
Distributed Usage Control Enforcement through Trusted
Platform Modules and SGX Enclaves

Paul Georg Wagner
Karlsruhe Institute for Technology,

Karlsruhe, Germany
paul.wagner@student.kit.edu

Pascal Birnstill
Fraunhofer IOSB, Karlsruhe, Germany
pascal.birnstill@iosb.fraunhofer.de

Jürgen Beyerer
Fraunhofer IOSB, Karlsruhe, Germany
juergen.beyerer@iosb.fraunhofer.de

ABSTRACT
In the light of mobile and ubiquitous computing, sharing sensitive
information across different computer systems has become an in-
creasingly prominent practice. This development entails a demand
of access control measures that can protect data even after it has
been transferred to a remote computer system. In order to address
this problem, sophisticated usage control models have been devel-
oped. These models include a client side reference monitor (CRM)
that continuously enforces protection policies on foreign data. How-
ever, it is still unclear how such a CRM can be properly protected in
a hostile environment. The user of the data on the client system can
influence the client’s state and has physical access to the system.
Hence technical measures are required to protect the CRM on a
system, which is legitimately used by potential attackers. Existing
solutions utilize Trusted Platform Modules (TPMs) to solve this
problem by establishing an attestable trust anchor on the client.
However, the resulting protocols have several drawbacks that make
them infeasible for practical use. This work proposes a reference
monitor implementation that establishes trust by using TPMs along
with Intel SGX enclaves. First we show how SGX enclaves can
realize a subset of the existing usage control requirements. Then
we add a TPM to establish and protect a powerful enforcement
component on the client. Ultimately this allows us to technically
enforce usage control policies on an untrusted remote system.

CCS CONCEPTS
• Security and privacy → Access control; Privacy-preserving
protocols; Digital rights management; Information flow control;

KEYWORDS
Usage Control, Access Control, Trusted Reference Monitor, Trusted
Platform Module, SGX, Secure Remote Computation
ACM Reference Format:
Paul Georg Wagner, Pascal Birnstill, and Jürgen Beyerer. 2018. Distributed
Usage Control Enforcement through Trusted Platform Modules and SGX
Enclaves. In SACMAT ’18: The 23rd ACM Symposium on Access Control Models
& Technologies (SACMAT), June 13–15, 2018, Indianapolis, IN, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3205977.3205990

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SACMAT ’18, June 13–15, 2018, Indianapolis, IN, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5666-4/18/06. . . $15.00
https://doi.org/10.1145/3205977.3205990

1 INTRODUCTION
Most modern computer systems rely on mechanisms that can re-
strict the access to certain system resources like files and services.
Especially in the context of mobile and ubiquitous computing, dig-
itally managing the access to sensitive information clearly plays
an essential role in designing data processing systems that are
both secure and privacy friendly. Traditional access control mod-
els are generally implemented through a reference monitor that
is invoked whenever a subject requests access to a particular ob-
ject. The reference monitor then evaluates available access control
policies and enforces the resulting access control decision on the
subject. However, for some use cases it is not sufficient to merely
control the access to information once at the time of data request.
Sometimes a generalized model is necessary that can continuously
monitor and control the actual usage of information over an ex-
tended period of time. Such a model includes solutions to many
questions of digital rights management (DRM) and it may also allow
for the implementation of privacy enhancement technologies that
monitor and control the usage of personal data after it has been
released. To adequately reflect these important requirements, Park
and Sandhu [8] developed the notion of usage control (UC). Fur-
thermore, distributed usage control models have been proposed [9]
that tackle the problem of transferring information across different
usage control domains. In these scenarios, the data access should
be continuously controlled on a remote computer system even after
the data has left the domain of the data provider. In order to achieve
this, the data provider deploys usage control policies to a client-
side reference monitor (CRM) before the data access is granted on
the server. Afterwards the CRM is responsible for enforcing the
deployed policies on the data. The policies that should be enforced
on the client side can be of different nature.
• Restricting access: The user of the client system should only be
allowed to access the files in certain situations or at certain times.
• Usage control: The user of the client system may be allowed to
access the data, but their use is restricted. For example, the user
should not be able to disseminate the data further.
• Secure computation: The user must never access the transmitted
data directly. Instead, a trustedmodule on the client side performs
a computation on the data, after which the user can get access.

While most usage control models focus on policies that mainly
reflect the former two cases, the latter is of great use when imple-
menting privacy protecting mechanisms. For example, a provider
of personally identifiable information could issue usage control
policies that enforce data anonymization on the client before the
critical information is used otherwise. With powerful usage con-
trol models already established, it is still an open question how to
implement and protect a client-side reference monitor in a possibly

https://doi.org/10.1145/3205977.3205990
https://doi.org/10.1145/3205977.3205990


SACMAT ’18, June 13–15, 2018, Indianapolis, IN, USA P.G. Wagner et al.

hostile environment. Previous suggestions utilize Trusted Platform
Modules (TPMs) to establish a trusted computing base, but this so-
lution has drawbacks and is not sufficient to appropriately protect
the transmitted data. This work proposes a CRM implementation
that establishes trust by using TPMs along with Intel SGX enclaves
running on an untrusted system. Ultimately this allows us to tech-
nically enforce usage control policies on a remote system, whose
user we do not trust. In section 2 we will present existing propo-
sitions of a CRM design, which are based on TPMs, and discuss
their drawbacks. In section 3 we present a simple CRM design that
uses the well researched secure remote computation features of
Intel SGX. However, this design cannot enforce arbitrary usage
control policies. Afterwards in section 4 we generalize the design
by adding another TPM, which yields a solution that can enforce all
mentioned usage control policies. We finally conclude in section 5.

2 RELATEDWORK
Implementing a referencemonitor in a possibly hostile environment
requires a Trusted Computing Base on the target system. This can be
achieved by a Trusted PlatformModule (TPM). A TPM is a dedicated
hardware chip that extends a computer with basic security related
features [6]. It uses volatile platform configuration registers (PCRs)
to measure the current hardware and software configuration as an
unforgeable hash. This allows the system to seal confidential data
to a certain TPM state. Furthermore, remote parties can verify that
the target system is in a certain state by attesting to certain PCR
values. Hence a TPM can be used to protect system components in
an untrusted environment.

Sandhu and Zhang [11] introduced the notion of a trusted refer-
ence monitor (TRM) inside the client-side operating system. The
TRM is a reference monitor that operates in an untrusted envi-
ronment, but is protected from external modification by a TPM.
Implemented as a kernel module, the TRM is part of the measure-
ment chain during the boot process. Before transmitting any data or
policies, the data provider remotely attests to the PCR values of the
client system. Only if the remote system is in a trustworthy state (i.e.
the TRM is unmodified and running), information is transmitted.
Since we focus on implementing a trusted reference monitor on
client systems, in the following sections we will use TRM and CRM
synonymously. Based on the work of Sandhu and Zhang, Sevinç
et al. [12] developed a protocol that relies on a TPM to remotely
verify the integrity of the client software stack. In this protocol,
secrets are only transmitted to the client if the attestation is suc-
cessful and the remote system can show the correct PCR values.
Furthermore, the server binds the secret data to a key that is sealed
to the required PCRs. That way the transmitted data can only be
unsealed and used as long as the client system is in a trustworthy
state. However, by relying only on TPMs, Sevinç’s protocol has
several drawbacks that have not yet been addressed. For example,
the TPM cannot distinguish between trusted and untrusted pro-
cesses. Even in trusted system states (i.e. the TRM is running and
has not been tampered with) there will be untrusted user processes
active in the system. In that case only trusted processes, such as
the TRM itself, should be able to unseal the data. If the sealed data
is intercepted during transmission, or is in any way available later
on, any user process can request the TPM to unseal the data if only

the PCRs still have the correct values. This bypasses TRM control
on a software level. In order to distinguish trusted from untrusted
processes, the TRM design may include operating system based
protection mechanisms, such as access rights on files and directo-
ries. There are techniques available to include executable content
and security extended file attributes into the TPM measurement
chain, such as the integrity measurement system and the extended
verification module for Linux [10]. However, since in this case the
user of the client system is an attacker, TPM based mechanisms
are not sufficient to protect the sealed data that way. The user can
mount the hard drive and access the sealed data in a secondary
operating system. Even though the sealed data cannot be unsealed
in this untrusted system state, the user can still make a copy of the
encrypted data without changing the original file meta data. When
booting the unmodified operating system, the PCRs are filled with
the correct values and the user can unseal the copied data.

To conclude, the proposed solutions for a secure TRM implemen-
tation rely on establishing trust using a TPM, but are not sufficient
to properly protect the transmitted data. This is mainly a result of
the attacker model, which includes valid users of the client system
itself, who can use the TPM, launch untrusted system processes
and have physical access to the hardware.

3 IMPLEMENTATIONWITH INTEL SGX
Intel’s Software Guard Extensions (SGX) consist of a set of processor
instructions extending the x86 architecture, along with special
hardware that is included in newer Intel CPUs. SGX can provide
integrity and confidentiality, even if privileged software such as
the operating system is malicious. This is achieved by executing
user code in a protected container called enclave, which cannot be
accessed by other user processes or even by the operating system
itself. The enclave is executed by trusted hardware and is isolated
from the rest of the system (reverse sandboxing). It uses encrypted
memory to protect the confidentiality of data and can verify the
integrity of the code by communicating with the Intel Attestation
Service (IAS). Because the runtime state of the enclave cannot be
influenced from the outside, SGX represents a trusted computing
design. SGX allows to encapsulate critical software, for example
cryptographic libraries or key management services, in protected
shells that will behave in expected ways. Architectural details of
SGX and a comprehensive analysis of its security is provided in [5].

3.1 Secure Remote Computation
SGX has been designed to ease the implementation of secure remote
computation. Secure remote computation is the problem of using a
remote computer, owned by an untrusted party, to perform some
computation on certain confidential data. In our case a remote
service provider needs to provision secrets to untrusted clients, who
run trusted code inside an enclave. Before transmitting the data, the
service provider has to convince himself that he is communicating
with a certain enclave, which is running in a secure environment.
With SGX-enabled processors, this can be achieved by initiating a
remote attestation process. This process consists of four phases [1].
(1) Enclave Launch: The untrusted system launches code inside an

enclave. During the launch, code and data are cryptographically
hashed. This hash is called the enclave’s measurement.



Distributed Usage Control Enforcement through TPMs and SGX Enclaves SACMAT ’18, June 13–15, 2018, Indianapolis, IN, USA

(2) Attestation: The enclave contacts the remote service provider
and signals that it is ready for provisioning. The enclave pro-
duces a signed quote that includes the enclave measurement.
This quote is sent to the service provider.

(3) Provisioning: The service provider verifies the quote by contact-
ing the IAS. This ensures that the service provider is indeed
communicating with the correct enclave. The service provider
uses the attestation protocol to establish a secure channel to
the enclave and transmits the sensitive data.

(4) Sealing/Unsealing: The enclave receives the sensitive data and
seals it to its current state. Sealed data is encrypted and can be
securely stored outside the enclave (e.g. in files). It can only be
decrypted by the same enclave in the same state.

After the attestation process, the enclave received all necessary data
and performs the desired computations while protecting both confi-
dentiality and integrity. The necessary secure channel is established
by a modified Sigma protocol that facilitates a Diffie-Hellman Key
Exchange (DHKE) between the enclave and the service provider.
During the remote attestation process the enclave sends a quote
containing its enclave measurement to the service provider. The
service provider forwards the quote to the IAS, where it can be
verified. If the quote verifies correctly, the service provider is confi-
dent that he communicates with the right enclave (measurement
is correct) and that only the enclave knows the established Diffie-
Hellman key. Both parties can then derive a symmetric secret from
the Diffie-Hellman key and use it to encrypt their communication
for the provisioning phase. In [7] the remote attestation protocol
is explained in greater detail. A similar protocol is also possible
between two enclaves that reside on one SGX platform. This is
called local attestation. It can be used to locally verify the integrity
of another enclave and establish a secure channel between them.

3.2 TRM Design
Trusted Reference Monitors can be implemented on SGX-enabled
processors by using the remote attestation functionality. The TRM
is realized as a trusted enclave that is running on the client. A
data provider (DP) can remotely attest to the identity and integrity
of the enclave (via the IAS), and hence establish trust in the re-
mote reference monitor. The sigma protocol instance authenticates
the channel and gives both sides a shared secret, which the data
provider uses to encrypt the data. The untrusted software on the
client acts as a man in the middle, but can neither decrypt nor
modify any messages between enclave and data provider. Once the
secure channel has been established, the data provider deploys the
signed access control policies at the remote TRM and transmits the
encrypted data. On the client side, the enclave verifies the signature
of the policies and seals the received data. Untrusted processes can
request data access at the enclave, which evaluates the policies and
enforces the resulting access control decisions. Figure 1 shows the
resulting sequence of data request, transmission and access control
enforcement at the client. Of course, the TRM can also enforce com-
plex access control policies that require computation on the data
before access can be granted. For example, a provider of personally
identifiable information can instruct the TRM to remove personal
information from the data for certain requests.

TRM App DP
Request data

Sigma, DHKE

policies, SigDP (policies), Enck (data)

data

derive k derive k

decision

Client

Figure 1: TRM implementation with SGX.

3.3 Security Analysis
In terms of the attacker model we have to distinguish between inter-
nal and external attackers. Internal attackers are the untrusted parts
of the client system, outside the trusted enclave. This includes any
untrusted user process running on the client, as well as privileged
software like the operating system. The goal of internal attackers is
to bypass the policy enforcement and directly access the protected
data without access control restrictions. External attackers reside
outside the client system and can intercept and modify messages
between the data provider and the client. Their goal is to extract
information about the protected data from the exchanged messages.

Based on this attacker model, the security of the TRM design im-
mediately reduces to the design of the SGX remote attestation proce-
dure as well as the security of the used cryptographic schemes. The
integrity of the enclave code is ensured because the data provider
verifies the quote containing the enclave measurement with the
IAS. Only the TRM enclave is able to generate a quote that is cor-
rectly signed. An internal attacker, who tampers with the TRM code
before launching the enclave, changes the enclave measurement in
the process, which will fail the quote verification step on the data
provider. The communication channel between the data provider
and the trusted enclave is established by the sigma protocol. The
resulting channel is authenticated by digital signatures provided
by the enclave and the data provider. The data provider signs his
messages with his private key. The enclave can verify the signa-
tures by using the data provider’s public key that is usually hard
coded into the enclave software. Since the public key is part of
the enclave code, its integrity is protected by the enclave measure-
ment. The enclave is authenticated by the correct quote signature.
The quote contains the public part of an asymmetric key pair that
the enclave generated for communicating with the data provider.
This key is used for authenticating further messages to the data
provider. Furthermore, a shared Diffie-Hellman key is established
between the enclave and the data provider. Since the channel is au-
thenticated, no external or internal attacker is able to intercept the
Diffie-Hellman key exchange and hence does not know the shared
secret after the sigma protocol finishes. Under the assumption that
the key derivation function and the used encryption scheme are
secure, the protected data cannot be decrypted on the way to the
enclave. On the client system, the SGX-enabled hardware ensures
that no internal attacker can access any data residing in an enclave.
The integrity of the included access control policies is assured by



SACMAT ’18, June 13–15, 2018, Indianapolis, IN, USA P.G. Wagner et al.

the digital signature of the data provider. Since the SGX specifica-
tion includes hardware protection mechanisms, such as reserved
memory areas for enclaves, physical attacks become less feasible
for internal attackers. The security of the remote attestation and
the underlying SGX design are analyzed in greater detail in [1, 5].

3.4 Problems
Since the security of the proposed design is based on the security
of the SGX architecture, attacks against SGX hardware or proto-
cols immediately impact the TRM implementation. As shown in
[3, 14], SGX has certain weaknesses against side channel informa-
tion leakage attacks. This could allow internal attackers to extract
knowledge about enclave data. However, recent research has at-
tempted to prevent such information leakage by detecting external
intervening in enclave execution [4, 13]. Another problem is the
remote policy deployment mechanism of the access control sys-
tem. In order to remotely deploy new policies at the TRM, the data
provider needs to connect to the client system and transmit the
encrypted policies. An internal or external attacker could block re-
spective messages from the data provider to the TRM, and thereby
prevent policy updates. In that case the TRM does not know about
the new policies and will continue to evaluate old ones for access
control decisions. The data provider will notice the failed policy
deployment, but has no way of notifying the enclave if the attacker
severs all communication. This is a general problem of distributed
access control systems and it also affects access right revocation. A
possible solution is for the TRM to regularly query policy updates
at the data provider and deny accesses if the data provider is not
reachable. The downside of this solution is the increased commu-
nication overhead. It also requires a suitable challenge-response
protocol in order to prevent replay attacks. Finally, implementing
a TRM inside an enclave leaves only limited options with regard
to policy enforcement. Most importantly, the TRM cannot enforce
policies on data that has been released outside the enclave. Once
an access is granted and data leaves the enclave into untrusted
space, no further control on the copied data is possible. Therefore
this TRM design is sufficient for remote access control, but not for
cross-domain usage control. Of course, the TRM can also enforce
computations on the protected data (e.g. remove sensitive personal
information) before they are released without further restrictions.
However, due to the isolation of the enclave against the rest of
the untrusted system, the TRM implementation has only limited
resources available. Enclaves can only use a modified version of
the standard C library, along with a limited amount of protected
memory. Hence it is unfeasible to perform complex calculations (e.g.
anonymize privacy impacting images) inside an enclave. All in all,
using SGX to protect a TRM results in a design that can remotely
enforce access control policies and provide secure computation.
However, this solution is not sufficient for enforcing distributed
usage control in general.

4 IMPLEMENTATIONWITH SGX AND TPM
As shown in the previous sections, neither TPMs nor SGX enclaves
alone are sufficient to securely implement a powerful TRM on a
remote client system. TPMs offer a single isolation container that
covers all the software running on the computer, including the

operating system. This makes it possible to protect the integrity of
kernel modules that can enforce complex policies on a low system
level. Such a powerful kernel level component is necessary to im-
plement distributed usage control systems. However, TPMs cannot
sufficiently protect the integrity of policies and the confidentiality
of data in this use case (see section 2). SGX-enabled processors can
be used to implement a TRM design based on enclaves. A TRM
enclave can use the SGX remote attestation protocol to perform
remote policy deployment and secure remote computation. On the
other hand, the SGX enclave is technically isolated from the rest
of the system, which makes it impossible to enforce usage control
policies on data outside the enclave. Therefore SGX enclaves cannot
implement a TRM for general usage control purposes. A possible
solution is to combine SGX enclaves with a separate TPM that is
protecting the rest of the system. An external enforcement com-
ponent is realized as a standard kernel module and gets measured
by a separate TPM. The TRM itself consists of SGX enclaves that
communicate with the data provider and evaluate the deployed poli-
cies. The enclaves verify the integrity of the external enforcement
component using the local attestation mechanism of the TPM.

4.1 TRM Design
We base our TRM design on the well researched XACML architec-
ture [2]. The TRM components are shown in figure 2.

Policy Enforcement Point. The PEP is the enforcement component
of the TRM. It intercepts data accesses in the system and enforces
usage control decisions on it. The PEP cannot be isolated in a
SGX enclave, because it needs to track data flows and enforce
policies throughout the system. Hence the PEP is implemented
as a dedicated kernel module. Its integrity is protected by a TPM
measurement during the boot sequence.

Policy Decision Point. The PDP evaluates a set of deployed poli-
cies for each requested data access in order to reach an access
decision for the request. It is implemented as a trusted SGX enclave.
It communicates with the external PEP to announce access control
decisions. The PEP notifies the PDP about an intercepted event,
the PDP evaluates the respective policies and returns the resulting
decision, which the PEP enforces on the requester.

Policy Retrieval Point. The PRP is the part of the TRM that se-
curely receives policies and data from remote data providers. It is
also the main component that establishes trust with the remote data
provider. This includes verifying the integrity of the other parts of
the TRM, especially the PEP and the PDP. The PRP is implemented
as an enclave on the client system and can use the SGX remote
attestation protocol to prove its integrity to the data provider.

Policy Information Point. The PIP is a user space application
that provides information about the current system state for the
policy evaluation. It encapsulates the PDP and PRP enclaves and
acts as an interface between PEP and PDP. The PIP holds a data
flow model, which maps a representation of the protected data
existing on the computer to a set of containers, e.g. files or user
processes that contain this information. The data flow model gives
a comprehensive overview of the current system state with regard
to the distribution of protected data. The PIP is notified by the



Distributed Usage Control Enforcement through TPMs and SGX Enclaves SACMAT ’18, June 13–15, 2018, Indianapolis, IN, USA

PEP about system events that can initiate a data flow, for example
certain system calls, and updates the data flow model accordingly.
The PDP can use this information in order to come to an access
control decision for a particular access request.

Data
Provider PRP Encl. TPM

PDP Encl. PEP

User

PIP

Client

Policies
Data

PoliciesLocal
attest.

Loc. attest.

Enforcement
Decision

Measurement

Figure 2: TRM design with TPM and SGX.

The TRM protocol consists of four phases (see figure 3).
(1) Initialization: During the boot sequence of the client system,

the TPM measures the PEP kernel module as well as the PIP
application in oder to detect tampering. The PIP application
launches the PRP and the PDP enclaves.

(2) Establishing trust: In order to verify the integrity of the client
system, a remote data provider initiates the remote attestation
protocol with the PRP enclave. Three sigma messages S1-S3 are
exchanged between the data provider and the PRP enclave (see
section 3.1). If the sigma protocol is successful, the data provider
trusts the remote PRP implementation and a shared symmetric
key sk is established. The PRP enclave is responsible for verify-
ing the integrity of the other trusted components of the TRM.
First, the PRP checks the PCR values of the external TPM in
order to establish trust in the PEP and the PIP implementations.
If the PCR values match a known value, the components are un-
modified and can be trusted. Then, the PRP uses the SGX local
attestation protocol to verify the state of the PDP enclave. If this
attestation is successful, the PDP enclave has been launched
unmodified. In that case a transitive trust relationship is es-
tablished, since the data provider trusts the PRP, and the PRP
trusts the PDP and PEP. Finally, the trusted PRP notifies the
data provider that the remote platform is trustworthy.

(3) Policy deployment: The data provider uses the established secure
channel to transmit the protection policies to the PRP enclave.
The policies are signed by the data provider and the PRP verifies
the signature. Then the PRP deploys the policies to the PDP,
using the locally established secure channel between the two
enclaves. After the protection policies have been successfully
deployed on the remote system, the data provider transmits the
sensitive data to the PRP enclave. In order to prevent informa-
tion leakage, the protected data is encrypted with the shared
symmetric key. Finally, the PIP is notified about the existence
of new data and updates its data flow model accordingly.

(4) Policy enforcement: The active PEP kernel module intercepts
data requests of users in the system and notifies the PIP about
respective events. The PIP can update the mappings of its data
flow model according to the triggered event (e.g. a read() sys-
tem call), and then forwards the event to the PDP enclave for

decision. The PDP evaluates the deployed policies for the inter-
cepted event and may query the data flow model in the process.
The resulting access control decision is returned via the PIP to
the PEP, which finally enforces it on the requester. Unlike in
the XACML architecture, the PIP is also responsible for initially
forwarding the protected data to the requester. A user process
can request access to the data that the remote data provider has
transmitted to the client system. If the PDP access control deci-
sion is positive, the PIP releases the protected data. Afterwards,
the usage of the released data in the memory of untrusted user
processes is supervised by the PEP. The PIP then merely up-
dates the data flow model by changing the mapping of the data
to containers based on the intercepted PEP events.

4.2 Security Analysis
The attacker model for this TRM design is the same as for the previ-
ous, SGX-based solution. We distinguish between internal attackers,
most importantly the user of the client system, and external attack-
ers that eavesdrop on the communication between data provider
and client. However, unlike in the previous section, we now assume
that an internal attacker does not have root access to the client
system. The most important issue with this TRM design is how
the trust relationship between the remote data provider and the
TRM on the client system is established. This is achieved in a tran-
sitive fashion. The first trust relationship to consider is between
the remote data provider and the PRP enclave. This relationship is
established using the SGX remote attestation protocol. The sigma
protocol identifies the PRP enclave and ensures that it has not been
altered. It has already been analyzed in the previous chapter. After
the sigma protocol finishes, the server trusts the PRP implementa-
tion, as well as the established key. Furthermore, the SGX hardware
prevents modifications and information leaks while the enclave is
running. As presented in the previous section, SGX-enabled pro-
cessors provide some security guarantees against both internal and
external attackers. The other trust relationships are established be-
tween the PRP enclave and the other parts of the TRM design. The
PRP enclave has the responsibility to issue the policy deployment
and to only release the data outside the protected enclave if it is
protected by the usage control system. For this, the enclave verifies
the integrity of the PIP and PEP external modules by comparing the
PCRs of the external TPM to known “good” values. During the boot
sequence, the TPM measures both the PEP and the PIP components.
If an internal attacker modifies the PEP or PIP module in order to
influence the TRM implementation, the measurements will change
and the PCR verification fails. In that case, the PRP will not release
any sensitive data outside the enclave. An internal attacker could
try to launch the PRP enclave inside an untrusted system process
instead of the PIP and retrieve the protected data after the policy
deployment step. This is prevented by measuring each start of an
enclave individually. The PIP launches each TRM enclave exactly
once during startup, and launching any more instances will result
in changed PCR values. Furthermore, the reference monitor of the
operating system ensures that any non-root system user (i.e an
internal attacker) cannot tamper with the modules after the system
is booted and the measurement is performed. This presupposes
that the operating system is properly configured and the client user



SACMAT ’18, June 13–15, 2018, Indianapolis, IN, USA P.G. Wagner et al.

Data Provider PEP:Kernel Module PIP:Application PRP:Enclave PDP:Enclave TPM

measure()
measure()

launchEnclave()

launchEnclave()

InitializationInitialization

attestClient()

S1
S2
S3

derive key sk derive key sk readPCRs()

PCR values

verify PCRs
attestLocal()

trust level

Establishing trustEstablishing trust

policies, SigDP(policies)
deploy(policies)
policy status

policy status

verify signature

Encsk(data)
setNewRepr(data)

Policy deploymentPolicy deployment

notify(event)
notify(event)

checkRepr(data,container)

decision
data, decision

user access

grant/deny

Policy enforcementPolicy enforcement

Figure 3: Sequence diagram of TRM protocol interaction.



Distributed Usage Control Enforcement through TPMs and SGX Enclaves SACMAT ’18, June 13–15, 2018, Indianapolis, IN, USA

does not have root rights at the system, which is a common demand
for TPM protected systems (c.f. section 2). External attackers are
not relevant for this trust relationship, since no messages between
the TRM modules ever leave the client system. Finally, the trust
relationship between the PRP and the PDP has to be established.
Since the PDP is also an enclave, this is achieved by a SGX local
attestation. The local attestation protocol verifies the integrity of
the enclave code, which prevents internal attackers from tampering
with the PDP implementation. After the enclave is launched, the
SGX hardware isolates it from the rest of the system. Hence inter-
nal attackers cannot influence the PDP component during runtime.
Again, external attackers are not relevant for this trust relationship,
because no messages leave the client system.

4.3 Open Issues
The main problems of the proposed general TRM design arise from
the fact that it includes a TPM, as opposed to the purely SGX-
based solution. However, including a TPM is necessary in order
to implement general distributed usage control. A powerful PEP,
which can enforce usage control policies throughout the whole
system, can only be implemented outside a SGX enclave. Hence
the trust anchor of this design, unlike with many SGX-enabled
applications, is not just the set of SGX enclaves alone, but also
includes the TPM and the operating system. This ultimately leads
to weaker security guarantees. Depending on the policies and the
way of the data usage, hardware attacks may become a problem
again. Only the SGX enclaves are protected against information
leakage by hardware mechanisms, so data that exited the enclaves
can be intercepted at the hardware bus. Furthermore, the TRM
design requires additional assumptions that SGX-based designs
do not necessarily demand. Unlike before, the operating system’s
reference monitor has to be trusted. If the operating system is
vulnerable, an untrusted user could influence the user space TRM
modules, for example the PEP or the PIP, during runtime. For the
same reason, the client system user must not be root. Even though
a root user cannot forge TPM measurements, he still can influence
the non-enclave TRM modules after the measurement has been
done. Those TPM-related assumptions aremuch stronger than those
required with purely SGX-based designs, but they are common for
usage control systems. Other unsolved questions concern the actual
implementation of the proposed TRM design. It is not yet clear how
the PCR values of an external TPM can be checked from inside
an enclave. Intel does not provide an interface to access external
TPMs from inside an enclave, because in the standard use cases, the
SGX hardware replaces traditional TPMs. In our use case however,
SGX cannot replace the external TPM, since we require to take
measurements during the boot sequence. Of course it is possible
to use an OCALL invocation in order to query the external PCR
values from outside the enclave, but in that case the returned PCR
values might be vulnerable to modification by an untrusted system
process. Moreover, the TPM needs to be able to measure every SGX
enclave launch separately, in such a way that each enclave launch
changes the PCR values. Otherwise the user can easily impersonate
a PIP, launch a second PRP enclave instance and retrieve the data
himself. It is not yet clear how this mechanism can be realized in a
SGX-enabled system that also features a TPM.

5 CONCLUSION
In this work we showed that it is possible to achieve secure compu-
tation as well as remote access control with SGX-enabled processors.
However, enforcing distributed usage control on remote client sys-
tems requires a Policy Enforcement Point that can intercept events
on an operating system level. This component cannot be imple-
mented as an isolated SGX enclave. Therefore we proposed a TRM
design with separate, but interdependent components that reside
inside as well as outside of isolated enclaves. An additional TPM
establishes the required trust outside of SGX enclaves. Before trans-
mitting sensitive data to a client, the data provider uses the SGX
remote attestation protocol to verify the integrity of the enclave
software that is running on the client. The enclave then evaluates
the measurements of the external TPM, thereby ensuring the in-
tegrity of the TRM parts that reside inside the operating system
kernel. Ultimately, a transitive trust relationship is established that
enforces deployed usage control policies on remote systems.

Necessary future work towards a full working implementation
includes analyzing the size of various PRP and PDP code bases.
Currently SGX enclaves are still quite limited in size, which could
make an SGX implementation of advanced applications unfeasible.
Furthermore, the ways of communication between the TPM and
the SGX enclaves have to be researched further.

REFERENCES
[1] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative

technology for CPU based attestation and sealing. In Proceedings of the 2nd
international workshop on hardware and architectural support for security and
privacy, Vol. 13.

[2] Anne Anderson, Anthony Nadalin, B Parducci, D Engovatov, H Lockhart, M
Kudo, P Humenn, S Godik, S Anderson, S Crocker, et al. 2003. extensible access
control markup language (xacml) version 1.0. OASIS (2003).

[3] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache
Attacks Are Practical. arXiv preprint arXiv:1702.07521 (2017).

[4] Sanchuan Chen, Xiaokuan Zhang, Michael K Reiter, and Yinqian Zhang. 2017.
Detecting privileged side-channel attacks in shielded execution with Déjá Vu. In
Proceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security. ACM, 7–18.

[5] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016 (2016), 86.

[6] Trusted Computing Group. [n. d.]. TCG architecture overview. (TCG Specifica-
tion). ([n. d.]).

[7] Intel. 2016. Intel®Software Guard Extensions Remote Attestation End-
to-End Example. (2016). https://software.intel.com/en-us/articles/
intel-software-guard-extensions-remote-attestation-end-to-end-example

[8] Jaehong Park and Ravi Sandhu. 2004. The UCON ABC usage control model. ACM
Transactions on Information and System Security (TISSEC) 7, 1 (2004), 128–174.

[9] Alexander Pretschner, Manuel Hilty, and David Basin. 2006. Distributed usage
control. Commun. ACM 49, 9 (2006), 39–44.

[10] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert Van Doorn. 2004. Design
and Implementation of a TCG-based Integrity Measurement Architecture.. In
USENIX Security Symposium, Vol. 13. 223–238.

[11] Ravi Sandhu and Xinwen Zhang. 2005. Peer-to-peer access control architecture
using trusted computing technology. In Proceedings of the tenth ACM symposium
on Access control models and technologies. ACM, 147–158.

[12] Paul Sevinç, Mario Strasser, and David Basin. 2007. Securing the distribution and
storage of secrets with trusted platformmodules. Information Security Theory and
Practices. Smart Cards, Mobile and Ubiquitous Computing Systems (2007), 53–66.

[13] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. 2017. T-SGX:
Eradicating controlled-channel attacks against enclave programs. In Proceedings
of the 2017 Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA.

[14] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In Security
and Privacy (SP), 2015 IEEE Symposium on. IEEE, 640–656.

https://software.intel.com/en-us/articles/intel-software-guard-extensions-remote-attestation-end-to-end-example
https://software.intel.com/en-us/articles/intel-software-guard-extensions-remote-attestation-end-to-end-example

	Abstract
	1 Introduction
	2 Related Work
	3 Implementation With Intel SGX
	3.1 Secure Remote Computation
	3.2 TRM Design
	3.3 Security Analysis
	3.4 Problems

	4 Implementation With SGX and TPM
	4.1 TRM Design
	4.2 Security Analysis
	4.3 Open Issues

	5 Conclusion
	References

