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Abstract—In this publication a two-step approach for resource-
optimal sensor scheduling in intelligence is presented. This
approach has been developed in close cooperation with subject-
matter experts from the Intelligence, Surveillance, and Recon-
naissance (ISR) domain. It constitutes the fundamental basis of a
computer-aided assistance system for ISR management personal.

I. INTRODUCTION

In light of the increasing complexity and diversity of today’s
threats, making the right decisions and initiating the right
reactions becomes more and more a question of maximizing
the benefit of ISR systems. To make this possible, interoper-
ability and coordination between organizations and nations are
required. Synergistic effects resulting from the application of
data and information fusion have to be exploited optimally.
One of the most essential perquisites to reach this aim is
that the available sensors and their corresponding carriers are
used with maximal efficiency and effectiveness to meet the
need for information as completely as possible and to gain
data and information being of the best possible quality with
regard to the tasks at hand. Sensor and their corresponding
carriers possess different characteristics and usually only cer-
tain sensor/sensor carrier combinations are actually suitable
for obtaining a certain piece of information being requested.
At sensor scheduling, there are also additional constraints
that have to be taken into account, for example restrictions
with regard to the actual availability and the endurance of
the sensor/sensor carrier combinations. Usually, the set of
available sensor/sensor carrier combinations is in total not
sufficient to operate all information requests, such that these
requests must be taken into account in a prioritized manner.

The operational context of the sensor scheduling problem
considered in this publication is collocated with force com-
mands at the strategic and operational level, both in national as
well as in international force deployments, for example when
NATO conducts Joint/Combined operations. The respective
deployment of sensors and their specific carrier platforms
results from a dedicated process, the Collection Coordination
and Information Requirements Management (CCIRM) pro-
cess. The fundamental elements of the CCIRM process are
formulated in [1], the reader is also referred to [2], [3], [4] for
descriptions of related processes. The CCIRM process is part
of the Intelligence Cycle, a structured process consisting of
different phases (Planning & Direction, Collection, Processing,
Analysis & Production, Dissemination) that in essence creates
intelligence by processing data and information [5].

It is important to note that within the sensor scheduling
task being addressed by the CCIRM process, no detailed
mission planning including also the derivation of optimal
configurations of specific sensor/sensor carrier combinations
as considered for example in [6] is conducted. Instead, detailed
mission planning is part of the Recce Cycle (see for example
[4]) being of course closely interrelated with the Intelligence
Cycle regarding this aspect. Here, detailed asset mission
planning is done based on the collection tasks having been
derived by the CCIRM process.

At the German armed forces as well as at the allied armed
forces, the ISR manager is responsible for the sensor schedul-
ing task being addressed by the CCIRM process. This planning
task is very challenging to the ISR manager and requires
for assistance systems to support the ISR managers’ decision
making process. This holds true for preplanning tasks where
sensor deployments are preplanned for a certain period of time.
It even more applies to situations that cannot be predicted
beforehand, for example for Troop in Contact (TIC) situations.
However, up to now, only rudimentary means (like MS Excel,
whiteboards ...) are available to support this demanding task.

To close this gap, we developed a two-step approach for
resource-optimal sensor scheduling that will be presented
within this publication. This approach has been developed in
close cooperation with subject-matter experts from the ISR
domain. It constitutes the fundamental basis of a computer-
aided assistance system for ISR management personal being
currently realized as a system demonstrator. While this pub-
lication aims at giving an overview on the approach in total
and the relevant operational aspects, further publications will
give more detailed insight into the underlying mathematical
and computational details.

II. OPERATIONAL CONTEXT

Figure 1 schematically illustrates the CCIRM process as part
of the Intelligence Cycle. The CCIRM process is triggered
after the Commanders’ Critical Information Requirements
(CCIRs) have been defined. The Intelligence Requirements
Management (IRM) process, a sub-process of the CCIRM
process, further gradually refines the CCIRs into a more fine
grained hierarchy of information requirement specifications.
This hierarchy comprises the Prioritized Information Require-
ments (PIRs), their subsequent refinement into Specialized
Information Requirements (SIRs) and ends up in the definition
of Essential Elements of Information (EEIs) corresponding
to very fine grained information requirement specifications.
For each EEI, one or more dedicated Collection Requirements



Fig. 1. Schematic illustration of the CCIRM process (right side) and its relation to the Intelligence Cycle (left side) .

(CRs) are derived afterwards. A CR further refines an EEI and
defines which kind of information at which quality is required
and puts them in relation to space and time. The first relation
is for example established by assigning a dedicated Named
Area of Interest (NAI) to each CR.

CRs act as an input to another CCIRM sub-process, the Col-
lection Coordination (CC) process. Within this sub-process,
the CRs have to put into effect in a sense, that the ISR
manager triggers the information acquisition by use of specific
sensors and their carrier platforms (assets). In order to identify
suitable assets, he has to match the requirements originated
from the CRs with capabilities and constrains of sensors and
platforms available along with target characteristics. Within
this matchmaking or planning phase, it is essential for the ISR
manager to be able to react to dynamic changes during running
operations, for example due to the loss of certain platforms,
if necessary. This may require dynamic rescheduling of assets
from low priority targets to high priority targets.

III. TWO-STEP APPROACH FOR RESOURCE-OPTIMAL
SENSOR SCHEDULING

In-depth analysis of the relevant operational processes and
the feedback obtained from workshops conducted with oper-
ational subject-matter experts from the military ISR domain
clearly revealed the need for computer-aided assistance sys-
tems in order to support the ISR personnel in matching sensors
and their corresponding carriers to the surveillance and recon-
naissance targets deduced form the commander’s information
needs, even taking into account the actual prevailing conditions
of the current operation and their potential changes over time.

A computer-aided assistance system supporting this task has
to be designed in a way that the process of asset selection,
assignment and scheduling itself as well as the results ob-
tained by it are transparent and understandable to the user.
Furthermore, one has to take under consideration the fact
that certain selection criteria applied in practice cannot be
adequately formulated in pure mathematical terms. This fact
is orthogonal to the complexity of the resulting mathematical
models representing the selection criteria and their relations.

Based on these facts and taking also into account the inher-
ent high computational complexity of suitable algorithms for
solving the underlying combinatorial problems regarding asset
selection, assignment and optimization, a two-step approach
has been worked out. This approach aims to support the
matchmaking between sensors and dedicated carriers and the
corresponding surveillance and reconnaissance targets as well
as the scheduling of selected assets. It is schematically illus-
trated in Figure 2 and described in the rest of this section. In
course of this description, also relations to similar approaches
from the technical literature are highlighted.

Step One comprises an interactive pre-selection and suit-
ability test of assets being in principle appropriate for serving
the individual targets. This step is applied individually for each
target that has to be considered at the task of ISR asset se-
lection, assignment and scheduling. Pre-selection and test are
based on technical and organizational capabilities of assets and
target characteristics along with current operation conditions.
Selection criteria may include target coverage of the sensors,
environmental conditions, mission threats to assets, range to
target, platform and sensor range standoff capability, system
timeliness etc. The output of this step is a set of assets for



Fig. 2. Schematic illustration of the two-step approach for resource-optimal sensor scheduling. At Step One, for each target, the set of available assets (S)
being principally suited according to certain selection criteria is determined sequentially. Step Two aims to derive concrete proposals which assets have to be
finally assigned to which targets and the dedicated routes individual assets have to follow in order to serve these targets.

each target corresponding to a preliminary assignment of zero
ore more assets being in principle suitable for serving the
corresponding target. This preliminary assignment provides
the input for Step Two, triggering an automated planning and
optimization process.

In order to realize Step One, the concept of a sequential filter
chain has been worked out. Within this concept that is also
schematically illustrated in Figure 3, individual filters function
independently from each other on the set of available assets.
Each filter realizes a specific pre-selection/test criterion with
regard to the target under consideration. The individual filters
are applied sequentially. Thereby, they can be concatenated
in a flexible fashion according to different mission needs.
Subsequent application of the filters via the filter chain will
reduce the set of assets being considered as in principle
appropriate for the considered target step by step. Across all
filters, the key input data represents the set of assets that
are currently considered as being in principle suited for the
target at hand. The output data represents the set of assets
that are still considered as being in principle suited for the
target at hand after the pre-selection/test criterion realized
by the corresponding filter has been additionally taken into
account. Having applied Step One on each target that has to be
considered at ISR asset selection, assignment and scheduling,
all the data necessary for running Step Two is gathered.

The idea behind Step One has some similarities to the work
presented in [7] where also a knowledge based approach for
matching assets to missions is presented. However, our concept
of a sequential filter chain involving distinct interactive ele-
ments (for example also plausibility checks being requested to
the user) is different with regard to essential details. Having the
aim to support the user regarding the most essential elements
of the pre-selection task and to ensure simple maintainability
in practice, our approach is intended to be more light-weighted

than the approach presented in [7]. In addition, a substantial
difference is also that the results of Step One are primarily
intended to serve as input for Step Two of the two-step
approach for ressource-optimal sensor scheduling where the
matching of assets and targets is further refined while the work
presented in [7] addresses rather a stand-alone solution.

Step Two comprises the automatic planning and optimiza-
tion process on assets and targets in space and time. In detail,
this step aims to derive proposals which assets have to be
finally assigned to which targets and the dedicated routes
individual assets have to follow in order to serve these targets.
The planning and optimization takes into account specific
constraints such as time-windows, target priorities, specific
asset capabilities required by the individual targets etc. In
addition, it tries to optimize specific cost factors such as the
minimization of the assets withdrawal time on target arrival,
the minimization of the overall operation time of the assets
fielded and the maximization of target being served in total, to
name a few. The transparency and computability of the applied
planning and optimization algorithms is greatly increased due
to the pre-selection conducted in Step One.

In order to realize Step Two, a purely mathematical prob-
lem formalization corresponding to an optimization problem
involving certain constrains has been worked out. A preceding
formal problem analysis clearly indicated that the problem
at hand possesses distinctive similarities to certain problem
classes considered in the Operations Research domain, in
particular to routing problems like Vehicle Routing Problems
(VRPs) and Team Orienteering Problems (TOPs). Using these
similarities, a mathematical model corresponding in essence
to a routing problem that has been adapted where necessary
to take into account the specific characteristics of the problem
at hand has been worked out. Also for the solution of the
corresponding optimization problem under constraints, well-



Fig. 3. Principle of the filter chain applied in Step One. Key input data and output data of each filter are sets of assets (blue arrows). Applying the
pre-selection/tesk criterion realized by a filter will usually reduce the cardinality of an assets set (indicated in the figure by the decreasing size of the blue
arrows). Additional input data (green and gray arrows) for a filter may be data representing specific parameter realizations or parts of the concrete context
like weather conditions, daytime, etc..

founded State-of-the-Art algorithms from Operations Research
domain have been adapted.

A literature review with regard to the approach intended
for Step Two delivered that approaches being very similar but
addressing different specific objectives have been described in
[8], [9], [10]. These related works indicate the high potential
of the intended approach based on an adaption of routing
problems. However, to model the concrete operational aspects
to be considered within this publication, a fundamentally new
mathematical problem description had to be worked out.

IV. AUTOMATIC PLANNING AND OPTIMIZATION PROCESS

This section will focus on Step Two of the two-step ap-
proach for resource-optimal sensor scheduling that has been
introduced in Section III. Thereby, it is assumed that Step One
successfully revealed suitable asset-to-target assignments.

Section IV-A describes the elements of the corresponding
planning problem including their relations and the correspond-
ing planning dimensions for Step Two from an operational
perspective. These findings have been verified in workshops
conducted with operational subject-matter experts from the
military ISR domain. In Section IV-B, the corresponding
mathematical problem description and the concrete means for
its solution are described.

A. Operationally relevant elements

At Step Two, the focus of the ISR managers’ task is
the consistent and optimized assignment between assets and
targets during the planning period under consideration which
includes still a further matching of selected target requirements
against selected asset characteristics. The results obtained are
dedicated routes per asset indicating the sequence in that the
targets being assigned to this asset have to be served. It is
important to note that the inferred routes have to be understood
as some kind of a plausibility check for the adjacent collection
tasking to be done by the ISR manager rather than as detailed
asset mission planning (compare also Section I).

Each route starts from the home base the corresponding
asset is deployed to and also ends in this home base. Within
our current model, assets are not yet allowed to return in
between to their home base for example due to recovery
reasons but enabling this will be a topic for further research.
In the operational ISR business, it is very common that the
amount of targets exceeds the amount of (suitable) assets being

available. This fact requires that a potential solution regarding
the assignment between assets and targets during the planning
period must be still considered as being valid even if not
all targets have (suitable) assets assigned. To appropriately
address this fact, it is essential to allow for different target
priorities during the problem-solving process and to permit the
definition of a certain threshold level for the priority, stating
that a target with a priority exceeding this level must be served.
It is remarked that missing assignments provide useful infor-
mation to the ISR manager regarding the potential allocation
of additional reconnaissance and surveillance resources during
a running operation.

In Step Two of our approach, it is necessary to distinguish
between hard and soft constraints that have to be considered
at deriving the assignment between assets and targets during
the planning period under consideration. Hard constraints
represent restrictions that must not be broken by a potential
algorithm realizing an automated planning component. The set
of hard constrains includes for example the well-formedness
(consistency) of the inferred routes. Weak constraints represent
conditions that may be broken by the algorithm in order
to find a valid solution. This set of constraints includes for
example the demand that, optimally, each target should be
served by a suitable asset – which is often not possible in
reality (see above). Breaking weak constraints still produces
valid solutions but usually lowers the overall solutions quality.

From the operational perspective, a target (in more detail:
a surveillance target or a reconnaissance target) is in essence
characterized as follows:

• Each target, in conjunction with its designated EEI,
possesses a geographical location represented by its ded-
icated NAI. Thereby, the NAI corresponds to a geograph-
ical area, a point, or a line string.

• Each target possesses a certain priority assignment that
is derived from the corresponding EEI. The higher the
target priority, the higher is the relevance of this target
with regard to operational issues.

• Each target requires certain collection disciplines (for
example IMINT, SIGINT, etc.) in order to obtain the
required data. In our current solution, we simplify this
condition by making the assumption that each target
requires exactly one collection disciple which implies that
only one sensor platform with its specific sensor capabil-



ity pack is sufficient in order to solve the corresponding
data acquisition task. This is a simplification in contrast
to reality because in real world operations, often multiple
collection disciplines have to be applied together to
obtain the required data in the required quality. Extending
the current mathematical model and the corresponding
algorithmic framework with regard to this aspect is a topic
for further research.

• To each target, a predefined point in time is assigned that
indicates when data acquisition has to start at earliest.
This point in time is expressed as Earliest Time Informa-
tion of Value (ETIOV).

• To each target, a predefined point in time is assigned
that indicates when a data acquisition must be completed
at latest. This point in time is expressed as Latest Time
Information of Value (LTIOV).

• Data acquisition with regard to a target may require a
certain period of time which in turn forces the asset to
stay on location for that period. This period of time has
to lie completely within the time interval specified by
ETIOV and LTIOV.

From the operational perspective, a sensor and its carrier
platform are in essence characterized as follows:

• Not all assets are equally well suited for data acquisition
depending on the specific target characteristics. More
precisely, only these assets that have been derived in Step
One as being principally suited for a target at hand are
allowed to be deployed to this specific target.

• The fleet of assets is also heterogeneous with regard to
the following aspects:

– Different restrictions regarding the maximum en-
durance of the assets for continuous deployment.

– Different restrictions regarding the availability of the
assets over time.

– Different cost regarding the deployment of the assets
with regard to the distance to be traveled by them and
with regard to the time the assets need for traveling
and for staying at the targets.

– Different fixed costs regarding the deployment of the
assets that are independent from travel distance and
deployment time.

– The assets are hosted in different home bases.
• The assets may directly transmit the data they have

collected to the receiving station or store the collected
data temporarily on board until they return to their home
base or until they reach a geographical location where
data transmission is possible. In the latter case, one has
to take into account that the assets’ storage capabilities
are limited in practice. This aspect is currently considered
in our mathematical model but it is not yet included in
the algorithmic realization. Including it also there will be
a topic for further research.

B. Mathematical model and algorithmic solution
As already sketched in Section III, the planning problem

(corresponding to Step Two) whose operationally relevant

elements have been described in the previous section has
been formulated as optimization problem involving certain
constrains. Thereby, basis of the mathematical problem for-
malization are distinct similarities between the considered
planning problem and certain variants of VRPs and TOPs.

VRPs deal with the distribution of goods between depots
and a set of customers via a fleet of vehicles using a certain
road network. For each vehicle, the set of costumers to
be served by it and the concrete traveling route have to
be determined according to a specific global optimization
criterion that often corresponds to the minimization of global
transportation costs (expressed as costs corresponding to travel
time and/or travel distance and potentially also to certain fixed
costs associated with the use of the vehicles in general). Each
customer demands a certain quantity of a good to be delivered
and, usually, the vehicles posses capacity restrictions regarding
the quantity of the good transportable by them. In the technical
literature, there exist a lot of specific variants of VRPs being
relevant with regard to the planning problem considered in
Step Two of the two-step approach for resource-optimal sensor
scheduling, for example VRPs with Time Windows, Multiple
Depot VRPs, VPRs with Multiple Trips, Heterogeneous Fleet
VRPs, Site-Dependent VRPs, Distance Constrained VRPs, and
VRPs with Pickup and Delivery (see [11], [12], [13], [14], [15]
and the references in these publications).

At TOPs, the traveling time of each vehicle is limited and
visiting a certain customer delivers a certain profit. In essence,
the task is to determine the individual vehicle routes such that
the global profit (i.e., the sum of profits achieved by the fleet
of vehicles in total) is maximal. Also with regard to this kind
of routing problem, certain relevant variants exist, for example
variants involving capacities and time windows (see [16], [17]
and the references in these publications.). However, the set of
variants of TOPs is (also from a general point of view) not as
manifold as the set of variants of VRPs is.

Both, VRPs and TOPs, are of NP-hard type. This even
holds for the Traveling Salesman Problem that can be seen as
simplification of these two kinds of combinatorial problems.
Regarding the algorithmic solution of such highly complex
routing problems, today, approximate solution methods based
on heuristics and meta-heuristics often are promising alterna-
tives to exact solution methods – especially when the number
of problem instances is of medium or even rather high size.
Approximate solutions methods aim to determine a valid
solution being of acceptable but not necessarily optimal quality
(measured by the objective function that has to be optimized
under constraints) within an acceptable time frame.

Our mathematical formalization of the planning problem
(corresponding to Step Two) adapts the mathematical formal-
ization of the VRP with Pickup and Delivery and with Time
Windows as given in [18] by introducing problem specific
elements. In a VRP with Pickup and Delivery, vehicles have
not only to deliver and but also to pick-up the good at certain
locations. In the ISR context, customers correspond to targets
and vehicles correspond to assets. Customer demands and
vehicle capacities are interpreted as quantities of data to be



gathered at the targets by the assets and as the assets’ storage
capabilities, respectively. To model all operationally relevant
problem elements, we extended the optimization problem
corresponding to the VRP with Pickup and Delivery and
with Time Windows by introducing additional hard constraints
stating that a target whose priority exceeds a certain level
must be served and that the assets’ maximal endurance is not
allowed to be exceeded. Also, we included an additional term
in the objective function that states analogously as in TOPs
that the total sum of priorities of the targets being served by
assets shall become maximal.

It is interesting to note that the VRP with Pickup and
Delivery and with Time Windows that been been chosen
as basis of our problem formulation corresponds to a rather
general VRP variant. For example, in [14], it is demonstrated
how a very similar problem variant (Rich Pickup and Delivery
Problem with Time Windows) can be converted into several
other prominent VRP variants. Especially worth to mention
with this regard is also the fact that modifying our problem
formalization (corresponding to Step Two) in a formalization
that does not yet include the characteristics regarding data
transmission capabilities of the assets (compare last bullet in
Section IV-A) is rather uncomplicated possible.

The magnitude of approximate solution methods for routing
problems is designed for the solution of a specific problem
variant while only certain approximate solutions methods are
less fine-tuned and rather generally applicable. To solve our
concrete planning problem (corresponding to Step Two), we
analyzed State-of-the-Art methods with this regard and then
consciously selected an algorithm possessing a rather wide
application field. More precisely, a kind of Large Neighbor-
hood Search being in essence based on an Ruin and Recreate
Algorithm [19] has been selected. The practical realization is
based on the Open-Source Toolkit jsprit. Current results are of
good quality, however there is still potential, for example by
further optimizing waiting times and by including additional
adaptive elements into the heuristics/meta-heuristics. Further
research will address this topic.

V. CONCLUSION AND FURTHER RESEARCH

A two-step approach for resource-optimal sensor scheduling
constituting the basis of a computer-aided assistance system
for ISR management personal has been presented. It consists
of an interactive step where for each target, the set of available
assets being principally suited is determined. After that, an
automatic planning algorithm tries to derive concrete proposals
which assets have to be finally assigned to which targets and
the dedicated routes individual assets have to follow in order to
serve these target. The approach has been developed in close
cooperation with subject-matter experts from the ISR domain.

An important topic for further research remains evaluation
covering two aspects: additional user feedback (especially
when the approach is enhanced) and development of a formal
evaluation framework. By the latter, additional aspects of a
systematic evaluation (for example based on additional quality

metrics, on benchmark-like problem instances, on comparison
with ground truth values) shall be addressed.
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