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We present a linear-scaling method based on self-consistent charge non-orthogonal

tight-binding. Linear scaling is achieved using a many-body expansion, which is

adjusted dynamically to the instantaneous molecular configuration of a liquid. The

method is capable of simulating liquids over large length and time scales, and also

handles reactions correctly. Benchmarking on typical carbonate electrolytes used

in Li-ion batteries displays excellent agreement with results from full tight-binding

calculations. The decomposition slightly breaks the Hellmann-Feynman theorem

which is demonstrated by application to water. However, an additional correction

enables dynamical simulation also in this case.
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I. INTRODUCTION

A wide range of methods are employed to predict and explain chemistry in silico, starting

from non-reactive molecular mechanics force fields1 through reactive potentials2–4 all the way

to first principles methods. A large part of chemistry occurs in the liquid phase, but liquids

are also one of the most difficult systems to model because of their variable, dynamic struc-

ture. While non-reactive properties are adequately addressed by force fields, reactions pose

a challenge. Many different elements are often present, making the development of transfer-

able reactive potentials a difficult and time-consuming task. Additional complications arise

for systems where electrostatic interactions and charge transfer are crucial5–7.

First principles methods, while transferable and easy to use for any elemental compo-

sition, do not scale linearly as system size increases. Unfortunately the disordered nature

of liquids often mandates the dynamical simulation of relatively large systems. With these

challenges in mind, several linear-scaling methods for quantum mechanical calculations have

been developed, each with their own advantages and drawbacks. These include general

methods8–12, methods taking advantage of the structure of particular types of systems13–15,

as well as methods relying on fitting potential energy surfaces to ab initio data16,17. For

reviews of different methods, see, e.g., Refs. 18–22. No single method thus seems to have

established itself as a first choice for a wide range of systems. As an alternative to full

linear scaling methods, QM/MM approaches for reactions within the liquid phase have been

developed recently13,15,23. These approaches identify reactive sites and treat these quantum

mechanically. However, they share some of the limitations of non-reactive force fields.

Between classical and quantum approaches, the tight-binding (TB) approximation24–29

is an intermediate method that retains some of the transferability of ab initio methods by

considering the electronic subsystem explicitly. Yet, it requires some parametrization. While

it is orders of magnitude faster than real first principles methods, it scales similarly with

system size.

In this work, we address the scaling problem by developing a linear-scaling tight-binding

methodology. In contrast to traditional linear scaling schemes that exploit the fact that the

multiplication of two sparse matrices takes linear time, our method starts from a block di-

agonal hamiltonian, which can be straightforwardly solved in linear time, and then corrects

for pair interactions. We follow an approach somewhat similar to QM/MM: We exploit the
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liquid substructure and treat intermolecular and intramolecular interactions separately. In

contrast to present QM/MM approaches, all interactions are treated fully quantum mechan-

ically in our model. Reactions are then naturally modeled by dynamically merging multiple

molecules into a single “quantum” region. This avoids many of the artifacts that arise when

converting a single molecule from a classical to a quantum description, such as a mismatch

in chemical potentials15. In the final part of this paper we use our method to compute the

solvation properties of Lithium in ethylene and propylene carbonate.

II. LINEAR-SCALING METHOD

As a basis for our method, we use self-consistent-charge non-orthogonal tight-binding

(SCC-NOTB)24–27, as implemented in an in-house code. The basic method is covered ex-

tensively in Refs. 28 and 29. Linear scaling is achieved by expanding into molecule pairs30.

Formally, the system energy is expanded in n-body terms as in Refs. 30–32, with

E =
N∑
I=1

EI +
N∑
I<J

V IJ + . . . , (1)

where EI is the energy of the isolated molecule I, and

V IJ = EIJ − EI − EJ , (2)

where EIJ is the energy of a system composed of molecules I and J only. When using

indices, we denote molecules by capital latin letters (I, J,K), atoms by lowercase letters

(i, j, k) and orbitals by greek letters (µ, ν). We terminate the series at the molecule pair

term. The decomposition then becomes linear scaling by nature since pairs only contribute

a non-neglible V IJ if the respective molecules sit in each others vicinity. Convergence of

this type of series was investigated by, for instance, Dahlke et al.33, who found that for

water hexamers, the error for the pairwise sum was around 1 kcal/mol (ca. 40 meV), when

electrostatic embedding was included.

Improving the convergence of the series in Eq. (1) indeed requires taking the electrostatic

background of the liquid into account. The fact that the self-consistent charge tight-binding

method incorporates Coulomb interactions between the atomic partial charges provides a

natural way to accomplish this. Similar to Ref. 31, the charge self-consistency loop uses

the energy to first-order molecular contributions (first sum of Eq. (1)) only. That is, the
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Hamiltonians of the molecular subsystems are solved independently of each other, except

that each molecule feels the electrostatic potential from the others.

Simply solving the first-order contributions completely separately does not allow charge

transfer between molecules. Thus, we keep the molecules otherwise decoupled, but determine

orbital occupancies globally. This way, charge is allowed to flow unrestricted, which is

important in describing for example the solvation of lithium in carbonates as discussed

below.

For the molecule pairs, the total charge of the pair system is then taken as the sum

of the constituent molecules’ charges. We then carry out a non-self-consistent calculation,

where the electrostatic potential obtained at first order is used. Here, it is assumed that

the self-consistent charges in the pair calculation are very similar to those of the constituent

molecules. Another reason to avoid an SCC calculation for each pair is to ensure consistency

against the molecular calculations subtracted in Eq. 2.

We will now cast the above method into the language of SCC-NOTB. First, let H denote

the full Hamiltonian and S the full overlap matrix of the atomistic system under consid-

eration, both of which are assembled using the usual Slater-Koster transformation rules34.

Then, the total energy of the system is given by Etot = E + 1
2

∑
ij V

rep
ij with

E =
∑
a

f(εa)〈a|H|a〉+
1

2

∑
i

φiδqi. (3)

Here, φi =
∑

j γij(Rij)δqj is the effective electrostatic potential at atom i. Additionally,

V rep
ij is a repulsive pair contribution that has no influence on the electronic structure.

State |a〉 has eigenenergy εa and is populated according to the Fermi-Dirac occupation

function f(ε). The charge fluctuations δqi = qi− q0
i are defined with respect to the Mulliken

charges qi where q0
i is the Mulliken charge on the charge-neutral atom28,29,35. The Mulliken

charges are given by

qi =
1

2

∑
a

f(εa)
∑
µ∈i

∑
jν

(a∗iµSiµjνajν + a∗jνSjνiµaiµ) (4)

where aiµ denote the coefficients of |a〉 in the appropriate basis. The term γij(Rij) that

determines the electrostatic potential φi then describes the strength of the electrostatic

interaction and needs to approach the asymptotic behavior γij(Rij)→ R−1
ij for large distance

Rij of the atoms i and j. For small distances it depends on the shape of the charge.
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The eigenstates |a〉 are obtained by minimizing the energy E with respect to all |a〉

subject to the orthonormality constraint 〈a|S|b〉 = δab. This variational procedure leads to

the one electron Schrödinger equation

(
Heff[|a〉]− εaS

)
|a〉 = 0, (5)

with the effective Hamiltonian Heff. Its matrix elements Heff
iµjν = 〈iµ|Heff|jν〉 are given by

Heff
iµjν [|a〉] = Hiµjν +

1

2
Siµjν (φi[|a〉] + φj[|a〉]) (6)

and contain a band-structure contribution (first term) and a contribution that is due to

electrostatics (second term). Note that in terms of the effective Hamiltonian the total

energy becomes

E =
∑
a

f(εa)〈a|Heff|a〉 − 1

2

∑
i

φiδqi (7)

which has a structure identical to Eq. (3) but the second term has a minus sign. This is

the double counting correction. Since the δqk (and thus φk) depend on the eigenstates |a〉,

Eq. (5) is nonlinear and needs to be solved self-consistently.

Let us now turn to the energy expansion of Eq. (1). Analogous to the energy, we decom-

pose the total Hamiltonian H (and total overlap matrix S) into a block-diagonal Hamilto-

nian H0 (and overlap matrix S0) that describes noninteracting molecules. The Hamiltonian

H0 contains the molecular blocks on the diagonal of H, and can be decomposed into the

Hamiltonians HI that act in the subspace of each molecule such that H0 =
∑

I H
I . Corre-

spondingly, the eigenvectors can be written as |a0〉 =
∑

I |aI〉. In addition, we define pair

Hamiltonians HIJ (and overlap matrices SIJ) which are sub-blocks that act in the subspace

spanned by molecules I and J . This decomposition is illustrated in Fig. 1.

With these definitions we first solve the decomposed system for each molecule I in analogy

to Eq. (5) as (
HI,eff[|a0〉]− εaISI

)
|aI〉 = 0, (8)

where we highlight the fact that the minimization is carried out self-consistently, since

the electrostatic potential (see Eq. (6)) varies from iteration to iteration. Each molecule’s

effective Hamiltonian depends on all the others in that the electrostatic potential ultimately

depends on the combined eigenstates |a0〉. Note also that the occupation function (f in

Eq. (4)) is the same function for all molecules, denoted f 0, with a common Fermi energy.
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FIG. 1. Schematic illustration of the molecular decomposed Hamiltonian matrices for four ethylene

carbonate molecules. (a) shows the block diagonal form of the global Hamiltonian H0 where all

blocks without a picture of a molecule have zero entries. (b) shows the Hamiltonian HIJ that

determines the interaction between molecules 3 and 4 in this picture. The diagonal terms are

identical to the diagonal terms of H0 for molecules 3 and 4, but H34 additionally contains the

matrix elements that govern the intermolecular interaction.

As stated above, occupancies are determined globally to allow charge transfer between the

molecules.

Once the decomposed system is solved, we then solve the Hamiltonian for each pair I-J

as (
HIJ,eff[|a0〉]− εbIJSIJ

)
|bIJ〉 = 0. (9)

One of the keys to our method is the definition of the electrostatic potential φi that enters

Eqs. (8) and (9). We define this to be given by the decomposed eigenstates |a0〉 only. It

thus acts as the electrostatic embedding term for the molecule pairs.

In the pair calculation, we adjust the local Fermi-level for the pair IJ such that its total

charge QIJ is identical to the sum of the Mulliken charges QI and QJ of molecules I and J ,
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respectively. In terms of the occupation functions f 0 and f IJ this condition becomes∑
bIJ

f IJ(εbIJ ) =
∑
aI

f 0(εaI ) +
∑
aJ

f 0(εaJ ). (10)

The secular equation (9) is then solved only once, since the eigenstates |bIJ〉 do not enter the

effective Hamiltonian HIJ,eff. This scheme corresponds to going to second order in series (1)

for the orbital interactions while evaluating the SCC loop at first order only.

Putting the above decomposition in terms of expansion (1), we have

E =
∑
I

EI +
∑
I<J

V IJ +
1

2

∑
i

φiδqi (11)

with V IJ = EIJ − EI − EJ and

EI =
∑
aI

f 0(εaI )〈aI |HI |aI〉 and (12)

EIJ =
∑
bIJ

f IJ(εbIJ )〈bIJ |HIJ |bIJ〉.

In order to carry out molecular dynamics simulation we require forces which are the

derivatives of the total energy, Eq. (11), with respect to the positions. As the sum over

the molecular terms corresponds to a single self-consistent tight-binding calculation with

a block-diagonal Hamiltonian, it satisfies the Hellmann-Feynman theorem. However, the

HIJ,eff in Eq. (9) depend on the eigenstates at first order, i.e., on |aI〉 through the electrostatic

potential due to the Mulliken charges. Thus, the |bIJ〉 are no longer exact eigenstates of

HIJ on the second line of Eq. (12). A correction is, however, difficult to evaluate, and we

therefore neglect the issue in the following treatment. This leads to breaking the Hellmann-

Feynman theorem which may cause energy conservation problems. We will discuss and

evaluate the magnitude of these in the specific application examples below. Note that this

problem only affects SCC calculations. Without self-consistent charges energy is conserved

by construction.

Similar methods have been previously used with ab initio theory32,36. However, in these

works the molecular structure of the system was assumed to stay unchanged during the sim-

ulation. This approximation obviously requires the molecular structure to be given initially,

and it furthermore breaks down as soon as reactions occur.

In order to allow for reactions, we decompose the system into its molecular constituents

at each time step. This is similar in spirit to the method employed by Yamaguchi et al.37

7



for gas-phase carbon. However, decomposition based solely on a geometric cutoff criterion

would potentially cause problems in a liquid because such an approach ignores the liquid’s

actual binding structure. To properly estimate the strength of the interaction between two

molecules we would need to compute the maximum covalent bond energy38 between each

molecule pair at each time step. This requires solution of all potential pairs and is compu-

tationally intensive. Instead, we take an intermediate approach and use the Hamiltonian

matrix to determine whether two atoms belong to the same molecule: A cutoff is imposed

on the maximum absolute value of the matrix elements corresponding to the interaction be-

tween the two molecules. This way it is the strength of the interaction which determines the

decomposition. For increased efficiency, the analysis is always started from the molecular

structure of the previous time step. Then, molecules are joined and separated according to

the chosen cutoff.

In detail, the decomposition algorithm is as follows. At each time step, the molecular

structure from the previous time step is used as a starting point. Then, we first attempt to

separate each existing molecule into smaller subunits. For this, we use an algorithm based

on single-linkage hierarchical clustering.39 The details of the algorithm are:

For each molecule I:

1. Initialize each atom in the molecule to its own single-atom subunit

2. Set n = 0 and loop over atom pairs i-j, with i and j in different subunits within the

molecule:

If (maxµν {|Hiµjν |} > cutoff) =⇒

Join the subunits to which atoms i and j belong into a single subunit

Increment n

3. If (n > 0) −→ 2.

4. Split molecule if more than a single subunit is left

After this, we check if any previously separate molecules need to be joined. Looping over

molecule pairs I-J , two molecules are joined, if maxµν {|Hiµjν |} > cutoff for any i ∈ I,

j ∈ J . At the beginning of the simulation, all atoms are placed in a single molecule. This

dynamic decomposition during a molecular dynamics run is linear-scaling in the number of
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FIG. 2. Scaling of the molecular decomposed method compared to full tight-binding calculations.

A short simulation was run for periodic cells of liquid water. The execution time for the decomposed

method with 240 atoms has been normalized to unity. Fitted scaling exponents are shown next to

the lines and the open symbols show the time required for diagonalization.

molecules since separation acts on molecules and joining can be implemented using the usual

linked-cell algorithm.40

The scaling of the method is illustrated in Fig. 2, which shows the total simulation time

and the time spent solving the secular equations for the full and decomposed cases. Overall,

no single factor was found to dominate the execution time in the decomposed case, displaying

balanced performance. Note that while the decomposition is linear-scaling, other parts of

the simulation such as the particle-mesh Ewald method which scales as O(N log(N)) are

not.

To illustrate the decomposition in a simple model system, we take the water dimer. Specif-

ically, we use the density-functional based mio-0-1 parametrization41 (SCC-DFTB)28,42. The

upper panel in Figure 3 illustrates the difference between the decomposed and the full tight-

binding solutions when the distance between the two water molecules in the dimer is changed.

For the decomposed case, we keep the two molecules decomposed manually along the full

trajectory. Because only two molecules are involved, the error comes from the different Mul-

liken charges at first order in the expansion as compared to the ones from a full treatment.

Note that for a non-SCC calculation, the solutions match exactly (not shown). Because of

the nature of the hydrogen bond, the water dimer is a worst case scenario and in most cases

the error is significantly smaller (see Section III). Even here, as the intermolecular elements

9



FIG. 3. Decomposition for (a) the intermolecular interaction in a water dimer and (b) for the

O–H bond in a water molecule. The right axes show the maximum Hamiltonian matrix element

between the subunits. When this decreases below 1–2 eV for the water dimer (around 3 Å), the

error in the decomposition becomes negligible. Both panels also show the decomposed result with

the correction introduced in Sect. III. The curves barely differ from those of the full calculation.

of the Hamiltonian matrix decrease below 1–2 eV, the decomposed solution no longer devi-

ates much from full tight-binding. Note, however, that there is still significant interaction

between the molecules at this point.

Next, we investigate the breaking of a covalent bond. The lower panel in Fig. 3 shows the

dissociation of a water molecule by stretching of the O–H bond. Again, we manually keep

the H2O decomposed into an OH and an H fragment during the whole trajectory. With

increasing bond length the relative error quickly becomes small and is about 2 % at 2 Å.

Note that we here break a covalent bond to show that the method applies equally well for

reactive simulations. In a full simulation the OH and H would be merged into a single

molecule hence following the energy given by the full tight-binding solution in the lower

panel of Fig. 3.
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FIG. 4. Ethylene carbonate (EC) and propylene carbonate (PC).

This linear-scaling scheme is of course restricted to systems such as liquids, which can

be decomposed into weakly interacting subsystems. The advantage on the other hand is

that the prefactor is small, such that significant speedups are already obtained at very small

system sizes. Also, note that as shown by the water molecule in Fig. 3, the decomposition of

covalently bonded systems is possible, although it misestimates binding energies by about

10 %. This approach is known as the fragment molecular orbital method.43

III. DYNAMICS

Previous studies that used similar many-body expansions discussed exclusively static

properties30–32. Convergence of energetics was addressed without regard to dynamic simula-

tions, which in addition to energies require accurate forces for energy conservation. As

pointed out above, the many-body expansion indeed causes problems when calculating

forces. As we will show here, the severity of the problems varies case by case. In carbonate

electrolytes the breaking of the Hellmann-Feynman theorems turns out to be negligible while

in water it is not. However, we demonstrate a correction with which dynamical simulation

is also possible for water.

We test the method in two liquids. Propylene carbonate, depicted in Fig. 4 is a typical

component in lithium-ion battery electrolytes. While liquid at room temperature, it does not

contain strong specific intermolecular bonds. The other example, water, forms a relatively

strong network of hydrogen bonds.

Let us first examine the decomposition in the case of PC, where there is relatively weak

bonding between the molecules and energy conservation is nearly perfect. In the produc-

tion runs for ethylene and propylene carbonate below, we used a cutoff of 2 eV for the

decomposition. This value gives a decomposition, where the average number of subunits in
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a simulation at 400 K is on average roughly 90 % of the number of carbonate molecules in

the cell. The number of subunits in a 1 ps run is shown in Fig. 5 along with the partial

charge on a carbonyl oxygen and the force on the respective PC molecule in a short tra-

jectory. Here, the errors in both charge and force are negligible and the maximum error in

the force reaches about 0.06 eV/Å. The maximum errors in the force for the Hamiltonian

and electrostatic components are ca. 0.06 and 0.02 eV/Å, respectively. The maximum error

in energy for the Hamiltonian contribution is about 0.01 %, while that for the electrostatic

interaction is roughly 2 %. No excessive thermalization is required as the temperature in an

NVE simulation at 400 K rises only by roughly 1 K/ps.

Next, let us turn to water. Here, we find that in an NVE simulation the breaking of the

Hellmann-Feynman theorem results in significant mismatch of forces and energies and hence

heat production. With a Berendsen thermostat44, it is possible to constrain the temperature

rise to around 10 K (at 300 K) with a relaxation time constant of 100 fs. We used an energy

cutoff of 6 eV in the Hamiltonian matrix elements. At this cutoff, the decomposition is

such that each water molecule has its own quantum zone and no two water molecules are

joined. Fig. 6 shows the partial charge on an oxygen atom in one of the water molecules

and the total force on the molecule containing that oxygen. Although the average value

of the charge is roughly correct, the fluctuations are supressed in the decomposed case.

Correspondingly the error in the force, shown in the lower panel of Fig. 6, is large and

reaches a maximum of ca. 0.4 eV/Å. The large error is attributable to the strong bonding

between water molecules. We neglect this bonding in the computation of the charges from

the fully decomposed Hamiltonian. Thus, two water molecules cannot hybridize in the charge

self-consistency loop. This leads to a suppression of the transfer of charge between water

molecules. Each water is charge neutral in the decomposed simulations while we observe

charges of the order of 0.05|e| per water molecule in the full tight-binding calculations. This

is the origin of the large error in the charge per atom and consequently also the forces shown

in Fig. 6.

In order to correct this problem, a full variational solution of expansion (1) would be

necessary. However, to alleviate the problem, we propose the following first-order correction,

which we apply to the Coulomb interaction only. In terms of expansion (11), we apply a

correction to the third term. Instead of the Mulliken charges derived from the first-order

eigenstates |aI〉, we base the Coulomb interaction on a weighted average of the charges
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FIG. 5. (a) Number of decomposed subunits in a simulation with 125 PC molecules. (b) Partial

charge of an arbitrary carbonyl oxygen in a full calculation and using the decomposition. (c) Total

force on the PC molecule containing that oxygen atom.

derived from the (non-self-consistent) pair calculation. Thus, we take

qi =

∑
J q

IJ
i w

IJ∑
J w

IJ
, (13)

where qIJi is the charge of atom i derived from the eigenstates |bIJ〉 for the pair I–J . If
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molecule I is not interacting with other molecules, we leave the charge unchanged. Here,

wIJ is the corresponding weight for the pair, for which we choose (maxµν {|Hiµjν |})2, where

i ∈ I and j ∈ J . With this choice, the contribution from non-interacting molecule pairs

vanishes, while a single strongly interacting pair will dominate the charges. As the above

expression potentially changes the total charge, we additionally correct all charges by adding

a (small) constant to ensure the total charge is preserved.

Fig. 3 shows the water dimer interaction energy using the above scheme, with the cor-

rected curve coinciding with full TB almost exactly. The difference comes from the non-

self-consistent nature of the pair calculation. Similarly, the error in the Mulliken charge for

the dynamical simulation shown in Fig. 6 is greatly reduced. The effect on the error in the

force is not as pronounced. However, the simulation becomes much more stable. In an NVE

simulation including the correction, temperature rises by ca. 4 K/ps, which, although more

than in the case of PC, allows dynamical simulation using only a weak thermostat. Finally,

note that in cases where the charges stay almost unchanged in the decomposition, such as

with PC here, the corrected scheme is equivalent to the original expansion.

IV. SOLVATION OF LITHIUM IN CARBONATE ELECTROLYTES

To illustrate the power of the method, we employ it to benchmark tight-binding for

studying the solvation of lithium in carbonate electrolytes, namely ethylene and propylene

carbonate which are depicted in Fig. 4.

An additional component is necessary to model the electrolytes and their interaction with

lithium. As no DFTB parametrization including lithium is currently available, we develop

interaction models for Li-{C,H,O}. Fortunately, due to the fact that lithium assumes the

ionic state Li+ with a partial charge very close to +1|e| in all configurations relevant to the

present study the interactions are mainly Coulombic. In Appendix A, we thus parametrize

Lennard-Jones pair potentials for the interactions. The pair-potential acts in addition to

the electrostatic interaction where the lithium is modeled by a point charge of magnitude

+1|e|.

In order to supply reasonable starting configurations for TB, simulation cells containing

the electrolyte are relaxed using classical molecular dynamics (MD). More details are given

in Appendix B.
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A. Simulation procedure

Here, we concentrate on the coordination of lithium with electrolyte molecules at the

limit of low salt concentration. First, electrolyte systems consisting of 125 molecules were

created and relaxed using classical force fields as explained in Appendix B. This equilibrates

the liquid structure and volume. The volume was then held fixed during the tight-binding

simulations. The parameters of the simulation cells are summarized in table I.

TABLE I. Simulation cells used for modelling the electrolytes.

molecules Density (g/cm3)

310 K 400 K

EC 125 1.3201 1.2174

PC 125 1.2279 1.1255

After relaxing the cells, we searched for free space, in the form of spheres of about 3 Å

radius. Ten of these were selected at random for the introduction of a lithium ion. This gives

ten different systems with one lithium ion per cell for both EC and PC. The positive lithium

charge was compensated by a negative Jellium background. For the electrostatic interaction

we used the particle mesh Ewald method45,46 with a real-space cutoff of 1.0 nm and a 323

grid that results in a grid spacing of roughly 0.8 Å. The exact grid spacing depended on

the cell size. We use a time step of 1 fs. Each system was then relaxed and equilibrated at

400 K for 20 ps. This temperature was chosen to ensure the liquid phase for pure EC.

B. Lithium solvation

Solvation of lithium in PC was recently studied in detail by Kameda et al.47 using neutron

diffraction. The first solvation shell was found to consist on average of 4.5 PC molecules,

with an average Li-O bond length of 2.04 Å and Li-O-C angle of 138°. Several experiments

have used infrared and Raman spectroscopy to look at the solvation of various salts and

solvents, with the concensus being that lithium is surrounded predominantly by 4 carbonate

molecules48–54. However, it also seems likely that 5- and even 6-coordinated configura-

tions are present48,52,55. On the other hand, also significantly lower numbers have been
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reported49,56–58, and it seems that at high salt concentration, configurations where lithium

is sandwiched between two carbonates are possible49,56.

The solvation of lithium has also been modelled extensively. Using classical force fields,

Borodin et al.59 reported a solvation shell of on average 3.6 EC molecules around Li at room

temperature, whereas ab initio molecular dynamics results point to a value of 460–62.

From the present simulations, averaging over the latter half of the 20 ps equilibration

runs, a solvation shell of 4.8 was obtained for PC at 400 K. Simulations using EC and

simulations at a lower temperature gave very similar results. The average Li-O-C and O-

Li-O angles were 143° and 106°, respectively. The observed lithium solvation shell fits very

well with the experimental estimate of 4–5 molecules. The average LiOC angle compares

well to the neutron diffraction result of 138° of Ref. 47. The average OLiO angle agrees well

with the value of ca. 110° from ab initio molecular dynamics (AIMD)61.

The angular distributions for PC are shown in Fig. 7. The results for EC are similar. The

distributions of Li-O-C agree well with Ref. 61. In contrast, the O-Li-O distributions have a

different shape: Instead of simply centering around ca. 110°, there is a major peak around

90° with a tail towards 180°. Indeed, it seems that in our simulations Li prefers solvation

in a partly filled six-coordinated shell. There is no experimental result on the shape of the

OLiO angle distribution. We can only state that as far as the number of molecules in the

solvation shell and the average LiOC angle our results agree with the experimental results

to similar accuracy as those of AIMD simulations61.

V. CONCLUSIONS

We presented a method that dynamically decomposes a liquid system into its constituents

and employs that decomposition to efficiently solve for the electronic structure in a tight-

binding model. This allows linear scaling of computation time with system size. In principle,

this scheme could also be used to obtain the decomposition dynamically as part of a more

accurate method such as DFT. While the strong intermolecular interactions in water pose

a challenge to the method, dynamical simulation is possible with an additional correction

to the Mulliken charges of the decomposed system. The usefulness of the method was

demonstrated in simulations of carbonate electrolytes. All these simulation were carried

out on a single CPU. Since the prefactor is small the method can be used for quantum
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calculation with millions of atoms on currently available computing hardware.
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Appendix A: Lithium-electrolyte interaction

Lithium is in the singly charged state, Li+, in all configurations relevant to this study.

The interaction between lithium and other species is thus predominantly Coulombic, and

can be accurately described by an electrostatic interaction of the singly charged Li-ion com-

bined with a L-J potential, which provides the necessary repulsion. Fitting of the interaction

components is described in the following, and the resulting parameters summarized in Ta-

ble II.

TABLE II. Lennard-Jones parameters for lithium-electrolyte molecule interactions.

ε / eV σ / Å

Li-O 0.02 2.2

Li-C 0.05 2.3

Li-H 0.01 1.9

Note that while this approach is sufficient for the present study where only interactions of

isolated lithium with the electrolyte are important a full tight-binding parametrization needs

to be developed to model Li-metal electrodes or other systems where the Li-Li interaction

becomes significant.

Reference energies for the fit were computed using density functional theory (DFT). These

calculations were performed using the Siesta code9, version 3.1. Exchange and correlation

were described within the spin-polarized generalized gradient approximation as implemented

by Perdew, Burke and Ernzerhof63. The effects of the core electrons were taken into account

by the use of norm-conserving pseudo-potentials64–67 and a double zeta plus polarization
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(DZP) basis is employed for the wavefunction expansion. The radial cutoff of the basis

orbitals is determined by an energy shift9 of 0.02 eV in the radial part of the pseudo-atom

Schrödinger equation. The spacing of the real-space integration grid is determined by a

mesh cutoff energy of 1400 eV. As all systems were non-periodic, only Γ-point calculations

were made.

a. Li-O

Lithium binds strongly to oxygen because of oxygen’s strong electronegativity. Thus the

Li-O parametrization is by far the most important one.

The Li-O interaction was fit to Li+-EC complexes, as these are a representative case

of the bonding patterns observed in electrolytes. This system and all following systems

containing Li+ were embedded in vacuum and positively charged. We used two structures

as reference, lithium coordinated to either one or four EC molecules. In the latter case,

the complex assumes a tetrahedral configuration68. Table III shows the energy required to

remove a single EC molecule from the complexes as well as the Li-O bond length. A very

good correspondence between the DFT results and the potential is obtained, due to the

simple Coulombic nature of the interaction.

TABLE III. Reaction energies for removing EC from Li-EC complexes and bond lengths for Li-O

bonds in the higher coordinated (reactant) complex. The cases marked with an asterisk were used

in fitting the potential.

Potential DFT, present work DFT, Ref. 68

∆E / eV rLi-O / Å ∆E / eV rLi-O / Å ∆E / eV rLi-O / Å

∗ Li+-EC → Li+ + EC 1.99 1.91 1.91 1.82 2.20 1.76

∗ Li+-(EC)4 → Li+-(EC)3 + EC 0.80 1.99 0.63 1.98 0.60 1.97

Li+-(EC)5 → Li+-(EC)4 + EC 0.54 2.03 0.37 2.1 0.25 2.09

b. Li-C

The lithium-carbon interaction was fit to the interaction between Li+ and a hydrogen-

terminated graphene flake (with 54 carbon atoms). The resulting binding energy and dis-
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tance (1.73 eV and 2.39 Å) compared well to DFT values (1.76 eV, 2.37 Å). Additionally,

we tested a different case where a Li-ion was substituted in place of a hydrogen in an ethane

molecule. The lithium-carbon bond length from our potential was 2.27 Å, to be compared

to 2.34 Å from DFT. The bond dissociation energy was equally well reproduced, with 0.67

and 0.76 eV for the potential and DFT, respectively.

c. Li-H

Parametrizing the lithium-hydrogen interaction from complexes involving electrolyte

molecules was found difficult, because Li was found not to bind to the hydrogens in EC.

The interaction between lithium and hydrogen is thus expected to be repulsive, as both are

most often positively charged. In order to determine the L-J parameters, we fit the onset of

the repulsive interaction in a LiH+ dimer. A shallow L-J attractive well was chosen, so that

any attraction in the simulations will be purely electrostatic.

Appendix B: Molecular dynamics with non-reactive force fields

To get properly relaxed input systems for tight-binding, molecular dynamics simulations

were performed with the GROMACS simulation package69 using the OPLS-AA all-atom

force field70.

The OPLS parameters for EC and PC molecules were taken from recent work by Silva

and Freitas71. The partial charges used were the MP2 charges shown in Table 4 of the article

and the torsional parameters for the methyl group in propylene carbonate were taken from

related types of interactions in the OPLS force field70.

The simulation protocol for each system included three phases. First, the systems were

pre-relaxed at 300 K for 100 ps to remove the arbitrary order present in the hand-built initial

configuration, after which a 0.5 ns NPT simulation at 1 bar was run. Each system was relaxed

to 400 K using the V-rescale thermostat72 with a time constant of 0.3 ps and a Parrinello-

Rahman barostat73 with a time constant of 1.0 ps for pressure coupling. Subsequently, a

2 ns stochastic MD simulation using Langevin dynamics74 was run to make sure the liquid

structure was properly equilibrated.
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FIG. 6. (a) Partial charge of an arbitrary oxygen atom in water in a full calculation and using the

decomposition. (b) Total force on the water molecule containing that oxygen atom. (c) Detailed

view of a part of the curve in the middle panel. All panels additionally show the effect of the

correction described in Section III.
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FIG. 7. Angular distributions for Li solvated in EC and PC at 400 K.
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