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Abstract

The measurement of the growth state and health status
of single plants or even single parts of the plants within a
crop to conduct precision farming actions is a difficult task.
We address this challenge by adopting a multi-sensor suite,
which can be used on several sensor-platforms. Based on
experimental field studies in relevant agricultural environ-
ments, we show how the acquired hyperspectral, LIDAR,
stereo and thermal image data can be processed and clas-
sified to get a comprehensive understanding of the agricul-
tural acreage.

1. Introduction

The defining characteristic of Precision Farming is the
ability to perform agricultural operations on a narrow scale.
In the case of agriculture, the ability to accurately locate
the crops or leaves with problems and to accurately apply
a local remedy without wasting resources or contaminating
the environment is one of the key problems [4].

This work presents a unifying framework allowing in-
corporation of many different types of sensor data, meth-
ods for creating 3D maps and maximizing map accuracy to
facilitate operations on a narrow scale with a smaller envi-
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ronment footprint, methods for combining this data to make
relevant information easily visible to the farmer, and meth-
ods for incorporating real-time sensor data into historical
data both to increase precision during applications and to
provide fast automated safety responses.

2. Multi-sensor System
2.1. Hyperspectral Imaging

Hyperspectral data was recorded with VIS-NIR Specim
V10 spectrograph on a Basler ACA1920-155um 400-
1000nm. Hyperspectral cameras are line-scan systems,
therefore the spatial dimension is collected through vehi-
cle movement. The VIS-NIR setup was 1920 pixel lines
with 2nm digital resolution at 128Hz, optically limited to
8nm usable bands, and outputs 16-bit images, effective dy-
namic range is 72db. Calibration was done using fluorescent
light with known peaks for y-axis alignment, and spectrolon
white reference for sensitivity normalisation.

Figure 1 shows an image of fluorescent light, which con-
tains horizontal lines where the peaks mainly from mercury
are located. The Halcon operator lines_gauss was used to
extract the location, and a linear regression of the average
line rows and the mercury peaks was done to compute the
first order linear expression that converts Y position into the
corresponding wavelength.
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Figure 1. Calibration of the hyperspectral bands from flourescent
light.

2.2. 3-D LIDAR Scanner

The LIDAR system in use is a SICK LMS-100 laser scan-
ner. The device scans a 2-D plane within an operational
range of 0.5m to 20m with an Infrared Laser (905nm). The
scanner is mounted on a rotating platform; a 3-D point
cloud is acquired by a rotation of the 2-D scanning plane.
Alternatively, the rotating platform can be locked; a 3-D
point cloud is then acquired by moving the system around.
The movement data is acquired using an xsens MTi-G-710
GNSS/INS. Both GPS data (lat/lon) and linear / angular ve-
locities and accelerations are measured. The hardware com-
ponents are driven by a Raspberry Pi 3 single-board com-
puter, which serves for controlling the scanning system and
the data recording. The output of the system is the measured
point cloud over time, and the position, orientation and ac-
celeration values of the rotating platform and the sensing
system.

2.3. Stereo and Thermal Imaging

The sensory set-up comprises: two Basler DART
DaA1600-60uc for stereo vision with 40mm baseline and
a thermal camera Micro Epsilon Thermallmager160. The
stereo camera delivers images up to a resolution of 1600 x
1200 at 60 Hz, which was reduced to 7 Hz in the experiment
to reduce the computational burden. The Thermallmager
can deliver images up to a resolution of 160x 120 at 120 Hz,
reduced to 15 Hz. In order to register all sensor data with re-
spect to a common reference frame, a calibration phase was
carried out to estimate the intrinsic and extrinsic parameters
of the sensors, using a set of images of a planar checker-
board. To make corners visible to the thermal camera, the
checkerboard was placed under a heat lamp. Please, refer to
[2] for a detailed description.

2.4. Sensor Platforms

Sensors were mounted on-board different platforms, in-
cluding an unmanned ground vehicle (UGV), an aerial
drone and a caterpillar vehicle (Figure 2). The robotic plat-

forms were remotely controlled to operate in relevant agri-
cultural settings while the sensory data were recorded for
further processing off-line.

The UGV consists of the Husky A200 robotic platform, a
non-holonomic four-wheel drive (4WD) skid-steer robot,
featuring a payload of about 20 kg and a maximum travel
velocity of 1 m/s. The vehicle control and the data ac-
quisition system are based on ROS!, a meta operating sys-
tem able to provide services and hardware abstraction for
robotics platforms and devices and a publish-subscribe mes-
saging infrastructure designed to support the quick and easy
construction of distributed computing systems.

The aerial platform is an Aibot X6 Hexacopter, featuring
maximum payload of 2.0 kg and maximum speed of 40
km/h, and integrated GPS, RTK and inertial sensors. Fi-
nally, a commercial Niko caterpillar was employed.
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Figure 2. The sensor platforms used. From left to right: Husky
robot: Aibot X6 aerial drone: Niko caterpillar vehicle.

3. Agricultural Use Cases

One part of the field-tests was performed within the com-

mercial vineyard Hoécklistein in Switzerland. The grape
variety planted there are Rduschling, Sauvignon Blanc,
Chardonnay, Pinot Noir and Merlot. The diseases which
could be found there were Downy mildew (Plasmopara viti-
cola), powdery mildew (Erysiphe necator), acid rot, grey
mould (Botrytis cinerea) and under-developed grapes re-
sulting from water stress or too much water.
Another part of the field tests was performed at a private
farm located in San Cassiano, Lecce, Italy, where grapes
and olive trees are planted. Figure 3 shows an aerial view of
the experimental farm. It includes a vineyard and an olive
grove that are connected through a dirt road. The grapes had
a bacterial disease called Lupa that is common in Salento.
Furthermore, there was a lot of withering.
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4. Data Processing
4.1. Semantic Labeling of RGB Images

The ViDi Suite, a deep learning based industrial image
analysis software system, relies on a collection of algo-
rithms that allow training deep neural networks with limited
amount of data. The implemented algorithms fall into three
main categories: image filtering and preprocessing, super-
vised and unsupervised neural network training procedures,
and smart and adaptive sampling procedures. The innova-
tive sampling procedure developed at ViDi Systems were
specially designed to deal with the biggest challenge im-
posed by industrial images: namely large images and lim-
ited amount of samples. This makes it fitting for our 4MP
RGB images from the Salento campaign.

The Vidi segmentation tool was trained in three layers
of semantic labelling: Grape clusters on the closest row,
Withered Leaves, and Region of interests around each grape
clusters into another layer that detected Lupa disease.

The tool was good at segmenting only the closest row,
but few false positives appeared on the next row over. It
would be possible to remove those using 3D information.
Furthermore, there was sporadic small regions appearing on
leaf, soil, trunk edges, which can be filtered by looking at
the temporal tracking of the regions. For example, a filter
can accept only regions that stay for three images in a row.

It is notable how the tool is able to understand the large
variations on healthy grapes green, dark, shadows, and is
still able to label Lupa on small parts of clusters, both green
and dark.

More layers of semantic labelling can be added, such as
the colour grading. The system could then track the ripen-
ing through detecting begin and end of the colour change.
Furthermore, the grapes and disease ratio can be quanti-
fied, and we expect a performance increase by useing four
channel images created from hyperspectral hypercubes (i.e.

Figure 3. Experimental farm located in San Cassiano, Lecce,
Italy. Aerial view taken from Google Earth (40°03'35.40"N,
18°20'50.98"'E).

Figure 4. The same images showing results of the grape segmen-
tation (left), and withered leaves (right).

Figure 5. Dark and green healthy grapes (top) and Lupa infected
grapes (bottom).

through PCA, ICA, four best feature selection by cross val-
idation).

4.2. Semantic Labeling from Hyperspectral imag-
ing

The semantic labeling was done under laboratory condi-
tions with halogen light, because outdoor light is very com-
plex. It was necessary to first validate that the sensor can
see the relevant features. Multilayer perceptron neural net-
works with softmax based activation function are used for
the classifications. Pixelbased followed by spatial filtering
and interpretation. A linear neuron-based approach will be
used for regression.

The classification procedure is as follows:

e Stitching the hyperspectral images into a hypercube.

e Whitebalance from white reference Bw = (B-Bl1) / (W-
BI) (white balanced pixel Bw, pixel bands B, white ref-
erence W, black reference Bl

e Normalize each pixel P = (Bwn-mean(Bw)) / Std(Bw)
e Label areas of each class, including background class

e Feature selection through cross validation. Outputs a
Score for the quality of classifier.

e Compile a new multichannel image from the selected
bands only.

e Retrain with regularization parameters.



o Save list of selected bands, and trained classifier.

The classification was followed by morphology, con-
nected components and minimum area filter to clean up
noisy pixels.

First tests with hyperspectral classification in controlled
conditions was done on cultivars: Chardonnay, Sauvignon
Blanc, Pinot Noir, and Merlot.

Cross validation score was 0.98 within the green grapes,
and 0.91 for all four. Naturally, the dark grapes perform
lesser due to SNR. However, this is for single pixel accu-
racy. Table 1 shows for each cultivar the percentage of pix-
els classified as which cultivar. Applying regional percent-
age grouping, a probability for each class can be computed.

Table 1. Percentage of area of classified pixels into each cultivar.

Cultivar S.B. Chardonnay Pinot Noir Merlot
S.B. 86% 14% 0 0
Chard 6% 94% 0 0
PN. 19% 5% 60% 16%
Merlot  25% 6% 18% 51%

Sauvignon blanc had most diseases which made it the
best candidate to test the classification of the various dis-
eases. One classifier dedicated to detecting which side of
the clusters faced the sun, assuming the ripeness would be
different on the sunny side. The score was low (0.75). A
second classifier dedicated to classifying healthy, acid rot
and botrytis, score 0.98. It worked well also on Chardonnay,
but not on the red grapes. Finally, a classifier that detected
magnesium stress on leaves, score 0.89, which is lower than
usual due to the fact that during annotation it is difficult not
to include healthy pixels in the sick training data.

4.2.1 Transfer to outdoor usage

As the spectrolon white reference was imaged with different
orientations to capture the different mixtures of direct and
ambient light , the hypothesis was that the trained classifiers
could be augmented to fit those different light mixtures as
suggested in [S5]. However, as also concluded in [1], 900-
1000nm is too noisy and the noise magnitude overrides the
signal fully when normalizing the spectra. The most signif-
icant wavelength for magnesium stress was 946nm, so the
hypotheses that classifiers could be transferred from the lab
condition to outdoors was quickly rejected.

Instead, a simpler case to annotate grape, leaf, and trunks
was attempted using 400-900nm in outdoor data. A classi-
fier that annotates leaves, grapes and trunks was applied (c.f.
figure 6). The selected wavebands in prioritized order were:
756nm, 493nm, 681nm, 735nm, 627nm, and 825nm. The
resulting score was 0.97.

Figure 7 shows results where a classifier was trained to
also detect acid rot. Selected features in order were: 868nm,

Figure 6. (top) the hyperspectral hypercube visualized as a color
image using 3 first channels of PCA. (bottom) each pixel classified
as green: leaf, red: grape, blue: trunk.

412nm, 717nm, 618nm, 545nm, 556nm, 681nm, 435nm,
and 521nm. Score 0.90.
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Figure 7. Detection of acid rot in the chardonnay vineyard. Small
occurances like 1-2 grapes were not detected. Larger clusters is
4-5 infected grapes were detected, like those seen in the left side
of the RGB images.

The currect obstacle in using this in practice is that when-
ever the light changes, such as a blue sky changing to over-
cast or rain, the NIR light disappears, so even with white
referencing, the dynamic range is not large enough to com-
pensate. See figure 8.

4.3. Stereo-Thermal Integration

This part of the research aims to produce a multi-modal
map of the environment by combining stereo and thermal
data. In detail, from each incoming stereo pair, first, a dense
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Figure 8. Problem with changing weather condition and surface
normal dependency of white balance. Even when rebalancing with
white reference, the spectra of leaf, grape and trunk is affected
greatly by the change from blue sky (left) to overcast near rainy

(right).

3D point cloud is reconstructed. Then, 3D points are pro-
jected over the thermal image, and their thermal values are
extracted and assigned to the corresponding 3D points in the
stereo map. This originates what we refer to as a 3D thermal
cloud. Finally, based on vehicle motion information pro-
vided by visual odometry, subsequent stereo-thermal point
clouds are stitched together, resulting in a multi-modal rep-
resentation of the environment, which includes geometric,
colour, and thermal information. As an example, Figure
9 shows the stereo map (a) and the corresponding thermal
layer (b) for a test on grass. Two manhole covers are clearly
visible along the path at about 3 and 9 m, due to their dif-
ferent appearance and reflectance properties.
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Figure 9. Stereo-Thermal combination: Visual (a) and thermal
layer (b) for a test on grass. Two manhole covers can be clearly
seen, owing to their different appearance and reflectance.

4.4. LIDAR Data Processing and Classification

The acquired point cloud data has to be processed in or-
der to combine it with the data recorded by the other parts of
the 83-CAV sensor suite, such as the hyperspectral sensor

system.

4.4.1 Point Cloud Generation and Filtering

The recorded point cloud data is transformed from the local
scanner coordinate frame to the global coordinate system
frame the known movement path of the sensor platform.
This movement path is determined using a generalized ex-
tended Kalman Filter [3] which fuses the recorded GPS and
acceleration data. A further extraction of the relevant row
of grapevines is done geometrically by moving an extrac-
tion volume (i.e. a sphere or cylinder) along the movement
path and selecting all the points inside the filter volume. The
point cloud data is represented in a kd-tree to accelerate this
process.

4.4.2 Classification of Trunks and Leaves

The extracted row of grapevines is then further processed
to classify foliage and trunks using geometrical informa-
tion in combination with the remission values measured by
the LIDAR scanner. The threshold values for the classifica-
tion were determined manually by comparing the resulting
point cloud to real-world images. This classified point cloud
is then stored in a 3D regular grid with the extends of the
cloud’s axis-aligned bounding box and a defined resolution.
Each box-shaped grid cell is then classified as "foliage” or
“trunk™ by the number of corresponding points within the
cell. Figure 10 shows the result of this process.
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Figure 10. The left image shows the filtered and classified point
cloud data. The foliage is coloured in green, the trunks are
coloured red. The right image shows the decomposition into small
boxes.

This 3D box representation is used for the estimation of
the foliage volume of a plant, which is an important mea-
surement for the application rates of plant protection prod-
ucts.

5. Conclusions and Future Work

We demonstrated a sensor suite for semantic labelling
of crop status, in situ using deep learning and hyperspectral
imaging. The system can also map results and measure crop
growth using a georeferenced 3D representation.

The major obstacles in automatically creating robust
maps for a Farm Management Information System (FMIS)
are changing lights between calibrations and the dynamic



range of cameras. Future work will address this through
imaging a green reference for auto exposure, and combining
the hyperspectral method with deep learning. Furthermore,
the data will be compressed into GeoTiffs and ISOXML
path data with links to the full 3D representation.

The translation of the resulting data to ISOBUS-based
application maps which can be exported directly to machin-
ery should bridge the technological gaps in farmer adoption
hindrances.
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