 
serves as the dialogue component of the BRBES and frontend 
of the system. 

Figure 1: Design of system integrating DL-model and BRBES along with smart devices for visual inspection.
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The decision to implement the frontend of the application on 
smart devices is based on the requirements R1 and R4. 
Individual devices can be used regardless of location. 
Interaction with the application can take place during or 
directly after the inspection, so that the process is not disturbed. 
In addition, webcams can be controlled by the application to 
record footage wherever the deployment of personnel is too 
dangerous or impractical. The frontend is realized as a web 
application with the React framework and thus enables easy 
scaling to other locations where visual inspection is to be 
carried out. The backend, with components such as the BRBES 
and the DL models, is implemented with Flask and Docker. 

4.2. Pre-trained deep learning model 

The images acquired from the smart devices application and 
additional cameras need to be processed before using them in 
the training process of the DL models. During image
acquisition, the products are photographed under varying 
conditions that occur in production (e.g., change of light 
conditions). In image processing, the acquired images are 
divided into patches, labeled, and subsequently processed into 
different datasets for training, validation, and testing. 

Enabling visual inspectors with the tools to improve and 
objectivize their visual inspection procedures, certain 
considerations for the DL models must be made. A selected 
model should be promising in terms of the accuracy of the 
detected defects classes. Moreover, the model should be able to 
run under the hardware constraints of smart devices and the 
effort for the implementation should be kept minimal. Under 
these considerations, a single-stage approach of a CNN-
classifier with a sliding-window implementation is selected. A 
lightweight pre-trained CNN is considered as a classifier to be 
fine-tuned to the respective defect dataset. Possible candidates 
include EfficientNetB0, MobileNetV3Large, 
MobileNetV3Small, and NASNetMobile due to their 
performance and computational efficiency.  

Each model is used as a pre-trained version without the 
original classification head so that just the convolutional base 
of the model is used. On top of the convolutional base a global 
average pooling layer is added to reduce the number of 
features. After pooling, the values are classified by a new 
classification head, which predicts the probability of 
membership to a specific class within the respective defect 
dataset. For the baseline model, the classification head consists 
only of a fully connected layer from the global pooling layer to 
the output. In the classification head of the model candidates, 
an additional hidden layer is integrated. 

The application of DL models is comprised of three steps. 
First, the baseline model is trained on the optimization dataset 
to receive benchmark values. In the second step, the four 
candidate models are trained within a hyperparameter 
optimization framework on one fold of the optimization 
dataset. The most promising configurations of models and 
hyperparameters are then trained in cross-validation to gain an 
overview of model performance. The best-performing model 
and its respective hyperparameters are selected among the 

candidate models. In the third step, the best model is trained 
and evaluated on the evaluation datasets.  

The output of the DL model is comprised of a classification 
of the image segments according to the defects that are present 
on the component. Implementing DL models into the system 
fulfils R2 and R3, as the models provide objective results based 
on the recorded data. The evaluation of the models ensures the 
quality of the results fulfil the requirments made (R3). 

4.3. Belief rule base expert system 

The BRBES uses two different antecedent attributes for the 
calculation of quality levels of the product and consequences in 
the form of decisions to be made (e.g., scrap product or 
rework). The output of the DL model and a quality assessment 
via the smart device application. Both are processed separately 
by the BRBES. This means that the visual inspector can carry 
out evaluations by himself and receive decision 
recommendations. Alternatively, decision recommendations 
from the results of the DL models can be received. Thus, the 
uncertainties required from R2 are included for an evaluation 
that is as objective as possible.  

To develop the knowledge base of the BRBES, inspection 
characteristics are first identified from expert knowledge, 
customer requirements and existing inspection instructions and 
protocols. Experts then determine the properties of the 
characteristics using the ATZ scale. The characteristics are also 
prioritized, which represent the antecedent attribute weights. 
Finally, the rules consisting of the antecedent attribute and a 
consequence are established. The rules are also given weights 
to express differences in the importance of the rules. Individual 
rule bases can be created for each individual product, ensuring 
scalability (R4) to other products or customer requirements. 

Once the BRBES is set up, the following steps are 
performed: 

 Input transformation of the antecedent attributes, value and 
belief degrees of smart devices application and DL model 

 Calculation of the matching degree of the input to the rules  
 Calculation of activation weights indicating the importance 

of a rule in the knowledge base given an input 
 Generation of a result by rule aggregation with evidential 

reasoning (RIMER) 

Each input and the output calculated from are stored for the 
purpose of documenting inspection operations. Providing 
means of integration into existing enterprise information 
systems.  

5. Conclusion and future work 

In this paper a novel concept to support visual inspection is 
proposed. A system is designed for objective decision making 
in visual inspection. It is comprised of a DL model that is 
integrated with a BRBES. A smart devices application serves 
as interactive interface between the visual inspector and the 
system. The DL model automates the classification of defects 
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on products based on recorded image data with potentially high 
accuracy. Both the evaluation by the visual inspector and the 
classified defect of the DL model serve as input to a BRBES. 
The BRBES delivers decisions in the form of quality levels and 
subsequent consequences or actions to be performed.

A pending deployment and validation of the system will 
reveal its potential performance in the field of visual 
inspection. 
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