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Abstract

The measurement of the growth state and health status

of single plants or even single parts of the plants within a

crop to conduct precision farming actions is a difficult task.

We address this challenge by adopting a multi-sensor suite,

which can be used on several sensor-platforms. Based on

experimental field studies in relevant agricultural environ-

ments, we show how the acquired hyperspectral, LIDAR,

stereo and thermal image data can be processed and clas-

sified to get a comprehensive understanding of the agricul-

tural acreage.

1. Introduction

The defining characteristic of Precision Farming is the

ability to perform agricultural operations on a narrow scale.

In the case of agriculture, the ability to accurately locate

the crops or leaves with problems and to accurately apply

a local remedy without wasting resources or contaminating

the environment is one of the key problems [4].

This work presents a unifying framework allowing in-

corporation of many different types of sensor data, meth-

ods for creating 3D maps and maximizing map accuracy to

facilitate operations on a narrow scale with a smaller envi-
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ronment footprint, methods for combining this data to make

relevant information easily visible to the farmer, and meth-

ods for incorporating real-time sensor data into historical

data both to increase precision during applications and to

provide fast automated safety responses.

2. Multi-sensor System

2.1. Hyperspectral Imaging

Hyperspectral data was recorded with VIS-NIR Specim

V10 spectrograph on a Basler ACA1920-155um 400-

1000nm. Hyperspectral cameras are line-scan systems,

therefore the spatial dimension is collected through vehi-

cle movement. The VIS-NIR setup was 1920 pixel lines

with 2nm digital resolution at 128Hz, optically limited to

8nm usable bands, and outputs 16-bit images, effective dy-

namic range is 72db. Calibration was done using fluorescent

light with known peaks for y-axis alignment, and spectrolon

white reference for sensitivity normalisation.

Figure 1 shows an image of fluorescent light, which con-

tains horizontal lines where the peaks mainly from mercury

are located. The Halcon operator lines gauss was used to

extract the location, and a linear regression of the average

line rows and the mercury peaks was done to compute the

first order linear expression that converts Y position into the

corresponding wavelength.
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4. Data Processing

4.1. Semantic Labeling of RGB Images

The ViDi Suite, a deep learning based industrial image

analysis software system, relies on a collection of algo-

rithms that allow training deep neural networks with limited

amount of data. The implemented algorithms fall into three

main categories: image filtering and preprocessing, super-

vised and unsupervised neural network training procedures,

and smart and adaptive sampling procedures. The innova-

tive sampling procedure developed at ViDi Systems were

specially designed to deal with the biggest challenge im-

posed by industrial images: namely large images and lim-

ited amount of samples. This makes it fitting for our 4MP

RGB images from the Salento campaign.

The Vidi segmentation tool was trained in three layers

of semantic labelling: Grape clusters on the closest row,

Withered Leaves, and Region of interests around each grape

clusters into another layer that detected Lupa disease.

The tool was good at segmenting only the closest row,

but few false positives appeared on the next row over. It

would be possible to remove those using 3D information.

Furthermore, there was sporadic small regions appearing on

leaf, soil, trunk edges, which can be filtered by looking at

the temporal tracking of the regions. For example, a filter

can accept only regions that stay for three images in a row.

It is notable how the tool is able to understand the large

variations on healthy grapes green, dark, shadows, and is

still able to label Lupa on small parts of clusters, both green

and dark.

More layers of semantic labelling can be added, such as

the colour grading. The system could then track the ripen-

ing through detecting begin and end of the colour change.

Furthermore, the grapes and disease ratio can be quanti-

fied, and we expect a performance increase by useing four

channel images created from hyperspectral hypercubes (i.e.

Figure 3. Experimental farm located in San Cassiano, Lecce,

Italy. Aerial view taken from Google Earth (40◦03′35.40′′N,

18◦20′50.98′′E).

Figure 4. The same images showing results of the grape segmen-

tation (left), and withered leaves (right).

Figure 5. Dark and green healthy grapes (top) and Lupa infected

grapes (bottom).

through PCA, ICA, four best feature selection by cross val-

idation).

4.2. Semantic Labeling from Hyperspectral imag­
ing

The semantic labeling was done under laboratory condi-

tions with halogen light, because outdoor light is very com-

plex. It was necessary to first validate that the sensor can

see the relevant features. Multilayer perceptron neural net-

works with softmax based activation function are used for

the classifications. Pixelbased followed by spatial filtering

and interpretation. A linear neuron-based approach will be

used for regression.

The classification procedure is as follows:

• Stitching the hyperspectral images into a hypercube.

• Whitebalance from white reference Bw = (B-Bl) / (W-

Bl) (white balanced pixel Bw, pixel bands B, white ref-

erence W, black reference Bl

• Normalize each pixel P = (Bwn-mean(Bw)) / Std(Bw)

• Label areas of each class, including background class

• Feature selection through cross validation. Outputs a

Score for the quality of classifier.

• Compile a new multichannel image from the selected

bands only.

• Retrain with regularization parameters.



• Save list of selected bands, and trained classifier.

The classification was followed by morphology, con-

nected components and minimum area filter to clean up

noisy pixels.

First tests with hyperspectral classification in controlled

conditions was done on cultivars: Chardonnay, Sauvignon

Blanc, Pinot Noir, and Merlot.

Cross validation score was 0.98 within the green grapes,

and 0.91 for all four. Naturally, the dark grapes perform

lesser due to SNR. However, this is for single pixel accu-

racy. Table 1 shows for each cultivar the percentage of pix-

els classified as which cultivar. Applying regional percent-

age grouping, a probability for each class can be computed.

Table 1. Percentage of area of classified pixels into each cultivar.

Cultivar S.B. Chardonnay Pinot Noir Merlot

S.B. 86% 14% 0 0

Chard 6% 94% 0 0

P.N. 19% 5% 60% 16%

Merlot 25% 6% 18% 51%

Sauvignon blanc had most diseases which made it the

best candidate to test the classification of the various dis-

eases. One classifier dedicated to detecting which side of

the clusters faced the sun, assuming the ripeness would be

different on the sunny side. The score was low (0.75). A

second classifier dedicated to classifying healthy, acid rot

and botrytis, score 0.98. It worked well also on Chardonnay,

but not on the red grapes. Finally, a classifier that detected

magnesium stress on leaves, score 0.89, which is lower than

usual due to the fact that during annotation it is difficult not

to include healthy pixels in the sick training data.

4.2.1 Transfer to outdoor usage

As the spectrolon white reference was imaged with different

orientations to capture the different mixtures of direct and

ambient light , the hypothesis was that the trained classifiers

could be augmented to fit those different light mixtures as

suggested in [5]. However, as also concluded in [1], 900-

1000nm is too noisy and the noise magnitude overrides the

signal fully when normalizing the spectra. The most signif-

icant wavelength for magnesium stress was 946nm, so the

hypotheses that classifiers could be transferred from the lab

condition to outdoors was quickly rejected.

Instead, a simpler case to annotate grape, leaf, and trunks

was attempted using 400-900nm in outdoor data. A classi-

fier that annotates leaves, grapes and trunks was applied (c.f.

figure 6). The selected wavebands in prioritized order were:

756nm, 493nm, 681nm, 735nm, 627nm, and 825nm. The

resulting score was 0.97.

Figure 7 shows results where a classifier was trained to

also detect acid rot. Selected features in order were: 868nm,

Figure 6. (top) the hyperspectral hypercube visualized as a color

image using 3 first channels of PCA. (bottom) each pixel classified

as green: leaf, red: grape, blue: trunk.

412nm, 717nm, 618nm, 545nm, 556nm, 681nm, 435nm,

and 521nm. Score 0.90.

Figure 7. Detection of acid rot in the chardonnay vineyard. Small

occurances like 1-2 grapes were not detected. Larger clusters is

4-5 infected grapes were detected, like those seen in the left side

of the RGB images.

The currect obstacle in using this in practice is that when-

ever the light changes, such as a blue sky changing to over-

cast or rain, the NIR light disappears, so even with white

referencing, the dynamic range is not large enough to com-

pensate. See figure 8.

4.3. Stereo­Thermal Integration

This part of the research aims to produce a multi-modal

map of the environment by combining stereo and thermal

data. In detail, from each incoming stereo pair, first, a dense





range of cameras. Future work will address this through

imaging a green reference for auto exposure, and combining

the hyperspectral method with deep learning. Furthermore,

the data will be compressed into GeoTiffs and ISOXML

path data with links to the full 3D representation.

The translation of the resulting data to ISOBUS-based

application maps which can be exported directly to machin-

ery should bridge the technological gaps in farmer adoption

hindrances.
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