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A B S T R A C T   

The supply of shared mobility solutions has been increasing during the last years, so has the popularity of 
Mobility-as-a-Service. Both promise an easy access to and usage of shared vehicles or shared rides. Nevertheless, 
usage of these services remains low in German cities. Hence, the question arises: what determines the utility of 
travellers regarding shared modes and how is this different to conventional modes? To answer this, we conduct a 
stated preference experiment amongst 1,445 respondents (8,670 observations). The sample is drawn from res-
idents of the 83 largest cities in Germany. We consider four shared (e-scooter-, bike-, carsharing, and ride-
pooling) and three conventional modes (walking, private car, and public transport). We estimate a mixed logit 
model and calculate the respective value of travel time (VoT) as well as the value of access, egress, and parking 
search time. The importance of the individual attributes is analysed drawing on a part-worth analysis. Further, 
we calculate average treatment effects to show simulated mode-choice probability changes. We find that costs 
are more important than travel time for carsharing and ridepooling whilst they are equally important for the 
remaining modes. For shared services, access is more important than egress. Moreover, among the shared ser-
vices, e-scootersharing shows the highest VoT (23.73 EUR/h), followed by bikesharing (18.53 EUR/h). Finally, 
cost changes to private cars and public transport show the highest simulated shifting potential with carsharing 
profiting most from cost increases in these two modes.   

1. Introduction 

The supply of shared mobility services has been on the rise in recent 
years (ITF, 2020). The umbrella-term Mobility-as-a-Service (MaaS) has 
also increasingly gained public attention globally (Schikofsky et al., 
2020). This holds for Germany, too: with Jelbi, there is already one 
MaaS-platform in Berlin (Jelbi, 2019). Another platform in the region 
around Karlsruhe has been launched (Regiomove, 2021). Despite this 
growth in supply, the usage of shared services or MaaS is still rather low 
(Nobis and Kuhnimhof, 2018). Why is that? This paper addresses this 
question for German cities by analysing key service characteristics 
determining the usage of shared mobility in a stated preference (SP) 
experiment. For this, we quantify the difference in modal choice 
behaviour between the “conventional” modes, i.e. private car, public 
transport (PT), and walking and the new shared modes, i.e. e-scooter, 
bike- and carsharing, and ridepooling. We thereby provide insights into 
strengths and weaknesses of shared modes, which are the baseline for 
possible policy frameworks supporting modal shifts from private cars 

towards shared modes. In a first step, we elaborate on recent work about 
the four shared modes considered in our analyses. 

1.1. Recent work about bike- and e-scootersharing 

Two of the four shared services analysed here, e-scooter- and bike-
sharing, comprise what is referred to as shared micromobility. Micro-
mobility targets to cover short distance trips as well as the first or last 
kilometer (Abduljabbar et al., 2021; Adnan et al., 2019; Wu and Kim, 
2020). Vehicles used for micromobility are light-weight, small and do 
not reach speeds of above 45 kph (Abduljabbar et al., 2021). Bicycles 
and scooters belong to the vehicles of this category, regardless of 
whether they are human-powered or electric (Abduljabbar et al., 2021). 
They can be privately owned or shared, the latter of which gives users 
short-term access to these modes (Shaheen et al., 2020). The shared 
micromobility landscape has grown rapidly in recent years and includes 
various services: station-based (or docked) and free-floating (or dock-
less) bikes or e-bikes as well as e-scooters (Reck et al., 2021). Our 
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analyses include shared standing electric scooters as well as shared 
human-powered or electric bicycles. 

As Reck et al. (2021) point out, previous work about shared micro-
mobility either deals with the supply- or the demand-side with the latter 
focusing on internal, external or trip-related questions. Internal ques-
tions deal with users’ socio-demographics. External ones consider, 
amongst others, the built environment or the weather. Trip-related 
questions target destinations, distance, and time of day (Reck et al., 
2021). This paper focuses on external demand-side factors, specifically 
on the characteristics of the service and trips themselves. Further, 
bikesharing has been on the agenda of previous work for much longer 
than e-scootersharing as the latter has only recently been added to the 
travelers’ choice set (Reck et al., 2021). In particular, e-scootersharing is 
used for shorter trips with average distances of 0.7 km (Reck et al., 2021) 
and maximum distances of 3.2 km (Smith and Schwieterman, 2018). 
Bikesharing, on the other hand, is used for slightly longer trips averaging 
in the range of 1.3 to 3.1 km (Reck et al., 2021; Lazarus et al., 2020). Due 
to its size and speed, shared micromobility increases accessibility 
(Abduljabbar et al., 2021) to PT (Shaheen et al., 2013; Abduljabbar 
et al., 2021; Bai and Jiao, 2020) and social equity by facilitating less 
mobile user groups’ participation in social life (Milakis et al., 2020; 
Sanders et al., 2020). 

Regarding shift potentials, bikesharing enables a reduction in car 
usage (private and taxi), an increase in cycling and support for or 
complement to public transit (Martin and Shaheen, 2014; Guidon et al., 
2019; Link et al., 2020). However, free-floating bikesharing can also 
substitute walking for trips under 1 km or the bus for trips below 2.5 km 
(Gao et al., 2021), especially in case of pedelecs (Campbell et al., 2016). 
Car trips are only replaced in 1% of the cases (Link et al., 2020). E- 
scooters are seen as a convenient and faster alternative to walking, 
replacing substantially more walking than private car trips (Sanders 
et al., 2020). Although distances vary between free-floating and station- 
based bikesharing trips, reasons to try and use any of the systems are 
similar, namely high bicycle (station) availability and a user-friendly 
smartphone application (Link et al., 2020; Maas et al., 2020; Bachand- 
Marleau et al., 2012). However, the supply density of shared micro-
mobility modes shows a ‘plateau effect’, i.e. decreasing marginal utility 
gains with increasing densities (Reck et al., 2021). Low costs and quality 
of bicycles are no significant factors to use bikesharing (Link et al., 
2020). Whilst a potential competition is found for non-members of free- 
floating e-scootersharing and station-based bikesharing, a complemen-
tary relationship is found for members of the two services (Younes et al., 
2020). Reck et al. (2021) find that with increasing trip length, the 
probability of choosing e-scootersharing decreases whilst the probabil-
ity of choosing e-bikesharing (free-floating and station-based) increases. 
Moreover, higher battery charge increases choice probability although 
the impact is small, whereas price increases negatively effect micro-
mobility mode choice (Reck et al., 2021). Regarding mobility tool 
holdings, a PT pass as well as a carsharing membership positively affect 
bikesharing memberships (Link et al., 2020). 

1.2. Recent work about carsharing 

Compared to shared micromobility, carsharing has been on the 
market for much longer with its first implementation dating back to 
1948 in Zurich (Harms and Truffer, 1998). Despite recent new types of 
carsharing, the fundamental principle remains the same: individuals 
have access to a fleet of vehicles and can book and use them as needed 
(Shaheen et al., 1998). Today, free-floating, station-based and combined 
schemes exist (Becker et al., 2017; Rotaris et al., 2019). Like bikesharing 
and e-scootersharing, vehicles are shared sequentially (Bösch et al., 
2018). While free-floating carsharing is especially used for saving time 
relative to other modes, station-based carsharing is used when a car is 
required for a specific purpose (Becker et al., 2017). Both schemes 
include shift potentials away from the private car (Becker et al., 2018; 
Clewlow, 2016; Jochem et al., 2020; Namazu and Dowlatabadi, 2018; 

Rotaris et al., 2019; Zhou et al., 2020a). Also, car ownership is a crucial 
predictor for adopting free-floating and station-based carsharing (Yoon 
et al., 2017; Zhou and Kockelman, 2011). For German cities, Giesel and 
Nobis (2016) find reductions of car ownership by 7% and 15% for free- 
floating and station-based carsharing, respectively. Moreover, a 1% 
decrease in cost results in a 0.34% increase of the probability of choosing 
carsharing (Carroll et al., 2017). Using data from college students in 
Rome and Milan, Rotaris et al. (2019) show that the combination of 
lower costs and electric cars can increase the share of users from 2% to 
10–15%. Moreover, carsharing membership is found to increase usage of 
PT and active modes by a factor of 1.4–1.5 (Göddeke et al., 2021). 
Applying a greater level of detail, Le Vine et al. (2014) find that station- 
based carsharing complements PT while free-floating carsharing sub-
stitutes it. 

1.3. Recent work about ridepooling 

Ridepooling is an on-demand service enabling the customer to book a 
ride (Alonso-González et al., 2020a; Shaheen and Cohen, 2018) leading 
to simultaneous sharing of the vehicle (Bösch et al., 2018). The pooling 
refers to the service characteristic that the user might have to share the 
ride with other passengers (Alonso-González et al., 2020a). If the pos-
sibility of sharing a ride with strangers is not given, this service is today 
referred to as ridehailing (Lavieri and Bhat, 2019b). Comparing ride-
pooling and ridehailing, Kang et al. (2021) find that users are willing to 
pay 0.62–1.32 USD (0.53–1.12 EUR1) to not have to pool the ride. Vij 
et al. (2020b) find cost to be the most important attribute towards using 
ridepooling or ridehailing. They estimate values of 0.28 AUD (0.18 
EUR2) per km and more for passengers to avoid pooling the ride. 
Furthermore, detour time or additional pickups of passengers are found 
to be barriers to using the service (Lavieri and Bhat, 2019b; Yan et al., 
2019), even greater ones than the pooling with strangers itself (Lavieri 
and Bhat, 2019b). Using a discrete choice experiment, König and Grip-
penkoven (2020) show that ridepooling as a user-centered service meets 
the requirements of potential users. Reduced waiting and in-vehicle time 
is another strength of ridepooling (Yan et al., 2019). Compared to the 
private car, ridehailing complements it more than it competes against it 
(Habib, 2019). Even though findings differ (Malalgoda and Lim, 2019), 
this might also hold for PT (Hall et al., 2018; Vij et al., 2020b; Yan et al., 
2019). Previous work also indicates substitution effects towards active 
modes or PT with the effect being more severe in the case of ridepooling 
(Lavieri and Bhat, 2019a). 

Previous work about integrating different (shared) modes into one 
analysis often focuses on MaaS, portfolio choices, and bundle choice (e. 
g. Becker et al., 2020; Guidon et al., 2020; Ho et al., 2020; Mulley et al., 
2020; Vij et al., 2020a). Work on mode choice regarding different shared 
transport services as well as private car and PT is scarce (Wilkes et al., 
2021; Miramontes et al., 2017), particularly for Germany. As Reck et al. 
(2021) point out, current analyses can be extended specifically with 
respect to micromobility mode choice by including user-specific attri-
butes such as mobility tool ownership. Comparing single services and 
bundles, (Guidon et al., 2020) also conclude that more information 
about the respondents should be added to the choice models in order to 
better understand mode choice towards shared services. Moreover, the 
authors suggest to integrate additional modes. 

We address this research gap by integrating four shared, including 
micromobility, and three conventional modes into a stated choice 
experiment and paying particular attention to mobility tool holdings of 
the respondents. Our SP-design contains all relevant shared transport 
services as well as private cars and PT. In doing so, we provide a direct 
comparison between these modes and, thus, shed light on the differences 
in mode choice behaviour regarding the alternatives in urban contexts in 

1 Exchange rate 1 USD  = 0.85 EUR as of 13.07.2021.  
2 Exchange rate 1 AUD  = 0.63 EUR as of 13.07.2021. 
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Germany. Since shared mobility in Germany is, at least so far, pre-
dominantly an urban phenomenon (Nobis and Kuhnimhof, 2018), the 
analyses in this paper focus on urban mobility. To fill the research gap, 
we use an original and large sample with n = 1,445 subjects (8,670 
observations) that covers all major cities in Germany. Using a state-of- 
the-art mixed logit model and integrating taste as well as scale hetero-
geneity allows us to draw service-specific conclusions. Making use of the 
quantified components of the utility function and our experiment- 
design, we are able to compare the importance of single service- 
attributes and investigate mode-specific components of value of time. 
The former allows us to better understand which attributes are crucial 
for respondents concerning the single services. This information is also 
important for providers to better steer their business decisions towards 
the attributes potential travellers value most. To investigate value of 
travel time in more detail, we decompose it into net travel time (VoT), 
access (VoA) and egress (VoE) as well as parking search (VoP) time. 
Comparing these time components between the rich set of mode- 
alternatives extends the understanding of how respondents perceive 
travel times and how this is different between the seven modes inte-
grated here. Drawing on these findings also allows policy makers to 
implement shared modes into urban transport planning as this 

determines the nature of accessible transportation in the city. We further 
present the impacts of price changes of single modes on the probability 
of modal shifts by calculating average treatment effects. We complement 
this analysis by adding the most important service characteristics. This 
allows us to assess the potential for increasing the modal split of shared 
modes and draw conclusions on how policy and providers might support 
mode shifts in urban contexts. 

To analyse the drivers of mode-choice in the context of shared ser-
vices, we proceed as follows: Section 2.1 describes the survey conducted, 
the socio- demographics of the sample used and the stated preference 
design applied. Section 3 refers to the calculation methods used. In 
Section 4, we depict and discuss the results in four steps: First, the model 
estimates are evaluated. Second, the part-worth analysis indicating the 
importance of the attributes is shown. Third, the different components of 
value of time are illustrated. Fourth, the average treatment effects 
depicting the reactions of mode-choice are expounded. The conclusion 
in Section 5 completes this paper. 

Fig. 1. Map of Germany showing the 83 cities in which the survey was conducted.  
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2. Material and methods 

2.1. Survey instrument 

To answer the questions raised above, we use SP-experiments. Here, 
respondents face hypothetical scenarios of mode-choice, which allows 
analysing trade-offs between modes (Alonso-González et al., 2020b; 
Louviere et al., 2010). Mode-choice experiments, also including shared 
services, are regularly implemented by using SP-designs (Alonso- 
González et al., 2020b; Guidon et al., 2020; Jin et al., 2020; Liao et al., 
2020; Márquez et al., 2019; Schmid et al., 2018; Shen et al., 2020; Yoon 
et al., 2017; Zhou et al., 2020b). 

Sampling took place via an online-panel (Norstat Germany) and re-
spondents were located in larger cities or metropolises at the time of the 
survey. Focusing on the urban environment, the selection of cities is 
based on the RegioStaR7 scheme and includes those of categories 71 
(metropolis) and 72 (regiopolis and large cities, BMVI, 2020). This is 
motivated by the supply of shared services, which is still highly 
concentrated in larger cities. In total, 83 cities were part of the sampling 
process. The map in Fig. 1 shows the surveyed cities. 

The sample was selected using fixed quotas for age, gender, and 
education to match the German urban population as in Eurostat (2020). 
In total, N = 1,779 respondents answered the survey from 27th of 
August until 25th of September 2020. Hence, the Covid-19 pandemic 
might have affected the results, which we elaborate on in the discussion. 
All persons with a driver’s license were eligible for this survey. To create 
realistic choice situations, respondents were randomly selected into one 
of two sub-samples. One dealt with short- (SD), the other with medium- 
distance (MD) trips and respective alternatives in the SP-experiments 
(see Section 2.2). The two sub-samples do not significantly differ in 
terms of quotas selected for the sampling process. The data preparation 
process is shown in the data flow chart in Fig. 2. The ‘SP data (SD)’ and 
‘SP data (MD)’ data sets contain all information of the choice sets (i.e. 
attribute levels) and the respective choices of the respondents. We 
combine these data sets in order to build a data set (‘SP data’) 
comprising all choices of all respondents. Subsequently, we merge the 
personal data, i.e. socio-demographics and mobility tool holdings, to ‘SP 
data’ in order to generate one data set covering all information needed 
for model estimation and postestimation as well as further analyses. 

Table 1 provides an overview of the sample’s key socio- 
demographics and mobility tool holdings. Numbers are compared to 
the largest data set for transport behaviour in Germany “Mobilität in 
Deutschland” (“Mobility in Germany”, MiD, BMVI, 2019). The 

respective sub-population residing in the classified cities is taken as basis 
for the comparison. To allow statements about the German population 
within the RegioStaR 71 and 72 cities, we use the respective expansion 
factors as weights. The χ2 goodness of fit and the t-test is used to analyse 
the differences. 49.2 % of this sample are female compared to 51.2 % in 
the comparison data. The age distribution shows that our sample is 
slightly older (averaging 50.9 vs. 48.6 years) with a lower share of 
people aged 18–29. Considering the net income of the household, our 
sample has more lower income respondents. More people with little or 
no salary might have been motivated by the incentive during the 
pandemic. The share of people living in a metropolis is larger in our 
sample (61.3 % vs. 55.4 %). In both data sets, there is on average one 
private car per household. Holding a PT pass is more popular within our 
sample (41.6 %). This might be a consequence of the lower income 
shares since these more frequently have at PT pass in Germany (BMVI, 
2019). 

Fig. 2. Data flow chart of the data preparation process.  

Table 1 
Socio-demographic and mobility tool ownership characteristics of the sample.  

Characteristic Level Sample MiD 2017 Test of 
difference 

Gender Female 49.2 % 51.2 % p  = 0.15  

Age 18–29 7.6 % 19.7 % p < 0.01   
30–39 16.3 % 18.0 %   
40–49 23.3 % 16.1 %   
50–59 22.1 % 16.5 %   
60–67 14.9 % 10.0 %   
> 67  15.8 % 19.7 %   

Net income of 
household 

< 500 EUR  2.0 % 0.01 % p < 0.01  
500–1,999 

EUR 
36.0 % 18.2 %   

2,000–3,999 
EUR 

44.0 % 41.6 %   

≥ 4,000 EUR  18.0 % 39.5 %   

Location is 
metropolis  

61.3 % 55.4 % p < 0.01   

No. of cars in 
household  

1 1 p  = 0.40  

Bike accessibility in 
household  

always 2 per 
household 

–  

PT pass  41.6 % 34.2 % p < 0.01   
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2.2. Stated preference design 

The SP-design contains six choice situations and four alternatives per 
subject. It is integrated in a survey containing additional information 
regarding respondents’ socio-demographic characteristics and mobility 
tool ownership. Trips are intra-urban leisure trips in the city of resi-
dence. The SP-design for SD contains e-scootersharing, bikesharing, 
walking, and the private car. The SP-design for MD contains carsharing, 
ridepooling, PT, and the private car. Subjects were introduced to the two 
shared modes included in their choice sets (i.e. either e-scooter- and 
bikesharing or carsharing and ridepooling) and the setting of the choice 
situation (place of residence, intra-urban, leisure, no luggage). In order 
to receive mode-choice decisions, respondents were told to not worry 
about being a member of any service or not. 

Tables 2 and 3 show the SP-designs. Trip length was kept equal per 
choice set. In the respective urban population, almost 90 % of all urban 
trips in Germany are between 0 and 20 km (BMVI, 2019). 54.4 % of all 
trips are 4 km or less (BMVI, 2019). 35.5 % of all trips are between 4 and 
20 km (BMVI, 2019). Choosing lengths of 0.5–4 km as SD and 2–20 km 
as MD trips, we hence cover almost 90 % of the trip length range in 
German cities. 

Table 2 shows the attribute levels for the SD trips. To analyse travel 
time in greater detail, we differentiate between net travel, access, egress, 
and search for parking time in minutes. Travel time is integrated into 
similar experiments on shared mobility in previous work (Carroll et al., 
2017; Ciari, 2012; Li and Kamargianni, 2019; de Luca and Di Pace, 2015; 
Schmid et al., 2019). We calculate the net travel time based on average 
speeds of the modes (BMVI, 2019). Additional intermediate levels of trip 
length are included to avoid generating linear relationships between trip 
length and travel time. As e-scooters are not included in BMVI (2019), 
these travel times are calculated using pedelecs. For access and egress 
times, values are based on previous experiments (Becker et al., 2020; Wu 
et al., 2019). The scheme of the two shared services could be station- 
based or free-floating as both is available to the users. For station- 
based services, parking search time is 0. Availability is introduced 
since e-scootersharing and bikesharing usually do not offer a pre- 
booking service but only a short reservation. Hence, there is no guar-
antee for the user that the vehicle is still available by arrival. Travel costs 
are calculated based on real values in accordance with the respective 
travel time. For the private car, costs are estimated based on the total 
costs of ownership (ADAC, 2020). As for travel time, the levels are set to 
randomly fluctuate around the actual value to avoid linear relationships. 
For bikesharing, respondents were offered a bike or a pedelec. Due to 
possible range anxiety for electric vehicles (Ghamami et al., 2020), 

range is included into the experiment for e-scooters and pedelecs. 
The selection of attributes for MD trips follows a similar logic and is 

shown in Table 3. The total time of travel is distinguished by net travel, 
access, egress, search for parking and, in case of ridepooling and PT, 
waiting and detour (ridepooling only) time. Waiting time is added for PT 
and ridepooling since the vehicle usually takes some time to arrive at the 
user’s location (Alonso-González et al., 2020c; Yan et al., 2019). For 
ridepooling, detour times to collect or drop other passengers might 
occur (Yan et al., 2019). As for SD trips, costs are calculated based on 
real values and for PT based on a comparison of rates (ADAC, 2019). 
Choosing ridepooling or PT can result in sharing the vehicle with 
strangers (Márquez et al., 2019). Hence, crowding as a percentage of 
occupied seats is integrated. With the number of transfers for PT, we 
include the potential necessity of changing vehicles. 

For calculating the design, we use the software Ngene (Choice-
Metrics, 2018). Due to the size of the design, we chose a D-efficient 
design with eight blocks and six choice situations per block (Rose and 
Bliemer, 2009). An illustration of one choice situation is shown in Fig. 3. 
To keep potential bias from the order of choice situations at a minimum, 
choice situations shown to the respondents are randomly drawn from 
one block. 

3. Model estimation 

To model respondents’ decision making, we use a mixed logit model. 
Compared to multinomial logit, mixed logit models overcome some 
limitations (Train, 2009): most importantly, mixed logit models allow 
random taste variation and correlation in unobserved factors (Train, 
2009). As derived by Train (2009), the utility of subject n from choosing 
alternative j is Unj = β

′

nxnj + ∊nj. Using this formulation allows the co-
efficients βn to vary over subjects and hence to incorporate the subject’s 
tastes. Where xnj are the observed variables, ∊nj is a random term. The 
probability for the unconditional choice of alternative i is Pni =

∫
(

eβ
′
xni

∑
j
eβ′ xnj

)

f(β)dβ. As the probabilities Pni do not have a closed form, 

draws from the mixing distribution are taken to approximate them via 
simulation (Ortúzar and Willumsenúzar and Willumsen, 2011). We use 
5,000 Sobol draws for simulation (Czajkowski and Budziński, 2019). 

Table 2 
Stated preference design for short-distance (SD) trips: attributes and attribute 
levels used in survey.  

Attribute E-Scootersharing Bikesharing Foot Private Car 

Length 0.5, 1, 2, 4 
Travel time 

[min] 
2, 5, 9, 13, 16, 18 3, 5, 11, 15, 

18, 21 
7, 14, 
27, 35, 
44, 55 

1, 2, 4, 5.5, 
7, 8 

Access time 
[min] 

2, 5 2, 5 – 2, 5 

Egress time 
[min] 

1, 3 1, 3 – 1, 5, 10 

Search for 
parking time 

[min] 

0, 1 0, 1 – 1, 4, 8 

Availability 10, 50, 100 10, 50, 100 – – 
Cost [EUR] 1.3, 1.8, 2.4, 3, 

3.7, 4.5 
1, 1.5, 2, 2.5, 

4, 5 
– 0.2, 0.5, 0.9, 

1.4, 1.8, 2.5 
Scheme station-based, station- 

based, 
– –  

free-floating free-floating   
Engine – bike, Pedelec – – 

Range [km] 1, 4, 10 1, 4, 10 – –  

Table 3 
Stated preference design for medium-distance (MD) trips: attributes and attri-
bute levels used in survey.  

Attribute Carsharing Ridepooling PT Private Car 

Length 2, 5, 10, 20 
Travel time 

[min] 
4, 10, 19, 25, 

32, 39 
4, 11, 22, 29, 

36, 44 
6, 14, 29, 
39, 48, 

58 

4, 10, 19, 25, 
32, 39 

Access time 
[min] 

1, 5, 10 1, 2, 5 1, 5, 10 1, 2, 5 

Egress time 
[min] 

1, 5, 10 1, 2, 5 1, 5, 10 1, 5, 10 

Search for 
parking time 

[min] 

0, 3 – – 1, 4, 8 

Waiting time 
[min] 

– 3, 5, 8 3, 5, 8 – 

Detour time 
[min] 

– 3, 6, 9 – – 

Cost [EUR] 4, 5, 7, 9, 12, 
15 

3.1, 7, 10.5, 
15.5, 22, 31 

1, 1.7, 
2.7, 4.9, 

7, 10 

0.2, 0.5, 0.9, 
1.4, 1.8, 2.5 

Scheme station- 
based, 

– – –  

free-floating,     
hybrid    

Crowding [%] – 0, 10, 50, 100 0, 10, 50, 
100 

– 

Transfer – – 0, 1, 2 –  
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To estimate the mixed logit model, we use the following utility 
function formulation, which is extended or reduced in variables and 
coefficients depending on the mode: alternative-specific estimates, i.e. 
constant, travel time, detour time, operation scheme for carsharing, and 
number of transfers for PT are indexed with the respective alternative 
abbreviation. Access and egress are estimated for the shared services and 
private car. The remaining attributes are jointly estimated on the basis of 
occurrence in the respective alternatives. As we are specifically inter-
ested in the implications of different mobility tools, we integrate re-
spondents’ holding thereof in the utility function. We include the 
number of accessible private cars, the accessibility to private bicycles, 
and two binary variables signaling whether a pass for PT or a sub-
scription to a MaaS-platform is held. Here, the e-scootersharing utility 
function is shown. Those for the remaining modes can be found in the 
Appendix. 

UES = βES + βtimeES
∗ timeES + βaccessshared

∗ accessES+

βegressshared
∗ egressES + βparking ∗ parkingES + βcost ∗ costES+

βavailability ∗ availabilityES + βschemeSD
∗ schemeES + βrange ∗ rangeES,

with
βES = βES0

+ βageES
∗ age + βcarES

∗ hhcar + βbikeES
∗ hhbike+

βptpassES
∗ ptpass + βmaasES

∗ maas + σES ∗ ζ2,

βcost = − eβcost0 +σcost∗ζ1

(1) 

To better understand the different travel time components (TC), i.e. 
access, net travel, egress, and parking search time, we calculate the 
value of travel time components (VoTC). It shows the travellers’ 

willingness to pay in order to shorten the respective travel time 
component (Agarwal et al., 2020). Hence, it exhibits the trade-off 
travellers face between the travel time component and the cost of the 
trip. For the calculation, we draw on the theory of the economics of time 
as developed by DeSerpa (1971) and follow the approach by Baek et al. 
(2021): 

VoTTC =
∂Ucost

∂TC
=

∂U
∂TC
∂U

∂cost
=

βTC

βcost
(2) 

Thereby, we are able to compare VoTC values between the single 
(shared) modes. As we use random draws ζ1 for the cost coefficient, this 
is estimated on the subjects’ individual level. Hence, we receive VoTC 
values for each respondent to the survey. 

To analyse the substitution patterns in greater detail, average mar-
ginal effects are estimated for the change in choice probability per mode. 
The percentage-point change for the probability of choosing one alter-
native given a percentage change in the m-th attribute of another vari-
able is 

Enixm
nj
= − xm

nj

∫

βmLnj(β)
[

Lni(β)
Pni

]

f (β)dβ, (3)  

with βm being the m-th element of β. We do so by simulating the base 
choice probabilities using the model parameters on the individual level. 
We repeat this procedure after an increase or decrease by a certain 
percentage or a change from 0 to 1 for the binary variables and, thus, 
receive the treatment choice probabilities. The average treatment effects 

Fig. 3. Graphical illustration of SP-design exemplary for short-distance (SD) trip mode-choice.  
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are then calculated by taking the difference between both values on the 
individual-level and averaging these over all subjects per mode. 

To estimate the models, we use the R-package mixl (Molloy et al., 
2021) as it allows an integrated formulation and estimation of choice 
models at high computational speeds. 

4. Results and discussion 

4.1. Model estimates 

The results of the mixed logit model are summarized in Table 4 with 
all coefficients showing the expected direction, except for pedelecs. 

Regarding travel time, ridepooling offers the smallest (− 0.02), yet 
statistically not significant, and walking the highest negative value 

(− 0.21). With − 0.12, e-scootersharing is closest to walking. Bikesharing 
(− 0.09) and carsharing (− 0.03) reveal lower disutility values. 
Compared to PT (-0.07), the travel time of ridepooling seems to be more 
enjoyable to subjects. This may be due to less (unknown) fellow pas-
sengers for the ridepooling service. The private car offers a travel time 
value (− 0.06) below ridepooling and carsharing. As ridepooling in-
cludes a driver, travel time might not be perceived to be as negative. 
Interestingly, the effect of driving a private and hence familiar car does 
not lead to a less negative travel time coefficient compared to carshar-
ing, but the contrary. Further analyses of the value of travel time are 
carried out to shed more light on this (Section 4.3). 

Our results show similar patterns as previous work regarding the 
coefficients’ rank order whilst providing a more comprehensive set of 
alternatives. In a long-term study, Weis et al. (2021) find that the travel 

Table 4 
Results of the mixed logit model for mode-choice.   

E-scootersharing Bikesharing Walking Private car Carsharing Ridepooling PT 

Time 
Travel time [min] − 0.116*** − 0.090*** − 0.212*** − 0.057*** − 0.030** − 0.019 − 0.065***  

(0.023) (0.016) (0.012) (0.014) (0.012) (0.012) (0.007) 
Access time [min] − 0.040*** − 0.040***  − 0.034 − 0.040*** − 0.040*** − 0.040***  

(0.009) (0.009)  (0.032) (0.009) (0.009) (0.009) 
Egress time [min] − 0.030** − 0.030**  − 0.042*** − 0.030** − 0.030** − 0.030**  

(0.013) (0.013)  (0.014) (0.013) (0.013) (0.013) 
Detour time [min]      − 0.018        

(0.051)  
Parking search time [min] − 0.040** − 0.040**  − 0.040** − 0.040**    

(0.017) (0.017)  (0.017) (0.017)   
Cost 

Cost [EUR/trip] − 1.886*** − 1.886***  − 1.886*** − 1.886*** − 1.886*** − 1.886***  
(0.194) (0.194)  (0.194) (0.194) (0.194) (0.194) 

σcost  − 1.414*** − 1.414***  − 1.414*** − 1.414*** − 1.414*** − 1.414***  
(0.136) (0.136)  (0.136) (0.136) (0.136) (0.136) 

Supply characteristics 
Availability [%] 0.006*** 0.006***       

(0.002) (0.002)      
Scheme free-floating 0.418*** 0.418***   0.172   

(reference: station-based) (0.102) (0.102)   (0.220)   
Scheme hybrid     − 0.070   

(reference: station-based)     (0.233)   
Vehicle characteristics 

Pedelec  − 0.321*        
(0.176)      

Battery range [%] 0.006 0.006       
(0.018) (0.018)      

Crowding [%]      − 0.001 − 0.001       
(0.001) (0.001) 

Transfers       − 0.298***        
(0.079) 

Alternative-specific constants 
Constant − 1.574 − 1.199 4.551***  − 3.078*** − 2.785*** − 1.205  

(0.990) (0.968) (0.912)  (0.814) (0.993) (0.774) 
Age − 0.051*** − 0.041*** 0.020  − 0.027** − 0.041*** 0.013  

(0.013) (0.013) (0.013)  (0.011) (0.014) (0.010) 
Bike accessibility 1.811*** 2.345*** 0.495  1.621*** 1.130** 0.900**  

(0.488) (0.458) (0.406)  (0.415) (0.505) (0.351) 
Car accessibility − 0.858*** − 1.026*** − 1.216***  − 1.164*** − 1.015*** − 1.556***  

(0.300) (0.304) (0.288)  (0.231) (0.228) (0.252) 
Public transit pass 1.621*** 1.799*** 1.640***  2.555*** 2.476*** 3.651***  

(0.410) (0.384) (0.390)  (0.376) (0.456) (0.337) 
MaaS subscription 1.377*** 1.172** − 0.228  1.114*** 2.234*** 1.241***  

(0.480) (0.467) (0.468)  (0.406) (0.460) (0.386) 
σj  1.315*** 1.587*** − 2.933*** 3.498*** 0.315 0.908*** 1.792***  

(0.268) (0.242) (0.254) (0.205) (0.493) (0.289) (0.170) 
ζpool     0.776***        

(0.027)    

Respondents 1,445 
Choice observations 8,670 

LL(null) − 15,159.798 
LL(choicemodel) − 5,643.207 

AICc 11,427.030 

***p < 0.01; **p < 0.05; *p < 0.1 
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time coefficient for walking has the highest absolute value. In a simu-
lation, Becker et al. (2020) also apply the highest value to walking. In 
both studies, bike or bikesharing comes in second, which ranks third in 
our case. However, e-scootersharing is not analysed in Weis et al. (2021) 
and Becker et al. (2020). Baek et al. (2021) find e-scootersharing to be 
less cumbersome than walking. Reck and Axhausen (2021) find that 
users of dockless e-scootersharing evaluate travel time to be more 
important than bikesharing users. In Weis et al. (2021) and Becker et al. 
(2020), bike is followed by private car and PT. Although the difference 
in travel time parameters between these two modes is rather small in our 
work, the rank order is reversed. However, the order is comparable to 
what Habib (2019) finds. Moreover, due to the Covid-19 pandemic, in- 
vehicle travel time for PT might be negatively affected by the potentially 
higher infection risk and the discomfort of having to wear masks. Mor-
sche et al. (2019) find equal values for carsharing and ridepooling while 
we find carsharing to be slightly higher than ridepooling. 

Comparing travel time ratios of the single modes relative to walking, 
our findings are predominantly comparable to the previous work 
described above and particularize specific aspects. For PT, Weis et al. 
(2021) find ratios between 0.35 and 0.80 (depending on trip purpose) 
whereas the ratio found here is 0.31. Baek et al. (2021) show a ratio of 
0.64 for e-scootersharing whilst we find 0.55. In this work, bikesharing 
lies at 0.42 whilst Becker et al. (2020) use a ratio of 0.57. Ridepooling 
offers a ratio of 0.09 here with Becker et al. (2020) using 0.07. For the 
private car, we find a ratio of 0.27, which is 0.39–1.05 in Weis et al. 
(2021). While Becker et al. (2020) use a ratio of 0.48 for the private car 
and carsharing, our findings indicate a ratio of 0.14 for carsharing. 

We now turn to access and egress time. Access time causes higher 
disutility in case of shared services (− 0.04) compared to privately 
owned vehicles (− 0.03). Here, the coefficient for access time to shared 
services is statistically highly significant whilst that for the private car is 
not. This might reflect that shared services have to be “searched” for on 
the streets whilst the parking location of private cars is usually known, 
which reduces uncertainty. The opposite result is revealed regarding 
egress time. Here, the shared services offer a lower disutility (− 0.03) 
than the private car (− 0.04). Presumably, this exhibits the effect that 
shared vehicles can be left anywhere or at reserved spots, which offers 
more possibilities to get closer to the destination. The parking search 
time also shows that having to spend time at the end of the journey 
causes rather high disutility. For e-scooters and bikes, this holds espe-
cially due to the size of the vehicles that can be easily parked anywhere 
in case of free-floating schemes. For station-based carsharing, parking 
spots are reserved and increasingly more cities in Germany begin to 
classify carsharing parking areas. As a door-to-door service, ridepooling 
reduces egress time as a part of its value proposition. 

The coefficient of detour time of ridepooling (− 0.018) is similar to 
the travel time coefficient (− 0.019) and not significant. Hence, subjects 
do not seem to distinguish between these two kinds of travel time. For 
the pooling efficiency, and thus the business model, this is promising. 

The cost coefficient is log-normal distributed (− 1.89, which trans-
lates to − 0.15). When integrating shared services, Becker et al. (2020) 
use a similar value (− 0.13). Due to the individual differences between 
subjects (σcost is significant), we will use the individual cost coefficients 
to calculate the VoTC in chapter 4.3. 

Considering supply characteristics, vehicle availability (0.01) as well 
as the free-floating scheme (0.42) for e-scooter- and bikesharing exhibit 
statistically significant positive coefficients. Hence, regulators’ idea to 
offer station-based e-scootersharing might not be what (potential) users 
want. Not having to care where a station is seems to be highly valuable 
to subjects. The coefficients indicating the carsharing schemes show an 
interesting result: free-floating is better off (0.17) whilst the hybrid 
scheme is worse off (− 0.07) compared to a station-based service (serves 
as reference). However, the coefficients are not significant. Due to the 
focus on leisure trips, subjects might have thought of round-trips such 
that the advantage of hybrid schemes is ineffective here. 

For the services’ vehicle characteristics, the sign of the pedelec 

coefficient is unexpected (− 0.32). Subjects evaluate the traditional bike 
to be more utility generating than a pedelec. They could be more 
sceptical towards pedelecs as they might not know how to exactly use 
them. Low battery ranges as reason can be ruled out (0.01 and not 
significant). 

Whilst crowding shows the expected sign, it is almost zero (− 0.001) 
and statistically not significant. As expected, transfers in case of PT show 
a negative sign (− 0.30), which translates into 4.6 min worth of travel 
time. 

Mobility tools held by subjects show an interesting pattern: whilst 
the number of cars shows negative coefficients, the regular bicycle 
availability, public transit pass, and a MaaS-subscription (only exception 
is walking) offer positive coefficients. With the private car as base 
category, we conclude that a more active and multimodal mobility style 
increases chances of selecting a shared service. 

With ζpool, we account for the pooled nature of the data sets. As it is 
significantly different from one, it indicates that the data sets exhibit 
different variances. The σ accounts for both kinds of heterogeneity, scale 
and taste. These are significant for all alternatives but carsharing. Thus, 
subjects show individual preferences in evaluating the attributes. To 
integrate these individual differences, we conduct post-estimation ana-
lyses next. 

4.2. Importance of single attributes 

To analyse the parameters’ contributions to the overall utility of the 
respective mode, and hence their importance, we conduct a part-worth 
analysis. To do so, we multiply the means of the attribute levels with the 
respective coefficient value for each subject and take the average. Re-
sults of the most important attributes can be obtained from Fig. 4. 

Cost and travel time are most important across all modes. Whilst 
shared micromobility services exhibit lower values for the importance of 
cost than the private car, carsharing and ridepooling show higher values. 
For the latter two, costs are the most important utility driver. This might 
reflect the fact that on a trip-basis, they usually are more expensive than 
a private car but offer (almost) the same travel time. This might be one 
consequence of private car costs often being hidden or not considered in 
the perceived cost that drives travellers’ decisions (Brazil et al., 2019). 
For shared services, the price is tagged directly to the minute/hour, the 
kilometer or even the whole trip and hence more transparent. E-scoo-
tersharing and bikesharing show similar values for cost and travel time, 
revealing that these two attributes contribute to the overall utility of the 
service in a comparable size. PT also shows similar values for cost and 
travel time. 

Access and egress times as well as the time required to find a parking 
place follow travel cost and time in importance, though the latter to a 
lower extent. Bikesharing and e-scootersharing again show similar 
values across modes with access taking a larger part of the utility than 
egress. Carsharing and ridepooling reveal the same pattern. Yet, for 
ridepooling, the part-worth of access is considerably larger than egress. 
The same holds for PT, although on a higher level. For the private car, 
the opposite is true, as already observed with respect to the model co-
efficients. Here, the egress time obtains a larger part of the utility than 
access. As elaborated above, this might be an effect of the possibility to 
park shared e-scooters and bikes more closely to the destination. Since 
ridepooling and PT require a halt only, these might in most cases be 
closer to the destination compared to the private car as well. Also for 
parking search time, the private car shows the highest part-worth. The 
same logic as with egress time might apply here since carsharing vehi-
cles either have reserved parking places at the station or marked spots. 
With respect to the private car, egress and parking search time show 
similar values whilst those for the shared services exhibit smaller values 
for parking than egress. 

For the shared micromobility modes, vehicle availability is more 
important than access and egress time. Shared e-scooters and bikes 
cannot be reserved (in contrast to carsharing vehicles), which might 
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explain why availability is crucial to subjects whereas access and egress 
is more important in the case of carsharing. In comparison, the 
remaining battery range for e-scooters and pedelecs in bikesharing is less 
important but still more important than parking search time. 

For PT, the number of transfers also comes into play, whilst the same 
holds true for the detour time regarding ridepooling, yet to a lower 
extent. Regarding PT, transfers offer a value between access and egress. 
The same is true for detour time concerning ridepooling. Despite the 
global pandemic, crowding in PT and ridepooling show the smallest 
values in comparison to the other attributes of the respective modes. 
However, the pandemic might also be the reason for this finding: due to 
less travellers in PT (Zehl and Weber, 2020) and regulations about 
keeping a physical distance to other people, crowding might have been 
no problem at the point of the survey. Moreover, the SP-design did not 
include overcrowding, thus an occupancy that exceeds the regular ca-
pacity of the vehicles. Hence, as long as crowding is below this 
threshold, respondents do not appear to perceive this as a major 
disutility driver. 

As cost and travel time are most important across all modes, we look 
more closely at the value of time in the next step of our analysis. 

4.3. Value of time 

In order to deepen the understanding of the time-related differences 
between the individual services and modes, we calculate the VoTC (see 
Section 3) for the different elements of the overall travel time. These are 
net travel, access, egress, and parking search time (access time for pri-
vate cars and detour time is omitted due to their lack of statistical sig-
nificance in the model). Although travel time for ridepooling is not 
highly statistically significant (p  = 0.11), we include it into the analysis 
for reasons of comparability. 

Fig. 5 shows boxplots of the VoT for all transport modes in EUR/h. 
Walking tops the range with 43.45 EUR/h, followed by the shared 
micromobility modes. With 23.73 EUR/h, the VoT for e-scootersharing 
is higher than what was recently found by Baek et al. (2021) with 16.02 
EUR/h.3 However, the authors specifically investigated last-mile trips 
whereas we refer to whole trips as baseline. Bikesharing shows a VoT- 
median of 18.53 EUR/h, followed by PT with 13.33 EUR/h. Thus, the 
non-car based modes exhibit the highest VoT. The private car exhibits a 
higher value (11.69 EUR/h) than carsharing (6.23 EUR/h). As 

Fig. 4. Importance of single attributes on subjects’ utility via part-worth analysis.  

3 Exchange rate 1 KRW  = 0.0008 EUR (mean of rolling year, 15.02.2021, 
www.finanzen.net). 
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mentioned, the VoT for ridepooling (3.96 EUR/h) has to be interpreted 
with care as its travel time coefficient could not be shown to be statis-
tically significant. Nevertheless, the difference towards PT is noticeable. 
It seems that the on-demand service in smaller vehicles makes ride-
pooling more attractive to subjects. 

For VoA, VoE, and VoP, Fig. 6 shows the results for the shared ser-
vices and private car (egress and parking search time only). Interest-
ingly, the VoA for shared services (8.20 EUR/h) is very similar to the 
VoE of the private car (8.50 EUR/h) as well as the VoP (8.30 EUR/h). 
The VoE for the shared services lies below with 6.20 EUR/h. 

As shared micromobility services, specifically the new form of e- 
scootersharing, have yet to prove their economic sustainability, the 
VoTC estimates from this study might put further pressure on the busi-
ness models proposed so far. Subjects show rather high values and are, 

hence, interested in reducing the travel time components. Carsharing 
and ridepooling draw a more promising picture as they are well below 
the modes they are best comparable to (private car and PT, respec-
tively). However, when viewed from a position of e-scooter- and bike-
sharing substituting walking (Kopplin et al., 2021), these services might 
fill a need of urban travellers. 

As shown in Section 4.2, cost is similarly important to utility as travel 
time. Hence, in the next section, we analyse the effects of cost changes to 
the mode-choice probabilities. We also account for respondents’ 
mobility tool holdings. 

4.4. Average treatment effects 

To investigate the effects of different cost levels (i.e. consumer price) 
as well as free-floating, a public transit pass, regular bike accessibility at 
home, and a MaaS subscription on the choice probabilities of the 
respective modes, we calculate average treatment effects. The results for 
changed cost can be obtained from Fig. 7 and those for the binary var-
iables from Table 5. 

With cost changes of the private car, all other modes change in choice 
probabilities (see Fig. 7A). In Fig. 7B and C, the modes of the SD- and in 
Fig. 7D–F those of the MD-experiment are shown. The %pts.-changes are 
calculated based on the range of − 50% to 150% in steps of 25%. 

Fig. 7A shows that for a cost reduction of the private car, the choice 
probability for PT reacts most with a reduction of − 2.3%pts. and an 
increase of 6.4%pts. for a 50% reduction and 150% increase in cost, 
respectively. On the other modes, a change in cost of the private car has 
a smaller effect. For a 150% increase in cost, the choice probability for 
carsharing increases by 1.1%pts., for bikesharing by 0.5%pts., for 
ridepooling by 0.3%pts.,and for e-scootersharing by 0.2%pts. The 
probability for choosing the private car decreases by 9.9%pts. 

For e-scootersharing, the maximum increase in choice probability is 
0.6%pts. and the maximum decrease is − 0.8%pts. as Fig. 7B shows. In 
comparison to Fig. 7C, these results show that a change in costs of e- 
scootersharing leads to smaller demand effects for bikesharing than vice 
versa. Changing costs of bikesharing by − 50% results in a reduction of 
choice probability for e-scootersharing of − 0.1%pts. whilst an increase 
by 150% results in a 0.3%pts. change. With an equal change of costs for 
e-scootersharing, the bikesharing choice probabilities decrease by 
− 0.2%pts. and increase by 0.3%pts., respectively. For e-scooter- and 
bikesharing, the effects for the private car are greatest: with respect to 
the former, private car choice probabilities change in the range of 
− 0.3%pts. to 0.3%pts. Regarding bikesharing, the changes lay between 
− 0.5%pts. and 0.8%pts. 

Looking at PT in Fig. 7D, greatest changes occur for the private car. 
Increasing costs by 150%, PT’s choice probability decreases by − 5.4% 
pts. which is rather low. However, subjects indicate the second highest 
taste heterogeneity for PT and the part-worth analysis shows travel time 
to be slightly more important than cost. Thus, subjects seem to either 
have a rather strong preference for PT or weigh travel time as more 
important than cost, which translates into low change probabilities with 
respect to cost changes. The preference for PT might be strengthened by 
the fact that PT is a mode that is not easily shifted from due to potentially 
low income (Nazari Adli et al., 2019; Di Ciommo and Shiftan, 2017). A 
cost increase by 150% leads to an average treatment effect of 4.3%pts. 
for the private car. Carsharing profits by an increase of 0.8%pts. and 
ridepooling of 0.3%pts. A cost decrease for PT by 50% leads to a loss in 
choice probability for the private car by − 3.0%pts., for carsharing by 
− 0.3%pts., and for ridepooling by − 0.1%pts. 

Reducing costs for carsharing by − 50% results in an increase of 
choice probability by 2.4%pts. (Fig. 7E). An increase in costs by 150% 
leads to a reduction in choice probability by − 1.1%pts. It can be seen 
that cost changes are evaluated very differently depending on whether it 
is a decrease or an increase. A 50% increase in costs results in − 0.6%pts. 
which is much lower compared to the increase in choice probability for 
an equal cost reduction. Increasing costs for carsharing by 150% would 

Fig. 5. Value of travel time for each transport mode in EUR/h.  

Fig. 6. Value of access (VoA) and egress (VoE) time for shared services and 
private car and parking search time (VoP) in EUR/h. 
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result in a 0.5%pts. increase in choice probability for the private car and 
PT and a 0.1%pts. increase for ridepooling. 

Regarding changing costs for ridepooling, Fig. 7F shows similar dy-
namics for the service itself as in the case of carsharing (Fig. 7E). 
Decreasing the costs by − 50% results in a 1.2%pts. increase in choice 
probability. Increasing the costs by 50% leads to a − 0.4%pts. decrease 
and increasing the costs by 150% leads to a − 0.7%pts. decrease in 
choice probability. From this cost increase, PT would benefit most 
(+0.3%pts.), followed by the private car (+0.3%pts.), and carsharing 

(+0.2%pts.). 
With respect to the operating scheme of e-scooter- and bikesharing as 

well as subscription-based tickets (PT pass and MaaS subscription), 
changes in choice probability can be obtained from Table 5. Regarding 
free-floating for bikesharing, choice probability is increased by 1.1% 
pts. for the service itself, whilst it reduces those of private car (− 0.5% 
pts.), walking (− 0.4%pts.), and e-scootersharing (− 0.2%pts.). The effect 
is lower in case of e-scootersharing (+0.6%pts.). The PT pass shows the 
largest effect regarding the private car (− 23.6%pts.), followed by a 

Fig. 7. Average treatment effects of cost, i.e. consumer price, on the choice probability of the modes.  

Table 5 
Average treatment effects of the operation scheme, public transit pass, and MaaS subscription on the choice probability of the modes [%pts.].  

Variable Bikesharing E-Scootersharing PT Walking Carsharing Private car Ridepooling 

Free-floating bikesharing 1.12 − 0.21 – − 0.38 – − 0.53 – 
Free-floating e-scootersharing − 0.21 0.60 – − 0.16 – − 0.24 – 

Public transit pass 2.64 0.87 14.74 3.90 0.99 − 23.60 0.45 
MaaS subscription 2.94 1.76 3.71 − 2.64 0.35 − 7.92 1.81 

Regular bike accessibility 4.15 1.21 2.45 − 0.51 1.31 − 9.00 0.39  
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regular bike accessibility (− 9.0%pts.), and a MaaS subscription (− 7.9% 
pts.). Whilst the effect of the PT pass and a MaaS subscription on PT is 
straightforward, their effects on bikesharing, e-scootersharing, and 
ridepooling is noteworthy. For these three services, the MaaS subscrip-
tion shows a larger effect than the PT pass. Carsharing is the only shared 
service that shows this pattern reversed. The MaaS subscription also 
leads to a − 2.6%pts. reduction in the probability to choose walking. 
Thus, it shows the highest negative value across the variables studied. 
Regular bike accessibility has effects on bikesharing (+4.2%pts.) and PT 
(− 2.5%pts.). 

5. Conclusions 

This paper applies a mixed logit model and SP data to estimate the 
mode-choices of subjects living in German cities between e-scooter-, 
bikesharing, walking, and private car or carsharing, ridepooling, PT, and 
private car, respectively. Based on the choice modelling, we determine 
the importance of single attributes as well as the value of travel time 
components and average treatment effects. We are thus able to gain new 
insights on the modal-choice behaviour of subjects and its implications 
for policy makers and service providers. 

First, whilst for bike- and e-scootersharing, cost and travel time are 
equally important, the former is highly more important in the case of 
carsharing and ridepooling. The travel time and cost coefficients found 
in this study are comparable to similar recent work investigating the 
modes analysed in the present context (Becker et al., 2020; Morsche 
et al., 2019; Weis et al., 2021). Access time is more important for shared 
modes compared to the private vehicle, whilst the opposite holds true 
for egress. Availability of e-scooters and bikes in shared systems is a 
utility driver. Detour times in ridepooling services are not as relevant as 
the travel time itself and are of minor importance to the subjects. 

Second, with the shared micromobility modes, i.e. e-scooter- and 
bikesharing, subjects are able to reduce their VoT compared to walking, 
which might be an indication towards mode-shifting. These two modes 
substantially reduce travel times for intra-city trips although still 
exhibiting high VoT values. This is in line with recent studies on VoT and 
potential shifting behaviour of travellers (Baek et al., 2021; Kopplin 
et al., 2021). Moreover, we find free-floating to significantly enhance the 
utility of subjects. Reck et al. (2021) find docked (e-) bikesharing to be 
preferred for peak-hours and dockless e-scootersharing for off-peak 
hours. Our work supports the latter finding but also points at a target 
conflict for regulatory bodies or city planners regarding which system is 
to be promoted and implemented in the end. Carsharing and ridepooling 
show lower VoT values than the private car and PT. Again, this offers a 
potential for mode-shifting. With the availability being utility driving 
and the VoA for shared services being higher than for the private car, 
easy accessibility and ubiquitous supply can reduce the threshold to-
wards shared micromobility modes and is of higher importance than 
egress. 

Third, cost changes to the private car and PT are most effective 
regarding the simulated probabilities to switch to another mode. 
Considering shared modes, carsharing profits most from cost increases in 
private cars and PT. Bikesharing profits from increasing costs of the 
private car. Interestingly, e-scooter- and bikesharing show similar re-
action patterns when increasing or decreasing the other mode, respec-
tively. One shortcoming of this study is that we do not have the private 
bike as mode to which to compare the results, specifically those for 
bikesharing. 

For policy, these findings indicate that the accessibility to shared 
micromobility modes and their operation schemes are a balancing act 
and contain a target conflict: on the one hand, accessibility is key to 
include them into the local transport system. On the other hand, they 
might offer shifting potential from walking, which would result in more 
vehicle traffic and would be more energy-intensive. In addition, opera-
tion schemes have their strengths for different trip purposes and 
different times of day. Consequently, regulation might think about 

stricter usage of geofences in order to allow pick-up and parking of these 
modes in specific zones only. These zones could encompass PT stations 
in order to strengthen the integration of modes and foster multimodal 
travel. This, in consequence, might induce mode-shifting from the pri-
vate car. However, our statements are limited to the urban context. 
Rural areas may exhibit different patterns and require different strate-
gies to integrate modes and offer alternatives to the private car. 

For providers of the particular services, different aspects are of 
importance for the individual services: the shared micromobility modes 
gain in utility by offering a free-floating scheme to a higher extent than 
carsharing. This implies that the operations for re-balancing the fleets 
for micromobility services are crucial to making the business models of 
these modes viable. From a customer perspective, the cost structures of 
the business models offer some degree of freedom as the decrease in 
choice probabilities is rather modest in reaction to cost increases. This 
should be a good sign for providers who still have to show that these 
services can be offered with a viable business model, even more so if a 
rather probable market consolidation takes place. 

This work opens avenues for future research in three ways: first, as 
the used data covers residents of cities only, future work might want to 
compare our findings to services in more rural areas. Second, as we did 
not provide an opt-out alternative, we forced the subjects to make a 
decision between the modes presented. Future research could focus on 
the interaction between these modes, also because these regularly are 
components of MaaS platforms and bundles and supply of the services. 
Revealed preferences might enrich the understanding of shared mobility 
usage as well. For the underlying logic of the service supply, a business 
model point of view might be helpful in order to generate and model 
services that are viable. Third, this work is limited in its generalizability 
due to selecting leisure as the trip purpose for the SP-experiment. This 
limitation is a result of paying attention to the response burden of the 
survey as well as the Covid-19 pandemic and its general recommenda-
tion for home office where possible. Future work might extend the range 
of trip purposes and the impact towards mode choice. 
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Appendix A 

A.1. Utility functions 

Bikesharing 

UBS = βBS + βtimeBS
∗ timeBS + βaccessshared

∗ accessBS+

βegressshared
∗ egressBS + βparking ∗ parkingBS + βcost ∗ costBS+

βavailability ∗ availabilityBS + βschemeSD
∗ schemeBS+

βrange ∗ rangeBS + βpedelec ∗ pedelecBS,

with
βBS = βBS0

+ βageBS
∗ age + βcarBS

∗ hhcar + βbikeBS
∗ hhbike+

βptpassBS
∗ ptpass + βmaasBS

∗ maas + σBS ∗ ζ3,

βcost = − eβcost0 +σcost∗ζ1

(A.1) 

Walking 

UWA = βWA + βtimeWA
∗ timeWA,

with
βWA = βWA0

+ βageWA
∗ age + βcarWA

∗ hhcar + βbikeWA
∗ hhbike+

βptpassWA
∗ ptpass + βmaasWA

∗ maas + σWA ∗ ζ4,

(A.2) 

Carsharing 

UCS = βCS + βtimeCS
∗ timeCS + βaccessshared

∗ accessCS+

βegressshared
∗ egressCS + βparking ∗ parkingCS + βcost ∗ costCS+

βschemeLD1
∗ schemeLD1CS

+ βschemeLD2
∗ schemeLD2CS

,

with
βCS = βCS0

+ βageCS
∗ age + βcarCS

∗ hhcar + βbikeCS
∗ hhbike+

βptpassCS
∗ ptpass + βmaasCS

∗ maas + σCS ∗ ζ5,

βcost = − eβcost0 +σcost∗ζ1

(A.3) 

Ridepooling 

URP = βRP + βtimeRP
∗ (timeRP + detourRP)+

βaccessshared
∗ (accessRP + waitRP) + egressRP + βcost ∗ costRP+

βcrowding ∗ crowdingRP,

with
βRP = βRP0

+ βageRP
∗ age + βcarRP

∗ hhcar + βbikeRP
∗ hhbike+

βptpassRP
∗ ptpass + βmaasRP

∗ maas + σRP ∗ ζ6,

βcost = − eβcost0 +σcost∗ζ1

(A.4) 

PT 

UPT = βPT + βtimePT
∗ timePT + βaccessshared

∗ (accessPT + waitPT)+

βegress ∗ egressPT + βcost ∗ costPT + βcrowding ∗ crowdingPT+

βtransfer ∗ transferPT ,

with
βPT = βPT0

+ βagePT
∗ age + βcarPT

∗ hhcar + βbikePT
∗ hhbike+

βptpassPT
∗ ptpass + βmaasPT

∗ maas + σPT ∗ ζ7,

βcost = − eβcost0 +σcost∗ζ1

(A.5) 

Private car 

UCA = βCA + ϕpool ∗
[
βtimeCA

∗ timeCA + βaccessowned
∗ accessCA +

βegress ∗ egressCA + βparking ∗ parkingCA + βcost ∗ costCA],

with
βCA = σCA ∗ ζ8,

βcost = − eβcost0 +σcost∗ζ1

(A.6)  
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Czajkowski, M., Budziński, W., 2019. Simulation error in maximum likelihood estimation 
of discrete choice models. Journal of Choice Modelling 31, 73–85. 

de Luca, S., Di Pace, R., 2015. Modelling users’ behaviour in inter-urban carsharing 
program: A stated preference approach. Transportation Research Part A: Policy and 
Practice 71, 59–76. 

DeSerpa, A.C., 1971. A Theory of the Economics of Time. The Economic Journal 81 
(324), 828. 

Di Ciommo, F., Shiftan, Y., 2017. Transport equity analysis. Transport Reviews 37 (2), 
139–151. 

Eurostat, 2020. 2011 Census. Online available at: https://ec.europa.eu/eurostat/web/ 
population-and-housing-census/census-data/2011-census, last accessed at 
06.11.2020. 

Gao, K., Yang, Y., Li, A., Li, J., Yu, B., 2021. Quantifying economic benefits from free- 
floating bike-sharing systems: A trip-level inference approach and city-scale analysis. 
Transportation Research Part A: Policy and Practice 144, 89–103. 

Ghamami, M., Kavianipour, M., Zockaie, A., Hohnstadt, L.R., Ouyang, Y., 2020. 
Refueling infrastructure planning in intercity networks considering route choice and 
travel time delay for mixed fleet of electric and conventional vehicles. 
Transportation Research Part C: Emerging Technologies 120, 102802. 

Giesel, F., Nobis, C., 2016. The Impact of Carsharing on Car Ownership in German Cities. 
Transportation Research Procedia 19, 215–224. 

Göddeke, D., Krauss, K., Gnann, T., 2021. What is the role of carsharing toward a more 
sustainable transport behavior? Analysis of data from 80 major German cities. 
International Journal of Sustainable Transportation 1–13. 

Guidon, S., Becker, H., Dediu, H., Axhausen, K.W., 2019. Electric Bicycle-Sharing: A New 
Competitor in the Urban Transportation Market? An Empirical Analysis of 
Transaction Data. Transportation Research Record: Journal of the Transportation 
Research Board 2673 (4), 15–26. 

Guidon, S., Wicki, M., Bernauer, T., Axhausen, K., 2020. Transportation service bundling 
– For whose benefit? Consumer valuation of pure bundling in the passenger 
transportation market. Transportation Research Part A: Policy and Practice 131, 
91–106. 

Habib, K.N., 2019. Mode choice modelling for hailable rides: An investigation of the 
competition of Uber with other modes by using an integrated non-compensatory 
choice model with probabilistic choice set formation. Transportation Research Part 
A: Policy and Practice 129, 205–216. 

Hall, J.D., Palsson, C., Price, J., 2018. Is Uber a substitute or complement for public 
transit? Journal of Urban Economics 108, 36–50. 

Harms, S., Truffer, B., 1998. The Emergence of a Nation-wide Carsharing Co-operative in 
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repräsentativer Befragung. In: und ergänzendem Mobilitätstracking bis Ende 
Oktober. Wissenschaftszentrum Berlin für Sozialforschung, Bonn, Berlin.  

Zhou, B., Kockelman, K.M., 2011. Opportunities for and Impacts of Carsharing: A Survey 
of the Austin, Texas Market. International Journal of Sustainable Transportation 5 
(3), 135–152. 

Zhou, F., Zheng, Z., Whitehead, J., Perrons, R.K., Washington, S., Page, L., 2020a. 
Examining the impact of car-sharing on private vehicle ownership. Transportation 
Research Part A: Policy and Practice 138, 322–341. 

Zhou, F., Zheng, Z., Whitehead, J., Washington, S., Perrons, R.K., Page, L., 2020b. 
Preference heterogeneity in mode choice for car-sharing and shared automated 
vehicles. Transportation Research Part A: Policy and Practice 132, 633–650. 

K. Krauss et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S2214-367X(21)00092-2/h0310
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0310
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0310
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0310
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0315
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0315
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0320
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0320
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0325
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0325
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0325
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0335
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0335
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0335
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0340
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0340
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0340
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0340
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0350
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0350
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0355
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0355
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0360
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0360
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0360
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0365
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0365
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0365
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0370
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0370
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0375
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0375
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0375
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0375
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0380
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0380
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0385
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0385
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0385
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0385
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0385
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0390
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0390
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0390
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0395
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0395
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0400
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0400
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0400
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0405
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0405
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0405
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0415
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0415
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0415
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0420
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0420
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0420
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0425
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0425
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0425
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0430
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0430
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0430
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0430
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0435
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0435
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0435
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0440
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0440
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0440
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0445
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0445
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0445
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0450
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0450
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0450
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0455
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0455
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0455
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0460
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0460
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0460
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0465
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0465
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0465
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0470
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0470
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0470
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0475
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0475
http://refhub.elsevier.com/S2214-367X(21)00092-2/h0475

	What drives the utility of shared transport services for urban travellers? A stated preference survey in German cities
	1 Introduction
	1.1 Recent work about bike- and e-scootersharing
	1.2 Recent work about carsharing
	1.3 Recent work about ridepooling

	2 Material and methods
	2.1 Survey instrument
	2.2 Stated preference design

	3 Model estimation
	4 Results and discussion
	4.1 Model estimates
	4.2 Importance of single attributes
	4.3 Value of time
	4.4 Average treatment effects

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Acknowledgments
	A.1 Utility functions

	References


